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Abstract—We introduce a novel directional channel sounding
concept where we sweep a horn antenna around its phase center.
Directional channel measurements are thus carried out at a fixed
coordinate in space. To verify our concept, we conducted multi-
carrier measurements with 2 GHz of measurement bandwidth.
The directional broadband channel was sampled uniformly within
a cube of three wavelengths side length. In this contribution, we
compare narrowband measurements with spatial averaging to
traditional broadband channel sounding. We saw that, spatial
filtering through directional antennas leads to a limited number
of propagation paths in the channel. We show the difference of
both approaches and explain the deviation by spatial correlation.
The spatial correlation is evaluated at several two-dimensional
slices. We observed wavelength-periodic correlations.

I. INTRODUCTION

Understanding the small-scale [1]–[3] and large-scale [4]–
[6] behaviour of mmWave wireless channels is essential for the
design of future wireless communication systems [7]. If path
loss measurements are conducted in multipath environments,
multiple paths do interfere constructively or destructively at
different frequencies and at different positions in space. To
average out this so called small-scale fading, there are two
customary approaches [4]. Firstly, by making use of a large
measurement bandwidth: This approach has been extensively
used in static indoor scenarios, where measurements have been
conducted with vector network analyzers [3], [6]. Secondly,
by making use of many spatial samples and spatial averaging:
That approach has been used to verify throughput and ergodic
capacity results [8]–[10], but is less common for channel
sounding, especially since the size of the spatial averaging
volume is not predictable a priori. However, spatial averaging
renders very power efficient narrowband, even single-carrier,
measurements possible. Another advantage of that approach is
the availability of “small-scale fading free” results at a single
frequency; keeping the frequency as parameter. Thereby, large-
scale fading parameters can be extracted at single frequencies
to allow for a comparison of different carrier frequencies. For
example, the usable band for the 60 GHz IEEE 802.11ad
WLAN standard spans over more than 8 GHz bandwidth. Fre-
quency dependent effects were demonstrated in [11] through
different BERs at different channels. The spatial averaging
approach can also be used to analyse channels with possibly
frequency selective attenuation, such as vegetation [12].

Our Contribution: We analysed spatial averaging in con-
junction with directional channel sounding [3]. To do so, we
have built an elevation-over-azimuth positioner, and mounted
it on an x-y-z positioning table. Thereby we enabled to sweep

a horn antenna around its apparent phase center [13, pp.
799]. To obtain different spatial realizations, the coordinate of
the apparent phase center was moved to positions uniformly
distributed within a cube of side length 2.8λ. We realized a set
of 9 × 9 × 9 = 729 directional measurements and calculated
spatial correlations from the measured data set.

II. MEASUREMENT SET-UP

At the transmitter side, a 2 GHz wide baseband waveform
is produced by an arbitrary waveform generator. An OFDM
waveform with Newman phases [14] is applied as sounding
signal. The signal has 401 subcarriers with a spacing of 5 MHz,
thereby our system is not limited by phase noise [15]. The
TX sequence is repeated 2 000 times to obtain a coherent
processing gain of 33 dB. An IQ up-converter shifts the
baseband sequence to 60 GHz. A 20 dBi conical horn antenna
is flanged onto the up-converter. The antenna, together with
the up-converter is mounted on the afore mentioned five axis
positioner to directionally steer them, see Fig. 1. As receiver, a
Spectrum Analyser (SA) with a 2 GHz analysis bandwidth is
used. A 20 dBi conical horn antenna is directly mounted at the
RF input of the SA. The receive antenna is not steered. The
SA is located on a table close to a corner of the room. The
receive IQ baseband samples are obtained from the SA. Similar
to the set-up of [16], proper triggering between the arbitrary
waveform generator and the SA ensures a stable phase between
subsequent measurements. The essential mechanical adaptation
to the state-of-the-art directional channel sounding set-up [6],
[17]1 is the positioning stage underneath the azimuth and
elevation rotational stage, see again Fig. 1. This x-y-z stage
can compensate all offsets introduced through the non-centric
rotation around the phase center. To correct the horn antenna’s
position, x-y-z correction factors were manually tuned to
minimize the phase change during steering of the transmitter
in azimuth and elevation at LOS.

