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ABSTRACT
The maintenance of modern systems often requires developers to
perform complex and error-prone cognitive tasks, which are caused
by the obscurity, redundancy, and irrelevancy of code, distract-
ing from essential maintenance tasks. Typical maintenance sce-
narios include multiple branches of code in repositories, which
involves dealing with branch-interdependent changes, and aspects in
aspect-oriented development, which requires in-depth knowledge of
behavior-interdependent changes. Thus, merging branched files as
well as validating the behavior of statically composed code requires
developers to conduct exhaustive individual introspection.

In this work we present VIRTUALEDIT for associative, commu-
tative, and invertible model composition. It allows simultaneous
editing of multiple model versions or variants through dynamically
derived virtual models. We implemented the approach in terms of
an open-source framework that enables multi-version editing and
aspect-orientation by selectively focusing on specific parts of code,
which are significant for a particular engineering task.

The VirtualEdit framework is evaluated based on its application
to the most popular publicly available XTEXT-based languages.
Our results indicate that VIRTUALEDIT can be applied to existing
languages with reasonably low effort.
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• Software and its engineering → Model-driven software engi-
neering; Domain specific languages; Software configuration man-
agement and version control systems;
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1 INTRODUCTION
Model composition [19, 24], i.e., also referred to as system compo-
sition in a wider engineering perspective, presents a basic model-
driven engineering (MDE) process. It involves the combination of
multiple models for a variety of operations, such as the identification
of conflicts across input models and undesirable emergent properties
in composed models [30]. Thus, model composition represents a
foundation for essential model management tasks such as model
transformation, model comparison, and model merging [3, 29].

State-of-the-art model composition approaches often present lim-
itations in editing composed models, such as the ability to edit
arbitrary composed models. Thus, to build a composed model it
is necessary to perform a variety of different operations including
merging and splitting of multiple input models, which is usually
achieved by establishing and maintaining dedicated model transfor-
mations. Moreover, to enable users to edit composed models as well
as synchronize any changes from the composed model to respective
input models and vice versa, it is common to cultivate and sustain
yet another set of model transformations or resort to bi-directional
transformations, i.e., requiring less, but more complex, individual
transformations.

Although model transformations are employed to realize model
composition scenarios, they do not possess appropriate means to
ease or overcome their manual creation and maintenance. For exam-
ple, an intrinsic requirement for performing splitting or merging of
models includes the fabrication of a result for the union of a given
set of model elements. Consequently, current solutions require the
developer to manually handle a variety of different model trans-
formations and operations and thus lead to complex, tedious, and
time-consuming tasks for construction and maintenance of model
composition solutions.

In this paper we present an approach to significantly ease dynamic
model composition for multiple models by overcoming manual
construction and maintenance of model transformations through the
combination of text-based model composition and virtualization1 in
what is subsequently referred to as VIRTUALEDIT. By employing
VIRTUALEDIT, several transformations and operations necessary
for performing model composition, such as union, are provided by
instantiating virtualization concepts and hence fully preserve the
ability to edit both, the composed model as well as the input models.

To gauge the prospects of our approach and the validity of its
implementation, we evaluate VIRTUALEDIT within the domain of
aspect-oriented modeling (AOM) [33] and model versioning [5].

1In the most general form, virtualization refers to a concept, which creates the illusion
of dealing with a real object, whereas being a proxy mechanism that redirects access
and manipulation requests to the virtualized object.

https://doi.org/10.1145/3136014.3136037
http://virtualedit.big.tuwien.ac.at
https://doi.org/10.1145/3136014.3136037
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In the next sections we describe (i) two use cases within the
domain of model versioning and aspect-oriented modeling, (ii) VIR-
TUALEDIT by illustrating a simple demonstration case and present-
ing design rationales of multi-version models, their augmentation in
a virtual editor, and the synchronization of changes, (iii) an evalua-
tion based on a set of real-world languages retrieved from Github,
(iv) a section of related work, and (v) the conclusion including a
presentation of future work.

