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Abstract—Filter Bank Multi-Carrier (FBMC) offers better
spectral properties than conventional Orthogonal Frequency
Division Multiplexing (OFDM). However, the lack of Multiple-
Input and Multiple-Output (MIMO) compatibility is one of its
biggest obstacles. By spreading symbols in frequency, we are able
to restore complex orthogonality in FBMC, so that all MIMO
methods known in OFDM can be straightforwardly applied.
The spreading process itself has low computational complexity
because it is based on a Fast-Walsh-Hadamard transform, thus
completely free of multiplications. Orthogonality only holds if
the channel is approximately frequency flat within the spreading
length. We thus suggest the usage of frequency blocks which are
separated by a guard subcarrier. We also investigate the effect
of a doubly selective channel on our block frequency spreading
approach. Finally, MIMO simulations validate the applicability.

Index Terms—FBMC-OQAM, MIMO, Walsh-Hadamard Cod-
ing, Multipath channels, Time-varying channels.

I. INTRODUCTION

Filter Bank Multi-Carrier (FBMC) with Offset Quadrature
Amplitude Modulation (OQAM), in short just FBMC, has
better spectral properties compared to Orthogonal Frequency
Division Multiplexing (OFDM) and usually does not need
a Cyclic Prefix (CP) [1]. All this nice features of FBMC,
however, come at a price, namely, an intrinsic imaginary
interference. A theoretical explanation for the imaginary in-
terference can be found in the Balian-Low theorem. In many
cases, the imaginary interference has either no, or only a
minor influence on the performance. However, some important
techniques, such as pilot symbol aided channel estimation [2],
Alamouti’s space-time-block-code [3] or maximum likelihood
Multiple-Input and Multiple-Output (MIMO) detection [4] are
seriously hampered by the imaginary interference and innova-
tive solutions for those challenges need to be found. While
there exist many practical solutions for channel estimation
[5], the issue of MIMO transmissions is not fully solved yet.
The intrinsic imaginary interference prevents a straightforward
implementation of space time block codes such as Alamouti’s.
However, by considering not only one data symbol, but rather
clustered symbols, we can circumvent the Balian-Low theorem
and restore complex orthogonality. In [3], a Hadamard spread-
ing approach was proposed to enable Alamouti space-time-
block-code. Similar, [4] suggested Fast Fourier Transform
(FFT) spreading in time. On the other hand, authors in [6]
proposed a block-Alamouti scheme (over time). The same
method was recently applied by [7] in the frequency domain.

In this paper, we follow the Hadamard spreading approach
suggested in [3]. Compared to the recently introduced method
in [7], our approach has the following advantages: Firstly,
we restore complex orthogonality. Thus, our method not only
works for 2×1 Alamouti (as in [7]), but additionally allows to
straightforwardly use all other methods known in OFDM, such
as channel estimation, space-time-block codes for a higher
number of antennas or low-complexity maximum likelihood
symbol detection. Secondly, the peak-to-average power ratio is
slightly lower due to the spreading process. Thirdly, compared
to [7], the required guard overhead is reduced by a factor
of two. The disadvantages, on the other hand, are: Firstly,
a slightly higher computational complexity. However, only
summations are required; no multiplications are necessary!
Additionally, by employing a Fast-Walsh-Hadamard transform,
we can further decrease the computational complexity, so that
it becomes almost neglectable. Secondly, the spreading length
must be a power of two. By comparing the pros and cons of
our method with the technique proposed in [7], it is evident
that Hadamard spreading provides the overall better package.

The novel contribution of our paper can be summarized as
follows:

• Authors in [3] assume a frequency flat channel for the
frequency spreading approach. We, on the other hand,
allow for a doubly-selective channel, propose a block
frequency spreading approach and derive closed-form
expressions for the induced signal-to-interference ratio.

• In contrast to our paper in [8], [9], we spread in frequency
instead of time. This reduces the latency and improves the
robustness in a time-variant channel.

In order to support reproducibility, our MATLAB code can be
downloaded at https://www.nt.tuwien.ac.at/downloads/.

