SYNTHESIS AND CHARACTERIZATION OF NOVEL \textit{CAP-LINKER-CAP} TYPE STRUCTURES AS TWO-PHOTON ABSORPTION PHOTOINITIATORS

Markus Lunzera, Brigitte Holzera, Maximilian Tromayerb, Daniel Lumpia, Ernst Horkela, Robert Liskaa, and Johannes Fröhlicha

aInstitute of Applied Synthetic Chemistry, Vienna University of Technology, 1060 Vienna, Austria
bInstitute of Materials Science and Technology, Vienna University of Technology, 1040 Vienna, Austria
markus.lunzer@tuwien.ac.at

Owing to great advances in the field of two-photon absorption (2PA) microscale rapid prototyping (RP) techniques based on this principle have been pushed to the edge of commercialization in recent years. Nevertheless, a strong need for highly efficient two-photon absorption photoinitiators (2PA-Pi) still persists \cite{1}.

Scheme 1: \textit{Cap-linker-cap} motif

Based on findings in our group \cite{2} our current research focuses on the improvement of the 2PA-Pi efficiency of promising \textit{cap-linker-cap} type structure 1 (linker = thiophene 2a, cap = triphenylamine) by (i) increasing the electron density of the linker and (ii) planarizing both linker and cap. To ensure solubility in the respective monomer solution hexyl-residues (Hx) were applied. Synthesis and photo-physical characterization as well as 2PA-Pi-structuring tests of this series of compounds will be presented.

\begin{itemize}
\item 1 M. Pawlicki, et al., \textit{Angewandte Chemie International Edition} 2009, 48, 3244-3266.
\item 2 B. Holzer; poster presentation ESPS 2014, Vienna, Austria
\end{itemize}