2 USE CASES
In this section, we describe the basic architectures for employing the
VIRTUALEDIT framework in the domain of (i) model versioning, i.e.,
management of concurrently evolving models as well as (ii) AOM,
i.e., management of woven models, which consist of base models
and multiple aspect applications, while dynamically displaying or
withholding applied aspects.

In both cases, the user edits a single virtual model that represents a
composition of different models. The behavior of the VIRTUALEDIT

framework includes the following. First, in case a user dynamically
changes the focus, the displayed view is automatically adapted.
Secondly, in case a user issues an edit operation, the operation is
propagated to suitable base models.

In general, there are two types of merge procedures to be dis-
tinguished, which include (i) merging multiple models, such as a
base model and aspects applied on that, into a single model and (ii)
merging multiple versions of the same model. In the former, the
application of aspects translates to an addition of model differences
to a base model of which the union of models is built Changes are
only propagated to a single suitable difference. In the latter, changes
are propagated to all relevant models.

2.1 Use Case 1: Model Versioning
Fig. 1 presents an overview of VIRTUALEDIT for the use case of edit-
ing multiple model versions at the same time. The VIRTUALEDIT

framework reads in all model versions in form of a structured tree,
i.e., each model may have zero or more successors. Our model rep-
resentation format uses IDs for identification. If there are no IDs,

public class Item {
  double _price;
  public double getPrice() {
    _price*=1.3;
    return _price;
  } /*….*/
}

_price*=1.3;

VirtualTextual Model Virtual LanguageImplementation

public class Item {
  double _price;
  public double getPrice() {
    return _price;
  }
}

VirtualEdit Framework

<<union of>>

Model 1

Source Model Versions/Variants

Virtual Editor<<manipulates>>

public class Item {
  double _price;
  public double getPrice() {
    _price*=1.3;
    return _price;
  }
} Model 2

Model 3,    Model 4,      ...

<<union of>>
<<propagates changes>>

Figure 1: Loading multiple models into a merged virtual model.

artificial IDs are calculated by matching each model with it’s succes-
sor2. Then, the virtual edit framework builds the union of all models
and displays them in form of a (virtual) textual model - similar to
how current version management tools show (text) merges, but being
model-aware and supporting an unlimited amount of models. The
model elements, which are presented in our use cases, are equivalent
to code snippets that only occur in the highlighted subset of all mod-
els. A user may select to view only a subset of all model versions
considered at a given point in time by which the editor updates its
content accordingly. In case changes are performed, these changes
are propagated back to all source models of models that are active in
the current view.

2.2 Use Case 2: Aspect-Oriented Modeling
Fig. 2 presents an overview of the AOM example in comparison
with the conventional procedure of manipulating and debugging a
system model, which is composed of both core code, and aspect code.
Usually, the Core Editor, e.g. the ECLIPSE Java Editor, of the Core
Language Implementation, e.g., the ASPECTJ framework, which is
built on Java, manipulates the system model, which is transformed
to woven code, i.e., representing aspect code intertwined with core
code, or directly to executable byte code, i.e., no intermediate woven
code is produced. Finally, a compiler, such as the Java compiler,
transforms woven code to executable byte code that can be debugged
by employing the Core Debugger.

In contrast, in our approach the Virtual Language Implementation
represents a virtualized version of the Core Language Implemen-
tation, that enables performing operations which require extensive
effort when compared with their operation in terms of the Core Lan-
guage Implementation. For example, usually there are no indicators
in the woven code that state where and how core code has been
modified by aspect code. Consequently, a user can not differentiate
between non-generated code, i.e., core code, and generated code,
i.e., the woven code produced by the weaving process.

In contrast, our virtual language implementations apply a Virtual
Editor that produces a Virtual Textual Model, i.e., equal to woven
code, by applying model transformations, which are enriched with
meta-data that allows the differentiation of non-generated and gen-
erated parts of a model. In detail, such meta-data, which contains
information that associates elements with being part of either source
or target of the transformation as well as if they have been modified.
In other words, in our approach, the Virtual Textual Model essen-
tially represents a particular view to the system model. Furthermore,
the virtual editor allows disabling and enabling the visualization
of particular parts of the system model which potentially decrease
overall complexity and alleviate speed of versioning tasks due to a
reduction of code that previously required a manual investigation by
the developer.