II. FBMC-OQAM

In FBMC we transmit symbols over a rectangular time-
frequency grid. Let us denote the transmit symbol at subcarrier
position l and time-position k by xl,k. The transmitted signal,
consisting of L subcarriers and K time-symbols, can then be
expressed as:

s(t) =

K∑
k=1

L∑
l=1

gl,k(t)xl,k, (1)
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with

gl,k(t) = p(t− kT ) ej2π lF (t−kT ) e jπ2 (l+k). (2)

The basis pulse gl,k(t) is, essentially, a time and frequency
shifted versions of the prototype filter p(t). We employ the
PHYDYAS prototype filter [10]. The variable T denotes the
time-spacing and F the frequency spacing (subcarrier spac-
ing). In FBMC, the prototype filter p(t) is orthogonal for a
time-frequency spacing of TF = 2. To achieve the same data
rate as in OFDM (without CP), we reduce the time-spacing as
well as the frequency spacing by a factor of two, leading to
TF = 0.5. This time-frequency squeezing causes interference,
which, however, is shifted to the purely imaginary domain
by the phase shift e jπ2 (l+k). Taking the real part removes
the imaginary interference and allows low-complexity symbol
detection. However, we can only transmit real-valued symbols
xl,k ∈ R in such a way. The underlying imaginary interference
in FBMC is problematic for some MIMO techniques, which
justifies the block frequency approach presented in Section III.

To simplify analytical investigations, we consider a discrete-
time representation in combination with a vector notation [1].
The sampled transmit signal s ∈ CN×1, see (1), can then be
expressed by:

s = G x, (3)

with

G =
[
g1,1 g2,1 · · · gL,1 g1,2 · · · gL,K

]
. (4)

Transmit matrix G is build-up by the transmit vector gl,k ∈
CN×1, representing the sampled basis pulse in (2). On the
other hand, transmit symbol vector x ∈ CLK×1 in (3) is
defined as:

x = vec


x1,1 · · · x1,K

...
. . .

...
xL,1 · · · xL,K


 (5)

=
[
x1,1 x2,1 · · · xL,1 x1,2 · · · xL,K

]T
. (6)

In an Additive White Gaussian Noise (AWGN) channel,
a matched filter maximizes the Signal-to-Noise Ratio (SNR),
so that the receive matrix is chosen as GH. The whole
transmission system can then be expressed by:

y = GHG x + GHn, (7)

where n represent the Gaussian noise, n ∼ CN (0, Pn IN ).
The real orthogonality condition in FBMC implies that the
transmission matrix is orthogonal only in the real domain, that
is, <{GHG} = ILK . In the appendix, we provide a simple
example for such transmission matrix. As comparison, OFDM
has (complex) orthogonality, GHG = ILK . Note that for the
same transmission bandwidth FL and the same transmission
time KT , both systems have the same bit rate (OFDM without
CP), despite the fact that FBMC only transmits real-valued
symbols (→ half the information). This is possible because
FBMC transmits twice as many symbols within the same time
interval.

Time

Code

Frequency

Fig. 1. In conventional FBMC-OQAM, real valued symbols are transmitted
over a rectangular time-frequency grid (TF = 0.5). Two real valued symbols
are required to transmit one complex valued symbol. Thus, the name “offset”-
QAM whereas we apply the offset not in time (as often done in literature)
but in frequency to be consistent with Fig. 2. Illustration: L = 16, K = 2.
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Guard subcarrier

Channel is approximately
frequency-flat,
see Section IV

Fig. 2. In coded FBMC-OQAM, complex valued symbols are spread over
several subcarriers. The spreading process itself has negligible computational
complexity because a Fast-Walsh-Hadamard transform can be used. Different
frequency blocks are separated by a guard subcarrier. Fig.: L = 8, K = 2
and two frequency blocks → same number of data symbols as in Fig. 1.