III. DIRECTIONAL MEASUREMENT RESULTS

Our scenario models a mmWave access point, which is
capable of forming narrow beams and capable of steering
them in azimuth and elevation (3D beamforming). The relative
receive power after beamforming can be seen in Fig. 2.
We notice regions of strong reflection. The azimuth range
ϕ ≈ −40◦ . . . 10◦ corresponds to the LOS connection. The
other two regions (from ϕ ≈ −180◦ . . .−150◦ and ϕ ≈
140◦ . . . 180◦) use the wall behind the transmitter to enable

1Previous set-ups were sweeping horn antennas such that their phase center
moved on a sphere with dozens of wavelength in diameter.
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Fig. 1: The channel sounder with a conceptional drawing of
the mechanical setup used for directional scanning. The picture
was taken from the receiver point-of-view. TX and RX are
facing each other at an azimuth angle of ϕ ≈ −20◦ and
elevation angle of θ ≈ 100◦. See [3] for a floorplan.

a reflective reception. The channel impulse responses at these
azimuth angles of interest are shown in Fig. 3. Notice that
the received signal has multipath components even in the LOS
case.

IV. SPATIAL AVERAGING TO OBTAIN THE PATH LOSS

In Fig. 4, we illustrate the spatial sampling procedure for
small-scale fading reduction. On the one hand, we try to avoid
different large scale fading at different sampling points, which
limits the extension of the cube. On the other hand, if the
samples are too close, the channels are very correlated and
no further information is gained. Although λ/2 sampling is
quite common [1], [2], to circumvent periodic effects, the
sampling distance is coprime to the wavelength. The sampling
distance was chosen to be 0.35λ. At a distance of 0.35λ, the
measurement data was highly correlated, therefore we spline-
interpolated the measurement data to view the correlation
results of Section V on a finer grid. We introduce a delta-
path-loss ∆L, see Fig. 5, which is the logarithmic difference
of the spatial mean at a single frequency f and the frequency
mean at the center (5th) sample

∆L(f, ϕ, θ)=20 log10

{
1

729

9∑
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9∑
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9∑
nz=1
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}

−20 log10

{
1

401

401∑
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|H(nf , 5, 5, 5, ϕ, θ)|
}

.

Small n refers to the sample counter in the respective domain.
For LOS, the delta-path-loss is in the order of the calibration

quality. For the reflective receptions, we notice a quite good
agreement for ϕ ≈ 160◦ and several dB worse results for the
other azimuth angle of ϕ ≈ −170◦.

V. SPATIAL CORRELATION

For the calculation of the spatial (2D) autocorrelation
function, we apply the Wiener–Khintchine–Einstein theorem,
that relates the autocorrelation function of a wide-sense-
stationary random process to its power spectrum [18]. Our
three-dimensional problem is treated via two-dimensional slic-
ing. We first calculate the 2D autocorrelation function C(s,f)

of one 2D slice s at a single frequency f according to
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2D
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The operators F (−1)
2D denote the 2D (inverse) discrete Fourier

transform and D denotes the DFT matrix. The symbols
� and � denote the Hadamard multiplication and division,
respectively. The operator conj{} denotes conjugation. The
matrix H̃

(s,f)
is a zero padded, spline interpolated version

of all spatial channel samples of slice s at frequency f

H̃
(s,f)

=

(
<{H(s,f)} 0

0 0

)
.

Zero padding is necessary to mimic a linear convolution
rather than the DFT’s cyclic one. To ensure a real-valued
autocorrelation matrix, from the complex-valued channel sam-
ples only the real values Re{} are taken2. Matrix S is the
autocorrelation of a all-ones matrix 1 constructed equivalently
to H̃

(s,f)
, i.e., S = F−1

2D{|F2D

{(
1 0
0 0

)}
|2} . It compensates

the truncation effect of the autocorrelation. The very efficient
implementation of (1) is applied to all (parallel) 2D slices and
to all frequencies. The mean of all of these autocorrelation
matrices C(s,f) is plotted in Figs. 6 – 8. Furthermore, we
plotted one-dimensional autocorrelation functions, evaluated
along the x, y or z axis, together with their two-dimensional
representations.