3 THE APPROACH
This section describes VIRTUALEDIT, i.e., our virtual text-based
model composition approach, which has been implemented in terms
of the VIRTUALEDIT framework3. We implemented VIRTUALEDIT

2The current implementation uses EMF Compare to derive the matches, but is designed
to be extensible
3A ready-to-use virtual machine image and ECLIPSE instance of the VIRTUALEDIT
framework can be retrieved online from http://virtualedit.big.tuwien.ac.at.

http://virtualedit.big.tuwien.ac.at
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public class Item {

double _price;
public double getPrice() {
_l.logp("Called!");
return _price;

}
}

_l.logp("Called!");

Virtual
Textual Model

Virtual Language
Implementation

aspect TraceAspect {
private Logger _logger;
before() execution(* * *(..)) {
_l.logp("Called!");

}
}

public class Item {
double _price;
public double getPrice() {
return _price;

}
}

Aspect Code

VirtualEdit Framework
<<augmentation of>>

Core Language
Implementation

public class Item {
private Logger _l;
double _price;
public double getPrice() {
_l.logp("Called!");
return _price;

}
}

Woven Code

Core Framework

Core Code

System Model

private Logger _l;

Core Editor Virtual Editor=
0: iconst_2
1: istore_1
2: iload_1

Executable Bytecode

<<woven to>>

<<propagates
changes>>

<<manipulates
separately>> <<manipulates>>

Figure 2: Conventional AOM approach (left-hand side) compared with our proposed virtualization approach (right-hand side).

based on MDE technologies, in particular the ECLIPSE modelling
framework (EMF) [28], the graph transformation framework HEN-
SHIN [4] and the language workbench XTEXT [11].

VIRTUALEDIT provides a base implementation for arbitrary XTEXT-
based domain-specific modeling languages (DSMLs), and thus, may
be applied to various languages. Its capabilities can be enabled in
arbitrary XTEXT-based DSMLs by replacing their binding from
the original XTEXT to our virtualized editor. This is achieved by
changing four static lines of code and adding a dependency.

In the rest of this section we first demonstrate our virtual tex-
tual model composition approach in the context of AOM and then
present a detailed report on the implementation of VIRTUALEDIT

by focusing on the design rationale of (multi-version) models, their
augmentation in the virtual editor, and the synchronization of model
changes.

3.1 Demonstration Case
The demonstration case represents the functionality of a shopping-
cart, which has been originally provided by Laddad et al. [20].
For sake of brevity, we focus on the Item class, which models
a shopping item with a price that can be purchased (cf. left part of
Fig. 3). In terms of aspects, “TraceAspect” (cf. upper-right part
of Fig. 3) depicts a typical AOM monitoring technique based on log-
ging method calls. Moreover, the Henshin rule “freeitems” (cf.
Fig. 4) represents, purely for demonstration purposes, a malicious
aspect that has been introduced by a developer to make products
free.4

3.2 Design Rationale and Realization
In this subsection we present the design rationale used for our ap-
proach for aiming towards multi-versions and aspect-oriented model
representations, respectively, as well as its realization in the realm
of metamodeling frameworks and language workbenches.

3.2.1 Data Structure. To achieve dynamic model composition
in a generic way, requires establishing a novel data structure for
indicating the location of model elements in order to replace them

4Henshin only deletes matched elements, i.e., not the newly created
IntegerExpression

Item.vjava

1 package shoppingcart; 
2
3 public class Item {

7
8
9

10
11
12 }

4 String _id;
5 double _price;
6

...
public double getPrice ( ) {

return _price ;
}
...

TraceAspect.vaspect

1 aspect TraceAspect {
2
3
4
5
6
7 }

private Logger _logger = new Logger(); 
pointcut traceMethods(): execution(* * *(..)); 
before() traceMethods() {

_logger.logp((CLASS_NAME+("."+METHOD_NAME)));
}

Figure 3: The Aspect “TraceAspect” (upper-right) an the
base code in the ECLIPSE Editor (left).