III. BLOCK FREQUENCY SPREADING

Fig. 1 illustrates a conventional FBMC transmission. As
explained in Section II, we can only transmit real-valued data
symbols in FBMC due to the imaginary interference, limiting
the applicability of certain techniques such as Alamouti’s
space time block codes. By spreading symbols in frequency,
however, we are able to restore complex orthogonality, so that
all transmission techniques known in OFDM, such as Alam-
outi’s space time block codes or multi-user precoding, can
be straightforwardly applied in FBMC (on a frequency-block
basis instead of per-subcarrier). Our block frequency spreading
approach is illustrated in Fig. 2. We assume that the channel is
approximately frequency-flat within the spreading interval and
approximately time-flat for the duration of one FBMC symbol.
This allows the employment of low-complexity equalizers and
enables the straightforward usage of MIMO. In Section IV, we
will explain in more detail what “approximately” frequency-
flat and “approximately” time-invariant means. As indicated in
Fig. 2, we add a guard subcarrier between blocks to mitigate
interference (orthogonality is only restored within the same
block). Because the PHYDYAS prototype filter has very sharp
edges in the frequency domain, those frequency blocks are
completely separated. This is different to the time-spreading
approach we presented in [8], where block interference occurs
due to the underlying Hermite prototype filter. A minor



drawback of the guard subcarrier is a reduction in the time-
frequency efficiency. We define the time-frequency efficiency
loss by

η =
1

L+ 1
. (8)

For example, if we spread over L = 32 subcarriers, η =
3%, implying that the data rate of our approach is 3% lower
compared to conventional FBMC. However, a 1.4 MHz Long
Term Evolution (LTE) system has an efficiency loss of 28%
(72 out of 93.33 subcarriers and a CP length of 4.7µs), so that
the efficiency loss of our block frequency spreading approach
is relatively low (and to some extend scalable).

Let us now mathematically describe the spreading approach.
At the transmitter, we spread the data symbols x̃ ∈ CLK

2 ×1

by a precoding (spreading) matrix C ∈ RLK×LK2 , according
to

x = C x̃. (9)

At the receiver, we de-spread the received symbols by CH, so
that the received data symbols ỹ ∈ CLK

2 ×1 can be written as:

ỹ = CH y. (10)

Orthogonality is restored if we are able to find a coding matrix
C which satisfies the following orthogonality condition,

CHGHGC = ILK/2, (11)

where GHG represents the FBMC transmission matrix, see
(7). By utilizing the underlying structure of our notation
(vectorization, see (5) and (6)) and the fact that we spread
over frequency only, we are able to rewrite the coding matrix
C by:

C = IK ⊗C0, (12)

where C0 ∈ RL×L2 describes the frequency spreading matrix
for one time-slot. The Kronecker product ⊗ together with the
identity matrix then map coding matrix C0 to the correct
time-slot. Finally, we find the coding matrix C0 by taking
every second column out of a sequency ordered [11] Walsh-
Hadamard matrix H ∈ RL×L, that is,

[C0]l,m = [H]l,2m for l = 1 . . . L; m = 1 . . .
L

2
. (13)

In the appendix, we provide a simple example of such coding
matrix. Note that we could also start from the second column
of the Walsh-Hadamard matrix, that is, [H]l,1+2m. In (9)
and (10), we describe the spreading process by a coding
matrix C. However, we have keep in mind that the internal
structure is based on a Walsh-Hadamard matrix, so that a
Fast-Walsh-Hadamard transform can be used to reduce the
computational complexity. Thus, for each complex valued data
symbol, we only need log2(L)−1 extra additions/subtractions
at the transmitter and log2(L) extra additions/subtractions at
the receiver. No additional multiplications are required! The
only minor drawback of the Walsh-Hadamard approach is that
the spreading length has to be a power of two.

IV. DOUBLY-SELECTIVE CHANNELS

Wireless channels are characterized by time-variant multi-
path propagation, which destroys orthogonality of our system.
This results in a certain Signal-to-Interference Ratio (SIR).
However, as long as the SIR is approximately 10 dB higher
than the SNR, the noise completely dominates the interference
which can thus be neglected. Even if the SNR approaches
the SIR, we only observe a small performance degeneration
equivalent to an SNR shift of approximately 3 dB.