A. Interpretation of the Spatial Information

In Figs. 6 – 8, one can observe the two-dimensional spatial
autocorrelations of the transfer function as defined in (1). Keep
in mind that we are observing autocorrelation functions of the
real-part of H . Especially pronounced in the respective x− y
and x − z cuts, we observe wavelength-periodic correlations.
These correlation patterns stem from only one or two dominant
impinging waves.

We start our discussion with the “Wall 1” scenario. There, a
strong wall reflection at an azimuth angle of −170◦ occurs. In
the top sub-figure of Fig. 6, the pattern of two almost equally
strong perpendicular waves in the kx and ky space are visual as
interference fringes. In the accompanying x− z cut below, we
recognize a spatial correlation pattern of a single wave. This
tells us, that both rays from the previous cut share the same kz

2The spatial autocorrelation of the imaginary parts are identical. One could
also analyse the magnitude and phase individually. While the correlation of
the magnitude stays almost at 1, the phase correlation patterns are similar to
those of the real part.
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Fig. 2: Path loss obtained as frequency mean. All path loss data are normalized with respect to the Line-Of-Sight (LOS) path
loss. The black dots correspond to regions with relatively high receive power. These regions are subject of further study.
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Fig. 3: Estimated channel impulse responses at different az-
imuth angles, obtained by IFFT.
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Fig. 4: Illustration of the spatial sampling grid. For one specific
direction, we drew 9 × 9 × 9 = 729 samples uniformly from
a cube of side length 2.8λ. The distance between samples is
approximately 0.35λ. The orientation of the horn antenna is
indicated via the cone shape at the sampling points.

component. The spatial correlation of the last remaining y− z
plane, parallel to the wall, shows the lowest correlation values
of all cuts. Especially the 1D correlation functions show a
decorrelating property. The correlation distance (the correlation
drops below 0.5) is in the order of λ. Thus, taking many
samples within this plane is informative and averaging over
this plane reduces small scale fading substantially, in contrast
to the other planes.
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Fig. 5: Delta-path-loss at different azimuth angles.

As to be expected, in the LOS case the channel is dom-
inated by few components and the interference patterns, as
discussed before, are visual in all two-dimensional planes.
Notice however that the sign of the kx component is now the
opposite, see Fig. 7 x − z cut, as the horn antenna is rotated
almost 180◦ in azimuth, compared to the “Wall 1” scenario.
The muddled x − y cut is supposed to stem from additional
reflections on the laboratory desk, where the receiver was put.
The last case “Wall 2” is basically showing the same behaviour
as “Wall 1”.

VI. CONCLUSION

We introduced a novel channel sounding concept that
combines directional channel sounding and spatial sampling.
This concept was used for evaluation of spatial averaging by
means of a metric called delta-path-loss and by spatial autocor-
relations. We saw that at reflective receptions, the delta-path-
loss varies over several dB within our observed bandwidth.
The spatial autocorrelations on x− y, x− z and y − z slices
showed periodic correlation patterns. Generally sampling on a
(half-)wavelength spaced grid gave very correlated samples in
our laboratory. Without knowledge of the spatial correlation,
one does not know how many samples to draw, to render the
spatial mean approach useful. Due to the enormous spatial
filtering of both 20 dBi horn antennas, only a few propagation
paths contribute to the channel.
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Fig. 6: Two-dimensional spatial correlation of the Wall 1
scenario. The data was sampled at approximately −170◦

azimuthal and 100◦ elevation angle.
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Fig. 7: Two-dimensional spatial correlation of the LOS sce-
nario. The data was sampled at approximately −20◦ azimuthal
and 100◦ elevation angle.
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Fig. 8: Two-dimensional spatial correlation of the Wall 2 sce-
nario. The data was sampled at approximately 160◦ azimuthal
and 100◦ elevation angle.
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