Figure 4: HENSHIN rule “freeitems” making items free.

within their conventional structure. In order to support dynamic vi-
sualization and inhibition of specific aspects without requiring the
re-computation of the effect that such actions have on other aspects,
and thus woven code, a model representation that allows adding and
removing certain deltas for any occurring delta is required. However,
even simple structures, such as sequences with Integer indices give
counter-intuitive results when employing conventional delta struc-
tures. For example, if such a solution is considered, it leads to the
following problems. First, assume the list [a,d], where first b, then c,
and finally d is added to get [a,b,c,d]. A typical index-based delta
representation could be [add(b,1),add(c,2)]. Applying only the sec-
ond delta on [a,d] would yield [a,d,c] which does not represent the
expected result, i.e., [a,c,d]. Secondly, as a result of the importance
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of the order in which deltas are being applied, efficiently adding or
removing deltas requires the manual specification of resolutions for
certain types of conflicts [1].

Thus, we need a model composition that builds a group (∆, ⊕) for
applying model deltas, i.e., that ⊕ is commutative, associative, has
a neutral element and has inverse elements for each element. This
means that we can unapply a delta by building the inverse and adding
it to the result model. A model has the same representation as a model
delta. Hence, to solve this, we represent models ∆ = (I , e, c,A,R) as
functions with object identifiers I . The metamodel is assumed to be a
typical MOF-based metamodel with attributes A, references R, and
classes C. The model contains (i) an existence set e : SetI defining
which objects exist, (ii) a classification function c : I → SetC asso-
ciating an object to its class and all super classes and implemented
interfaces, (iii) attributes A ∋ ai,V : I → ListV associating a list of
values of typeV to each object and (iv) references R ∋ ri : I → ListI
associating a list of identifiers to each object. Although unordered,
unique attributes and references could map to a set instead of a list
from a model representation point of view, we use lists to maintain
the specific element order in the edited document. Moreover, instead
of representing a containment explicitly, we recursively change the
existence value when an object is added to or removed from a con-
tainment. As a result, all feature values are kept in case a previously
removed object is recreated. There may be additional sets er : SetI
for each resource to define which elements are directly contained in
a resource. Finally, models of multiple resources are summed up in
order to get the model of the complete resource set.

3.2.2 Groups (Sets and Lists). Additionally, to get a group,
we define sets and lists as follows. A set of type V is defined as
SetV : V → N, where an element is in the set if and only if the
function value is greater than zero. A list of type V is defined as
ListV : P → SetV , where each p ∈ P is a sequence of integers. Thus,
allowing the definition of a lexicographic order for elements of P .

Consequently, insertions can be performed at any location. For
example, the indices of an element that is inserted between ele-
ments with indices [1] and [2,1] might be [1,1], [1,6] or
[2,-1,0]. In particular, arbitrary order-preserving suffixes may
be generated to ensure that list-position-clashes can not occur. For
instance, if the current position is [1,2] and the identifier of the as-
pect is 9, then the resulting position amounts to [1,2,9]. Further,
in case unique Integer identifiers can not be assigned to a particular
aspect, the aspect’s URI is added instead, and thus, re-establishes an
aspect’s uniqueness.

3.2.3 Functions and Identifiers. All functions are stored as
partial functions. Functions of type I → N return the value 0 for
undefined identifiers. Functions of type V → R, with R being a
function will return a default function, i.e., the function without any
value stored, for each parameter. We assume that sdom : (A → B) →
P(A) will return the actual assigned domain for each function. With
that, sdom(a ⊕ b) = sdom(a ∪b) = sdom(a) ∪ sdom(b) As example,
consider the Item class depicted in Fig. 3 which currently has two
attributes _id and _price. This model excerpt would look as
follows in our representation. We assume the ID of the Item class to
be iItem. Then, the existence set contains that object and two objects
for the attributes, i.e., e = {iItem, iatid, iatprice} which is expressed as
e = f (i) = {iItem 7→ 1, iatid 7→ 1, iatprice 7→ 1, i 7→ 0 else, where

the last part i 7→ 0 is the default value, not stored, and omitted in the
following. sdom(e) would yield {iItem, iatid, iatprice}.