To characterize the influence of a doubly-selective channel,
we ignore noise and include a time-variant convolution matrix
H ∈ CN×N in our system, so that (10) together with (7) and
(9) transform to:

ỹ = CHGHHGC x̃. (14)

In a doubly-flat Rayleigh channel, that is, H = h̄ IN with
h̄ ∼ CN (0, 1), orthogonality still holds. However, in a doubly-
selective channel, matrix H is no longer a scaled identity
matrix, leading to off-diagonal elements in CHGHHGC and
thus interference. The diagonal elements, on the other hand,
describe the desired signal components and are utilized in a
one-tap equalizer. To derive an analytical SIR expression, we
consider the received data symbol at code position m and
time-position k, so that (14) transforms to:

ỹm,k = cHm,kG
HHGC x̃ (15)

=
(
(GC x̃)T ⊗ (cHm,kG

H)
)

vec{H}. (16)

Vector cm,k ∈ RN×1 represents the i-th column of C with
i = L

2 (k − 1) + m. Furthermore, we rewrite (15) by (16)
in order to simplify statistical investigations, allowing us to
express the SIR by

SIRm,k =
[Γ]i,i

tr{Γ} − [Γ]i,i
, (17)

with i = L
2 (k − 1) +m, and

Γ=
(
(GC)T ⊗ (cHm,kG

H)
)
Rvec{H}

(
(GC)T ⊗ (cHm,kG

H)
)H
.

(18)

The j-th diagonal element of Γ is denoted by [Γ]j,j and
represents the contribution of transmit symbol [x̃]j on the
received power E{|ỹm,k|2}. Thus, we can directly calculate
the SIR as shown in (17). The statistical properties of the
channel are included in the correlation matrix, Rvec{H} =
E{vec{H}vec{H}H}, and depend on the power delay profile
and the Doppler spectral density.

One of the biggest challenges is to find a meaningful
channel model. For example, it has been shown in [12]
through real world 3G measurements that in many cases,
the Root Mean Square (RMS) delay spread is lower than
typically assumed in simulations. We expect that the RMS
delay spread will further decrease due to beamforming, higher
carrier frequencies and smaller cell sizes. This is particularly
important for our frequency spreading approach which only
works for a low delay spread. To cover a large range of
possible scenarios, we include three different Rayleigh fading
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Fig. 3. The interference can be neglected if the SIR is approximately 10 dB
higher than the SNR. A guard subcarrier increases the SIR significantly,
especially for a short spreading length. The higher the spreading length, the
higher the spectral efficiency. However, a high spreading length also leads to
high interference caused by the channel.

channel models in our performance evaluation. Firstly the
Vehicular A channel model [13] with a relatively large delay
spread of 370 ns. Secondly, the Pedestrian A channel model
[13] with a moderate delay spread of 46 ns. Thirdly, a short
delay spread of 10 ns for which we assume 3 equally spaced
taps. These taps are 100 ns apart and the power of each tap
is 20 dB lower then the previous tap. Such short delay spread
represents, for example, an indoor scenario.

Fig. 3 shows how the SIR, see (17), depends on the spread-
ing length. In many practical cases, the SNR is below 20 dB.
Thus, for a short delay spread (10 ns), we can easily spread
over L = 128 subcarriers, leading to an almost negligible time-
frequency efficiency loss of η = 0.8%. For a Pedestrian A
channel model we are able to spread over L = 32 subcarriers,
leading to η = 3%. Only for a high delay spread, our method is
suboptimal due to the large overhead required for a sufficiently
high SIR. Alternatively, we could employ multi-tap equalizers
at the cost of increased computational complexity [14]. As
a reference, we also include the SIR in case of no guard
subcarriers (dotted line). In some cases, especially for low
to medium SNR ranges, we do not need a guard subcarrier,
leading to a maximum spectral efficiency (η = 0%).

Fig. 4 shows how the SIR depends on the velocity. Even
high velocities, such as 200 km/h, generate only small addi-
tional interference, so that the SIR remains sufficiently high
for a short delay spread and a Pedestrian A channel model.
Compared to the time-spreading approach we investigated in
[8], frequency spreading provides higher robustness in time-
variant channels. As a reference, we also include the SIR for
conventional CP-OFDM.

