AN INTERNATIONAL WORKSHOP, JUNE 13TH TO 14TH 2016
CEST/WIENER NEUSTADT
Registration is requested until June, 9th 2016 at office@cest.at

www.ait.ac.at
www.cest.at

BIOELECTROCHEMISTRY AND MORE
AN INTERNATIONAL WORKSHOP, JUNE 13TH TO 14TH 2016
CEST/ WIENER NEUSTADT
The AIT Austrian Institute of Technology and CEST invite you to the lecture series:

BIOELECTROCHEMISTRY AND MORE

Date: Monday, 13th June 2016 – Tuesday, 14th June 2016
Location: Lecture Hall TFZ, 1st floor, Unit A
CEST Centre of Electrochemical Surface Technology
Viktor-Kaplan-Straße 2, 2700 Wiener Neustadt
phone: +43-2622-22266-0 | fax: +43-2622-22266-90
mail: office@cest.at | www.cest.at

Monday, June 13th
All Morning: arrival of workshop speakers

08:30 Mounting of Posters
09:00 PhD Student Seminar with Poster Session
11:30 Lunch
12:30 Welcome
 Christof Kleiber (CEST)
 Wolfgang Knoll (AIT Austrian Institute of Technology GmbH)
 Michael Klosterer (Stadt Wiener Neustadt)
12:40 Organic Bio-Electronic Sensors for Ultra-Sensitive Detection
 Luisa Torsi
13:20 Dielectric and Semiconductor Surface Interfacial Interactions for
 Biomimetic Integrated Nanosystems Based on Solid-State Nanopores:
 Nanofluidic-Enabled "Iontronic" Transduction of Biological, Chemical
 and Physical Stimuli
 Omar Azaroni
14:00 Interfacing with the Brain Using Organic Electronics
 Georges Malliaras
14:40 Coffee and Posters
15:30 Analysis of Molecules and Macromolecules at Electrolyte/Solid Interfaces –
 Interface Chemistry, Self-Organization and Interfacial Forces
 Guido Grundmeier
16:10 Detection of Unlabeled Biomolecules Using Simplified Reflective Interferometry
 Lewis Rothberg
16:50 Electrochemical Biosensor Systems for POC Diagnostics
 Martin Weber
17:30 A Decaheme Cytochrome as a Molecular Electron Conduit in
 Dye-Sensitized Photoanodes
 Lars J. C. Jeukens
18:10 End of Lecture Day 1

Tuesday, June 14th
Lecture Hall TFZ, 1st floor, Unit A

09:00 Biosensing for Molecular Diagnostics: Current Trends and Perspectives
 Maria Minunni
09:40 Coupling and monitoring chemical fluxes of microstructured enzyme layers
 Gunther Wittstock
10:20 Ultra-Sensitive System to Detect Minute Ionic Gradients within
 Gloma Cells
 Paulo Rocha
11:00 Coffee
11:30 Semiartificial Photosynthesis, How to Wire Photosystem 1 and 2 to Electrodes
 Wolfgang Schuhmann
12:10 Selective and Reversible Ion-Detecting Sensor Elements in Aqueous Environment Based on Organic Electronic Devices
 Emil J.W. List-Kratochvil
12:50 Lunch and Posters
13:30 Mechanical and optical sensing of biological systems using thin film electronics
 Ioannis Kymissis
14:10 Bioelectronic Nose and Tongue: Integration of Human Receptors and Nano Devices
 Tai Hyun Park
14:50 Electronic Plants
 Magnus Berggren
15:30 Closing Remarks
16:10 End (Lab Tour optional)
PhD Workshop „bioelectrochemistry and more.....“ 13. Juni 2016

8.30 – Anbringen der Poster

9.00 Beginn – ca. 3 min Kurzpräsentation, im Anschluss an die Präsentationen Diskussion an den Postern

9.00: Stefan Ziebermayr
9.05: Beate Stallinger
9.10: Jie Sun
9.15: Gabriela Schimo
9.20: Christina Bliem
9.25: Georg Hölzl
9.30: Andreas Sikora
9.35: Markus Nadlinger
9.40: Lisa Mayerhuber
9.45: Esteban Piccinini
9.50: Johannes Bintinger
9.55: Sebastián Alberti
10.00: Jan Hrbac
10.05: Cezarina Mardare
10.10: Patrik Aspermair
10.15: Andreas Geiss
10.20: Florian Glöcklhofer
10.25: Paul Kautny
10.30: Thomas Kader

ab 10.35: Diskussion an den Postern

11.30: Pause
Air-Stable Multi-Cyanated Acenes – A Novel Synthesis Paving the Way for Cyanated Functional Materials

F. Glöcklhofer, 1* M. Lunzer, 1 B. Stöger, 2 J. Fröhlich 1

1 Institute of Applied Synthetic Chemistry, 2 Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria

Objectives
• Developing a facile new synthesis of cyanated acenes
• Preparing cyanated pentacenes for air-stable n-type transistors
• Shifting solid-state emission of cyanated anthracenes by sterically hindered substituents

The novel synthesis
• Ortho- and para-quinones as starting materials
• First step: formation of silylated cyanohydrin intermediates using trimethylsilyl cyanide (TMSCN) as reagent and KCN or LiCN as catalyst
• Second step: reductive aromatization using PBr3
• Carried out in a one-pot reaction
• Overall yields ranging from 30% to 79%

Cyanated pentacenes for n-type transistors
A high electron affinity / low LUMO level is one of the prerequisites for excellent materials for n-type transistors. This can be achieved by electron withdrawing substituents such as cyano groups, which can be introduced by the newly developed reaction and which were found to significantly lower the HOMO and LUMO levels of pentacene:

Pentacene: -4.88 eV (HOMO), -2.70 eV (LUMO)
6,13-Dicyanopentacene (DCP): -5.78 eV (HOMO), -3.84/-4.16 eV (LUMO)
5,7,12,14-Tetracyanopentacene (TCP): -6.14 eV (HOMO), -4.27/-4.54 eV (LUMO)

Both compounds were prepared from the corresponding quinones in one-pot reactions and are air-stable. LUMO levels below -4.1 eV are expected to result in stable transistors even during operation under ambient conditions. Thermal stability was observed up to 340°C for DCP and 400°C for TCP. The reduction of TCP during cyclic voltammetry (CV) was found to be highly reversible.

Cyanated anthracenes for light emission
• Introduction of phenyl and mesityl substituents to obtain a twisted molecular configuration
• Decreased intermolecular interactions, less red-shifted solid-state emission
• Both strategies successful, detailed evaluation pending
• Synthesis by Suzuki coupling dicyanoanthracene triflates and phenyl/mesityl boronic acids

Conclusion and Outlook
A new synthesis of cyanated acenes has been developed and will pave the way for cyanated functional materials. Promising materials for n-type transistors were obtained by employing this new synthesis to introduce the electron-withdrawing cyano groups.

The emission properties of cyanated anthracenes were successfully tuned by sterically hindered substituents. Our results will guide future investigations towards ambipolar light-emitting materials featuring a dicyanoanthracene core and electron-rich substituents.

* florian.gloecklhofer@tuwien.ac.at