The Item class has class as only type and the other objects
are attributes. Consequently, the classification function c is defined
as c : f (i) = {iItem 7→ {class}, {iatid, iatprice} 7→ {attribute}}.
We have three attributes: two references, one for storing objects in a
class and one for storing attribute types and one attribute for storing
names.

The class-attribute reference is defined as ri (i) = {iItem 7→

[iatid, iatprice]}, with the list containing two elements, e.g. at po-
sition [1,0] and [2,0], which would yield the representation l(p) =
{[1, 0] 7→ (iatid 7→ 1), [2, 0] 7→ (iatprice 7→ 1), i.e., l([1, 0]) returns a
function which associates 1 to the identifier iatid and 0 for all other
identifiers, i.e., only the identifier iatid is stored in the position [1, 0].

All model operation functions should allow adding and removing
models dynamically. A suitable way of that is to make them build a
group. Then a model can be removed by adding the inverse. Thus,
we base our model operation functions on the usual addition which
is a well-known group.

As a result, our model sum function ⊕ is defined as follows:

a ⊕ b =


I → N, i 7→ a(i) + b(i) a,b are Sets
V → R,p 7→ a(p) ⊕ b(p) a,b Lists or functions

V → R with R List, Set or general function

3.2.4 Precedence and Conflict Resolution. The model dif-
ference function ⊖ is defined with − instead of + and presents
the inverse of the model sum function ⊕. By construction, merge
conflicts appear to be resolved implicitly. Deleting objects takes
precedence over updating any attribute values and adding new links
to these objects5. Updating values takes precedence over deleting
them. Updating values differently results in both values being added
to the feature. However, as the merge is virtual and thus occurs in
only in memory, these conflict resolutions are not persisted in the
formalization. Custom conflict resolutions could be stored as addi-
tional delta model that is able to resurrect deleted objects and thus
delete incorrectly updated feature values.

For instance, if we want to add an attribute _logger to our
model, we can add the original model to a model containing the
logger attribute with name and type, i.e., e = {ilogger}, aname,String =
(ilogger 7→ [′_loддer ′]), ... .

The model union function ∪ can be defined analogous:

a ∪ b =


I → N, i 7→ max(a(i),b(i)) a,b are Sets
V → R,p 7→ a(p) ∪ b(p) a,b Lists or functions

V → R with R List, Set or general function

The model intersection function
⋂

is defined similarly, with min
instead of max. The main practical difference between sum and
union lies in that the neutral element of the sum is the empty model
while the neutral element for both union and intersection is the model
itself. Thus, we use the sum to compose changes, i.e., model deltas,
and the union to compose multiple pre-existing models. Please note
the semantic differences between four potential ways of combining
multiple model versions based on the same metamodel, i.e., combin-
ing the models with (i) the ⊕ operator, (ii) the ∪ operator, (iii) the
∩ operator and (iv) calculating model differences between model

5Our implementation deviates from this by currently allowing links to non-existent
objects to reduce the number of textual changes.
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versions and adding these differences to the base model (see Fig. 7).
The resulting model of (i) and (ii) are nearly the same as the sum
of positive integers is always greater than zero and the sum of non-
negative integers is always zero if all summands are zero. They build
a max-model, i.e., a model containing all objects and all feature
values of the base models. We use the second variant to ease the
implementation of edit operations. Variant (iii) builds a min-model,
i.e., a model containing only objects and feature-values contained
in all base models. Variant (vi) uses the previously defined conflict
resolution.