V. MIMO SIMULATIONS

So far, we have presented a detailed description of how
spreading can be used to restore complex orthogonality. This
allows the straightforward usage of all MIMO techniques
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Fig. 4. A time-variant channel leads to additional interference. For high
velocities, FBMC shows approximately the same SIR as OFDM. Thus, OFDM
no longer performs better in terms of SIR but has a worse spectral efficiency
than FBMC. The SIR for velocity zero can be found in Fig. 3.

known in OFDM. In this section, we validate the applicability
of our block frequency spreading approach by simulations.
We assume a Pedestrian A channel model and a Jakes Doppler
spectrum (velocity 100 km/h at 2.5 GHz). The subcarrier spac-
ing is set to F = 15 kHz and the symbol alphabet is chosen
from a 16-Quadrature Amplitude Modulation (QAM) signal
constellation. For FBMC we assume a spreading length of
L = 32 and a total of NB = 16 frequency blocks. This leads
to a transmission bandwidth of F (L + 1)NB = 7.92 MHz.
OFDM uses the same bandwidth, that is 528 subcarriers. Note,
however, that in practice, OFDM requires additional guards
band due to its large out-of-band emissions. The transmission
time is for both methods the same and given by KT = 1 ms.
The zero guard subcarrier in FBMC leads to a slightly higher
SNR compared to OFDM (but only by (L + 1)/L = 1.03
which has almost no influence).

Similar as in [8], we consider 2 × 1 Alamouti’s block
coding. Furthermore, we include maximum likelihood symbol
detection whereas we ignore any channel induced interference
to keep the complexity low. Both of these schemes do not work
with conventional FBMC. As a reference, we also include zero
forcing equalization.

Fig. 5 shows that FBMC has almost the same Bit Error Ratio
(BER) performance as OFDM [15]. FBMC, however, has the
additional advantage of much better spectral properties. Only
for high SNR values we observe small deviations between
OFDM and FBMC. This can be explained by the channel
induced interference which leads to an SIR of approximately
27 dB, see Fig. 4. Such interference, however, has no influence
for low to medium SNR values. Only for high SNR values,
we might have to decrease the spreading length in order to
gain robustness.

VI. CONCLUSION

If the channel delay spread is not too high, block frequency
spreading becomes an efficient method to restore complex



GHG =



1 +j0.2181 0 0 +j0.5769 +j0.1912 0 0
−j0.2181 1 +j0.2181 0 −j0.1912 −j0.5769 −j0.1912 0

0 −j0.2181 1 +j0.2181 0 +j0.1912 +j0.5769 +j0.1912
0 0 −j0.2181 1 0 0 −j0.1912 −j0.5769

−j0.5769 +j0.1912 0 0 1 +j0.2181 0 0
−j0.1912 +j0.5769 −j0.1912 0 −j0.2181 1 +j0.2181 0

0 +j0.1912 −j0.5769 +j0.1912 0 −j0.2181 1 +j0.2181
0 0 −j0.1912 +j0.5769 0 0 −j0.2181 1


(19)
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Fig. 5. Simulations validate that FBMC, based on block frequency spreading,
has approximately the same BER as OFDM. However, FBMC has the
additional advantage of a higher spectral efficiency. Only for high SNR values,
we observe small deviations due to channel induced interference, see Fig. 4.

orthogonality in FBMC, allowing us to straightforwardly apply
all MIMO methods known in OFDM. To reduce interference
between frequency blocks, we might need a guard subcarrier.
This reduces the spectral efficiency slightly. The overall spec-
tral efficiency, however, is still much better than in OFDM due
to lower out-of-band emissions in FBMC.

APPENDIX

For a better understanding of our notation and the under-
lying concept, we provide a simple example for L = 4 sub-
carriers and K = 2 FBMC symbols. The transmission matrix
in (7) can then be calculated as in (19). Note that only real
orthogonality holds true, <{GHG} = ILK . Furthermore, the
imaginary interference weight between neighboring subcarri-
ers is given by j0.2181 while between neighboring symbols
it is j0.5769. This emphasizes the fact that the PHYDYAS
prototype filter has better localization in frequency than in
time. By applying the algorithm presented in Section III, see
(12) and (13), we find the precoding matrix as:

C=
1

2


1 1 1 1 0 0 0 0
1 −1 −1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 −1 −1 1


T

(20)

It can be easily checked that the complex orthogonality
condition holds, that is, CHGHGC = ILK

2
.
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