3.2.5 Interoperability and Multi-Versions. For interoperabil-
ity purposes with EMF, we provide an ECore view which provides
virtual EObjects and virtual ELists which are backed by our repre-
sentational structure. For single-valued features, only the first value
in the list is used. For multi-valued features, all values are used. Cur-
rently, Strings are considered as atomic values. Thus, two changes
to a single String will result in two Strings being stored in the fea-
ture slot. If a String would be represented as a list of characters,
changes may be included in the more fine-grained character level,
and thus, only require the generation of a single String containing
both changes.

Multi-Versions can be directly described by the model union
function above. We change the union model by modifying all base
model functions, i.e., functions returning a natural number, so that
they return the target value, i.e., we apply the edit model e to the
current virtual unionu asu := u⊕e with (a∪b)⊕e = (a⊕e)∪(b⊕e).
At any time, we can choose to apply an edit operations only to a
selection of model versions.

3.2.6 Delta model computation. In the following, we present
how the delta model is calculated from aspect applications and how
aspect applications can be combined. The data structure, which has
been defined beforehand, can also be used to define the structure of
aspects, i.e., model transformations, as depicted in our demonstration
case. Moreover, the model sum is used to add the base model to the
derived changes.

In our approach, all transformation application instances have
a single output result and a single model ∆User for user changes.
Fig. 5a shows the pseudo-transformation structure of a single base
model. The base model is both transformation result and user edit
model. Fig. 5b shows the structure of a single aspect instance. An
aspect transforms an input to build an output. Hence, instead of
directly modifying the input model, all modifications are stored in
the delta model ∆Trans. Next, in case the transformation is reapplied,
∆Trans is cleared and OutputTrans is recalculated. Subsequently,
user changes are stored in a separate model that has not been seen

ΔUser Output=
(a) Structure of a single model

Input

ΔTrans ΔUser

Output

Executor
modify

OutputTrans
recalcconst

+ +

(b) Structure of a single transformation

Figure 5: Structure of transformation providers

Input Output1Trans1 OutputATrans2

.saspect

aspect
pc(): 
after 

class
 A {
 doThin
}
.sjava

Executor2

.henshin

aspect
pc(): 
after 

Executor2

=

Base

ΔTrans,1

ΔUser,1

+

+

Output1

ΔTrans,2A

ΔUser,2A

+

+

=

Base Output1Trans1

.saspect

aspect
pc(): 
after 

class
 A {
 doThin
}
.sjava

Executor1

=

ΔTrans,1

ΔUser,1

+

+

(a) chained calculation

Figure 6: Output model generated by a transformation chain.

Input Output1Trans1

.saspect

aspect
pc(): 
after 

class
 A {
 doThin
}
.sjava

Executor2

=

Base

ΔTrans,1

ΔUser,1

+

+

Base Output1Trans1

.saspect

aspect
pc(): 
after 

class
 A {
 doThin
}
.sjava

Executor1

=

ΔTrans,1

ΔUser,1

+

+

Output2 Trans2

.henshin

aspect
pc(): 
after 

Executor2
Base

ΔTrans,2B

ΔUser,2B

+

+

=

OutputB Base= ΔTrans,2B

ΔUser,2B

ΔUser,2B +ΔTrans,1 ΔUser,1+ + +

(b) Independent calculation

Figure 7: Output model generated by parallel transformations.

by the transformation and thus does not affect the results in case
the transformation is re-applied. Finally, the final output is both
represented by the composition ⊕ of transformation output as well
as the user delta.

Our approach makes sure that object identifiers, which have been
created by transformations, remain constant for multiple transforma-
tion executions so that edit operations remain valid.

Further, to avoid cases in which aspects accidentally create ob-
jects that have been removed by other objects, every created object
identifier is prefixed with the aspect’s id and every created list posi-
tion is suffixed with the aspect’s index or id. Thus, object identifiers
are calculated as a function of the executed transformation rule and
its parameters. In detail, user edit operations are stored in a suit-
able delta, which avoids that aspects immediately undo them when
they are re-executed, and trigger the following heuristic: If a part
is deleted or added, then the edit operation is stored in the delta of
the transformation instance of (i) the last deletion or addition opera-
tion of this part, if any or (ii) the addition of the containing object.
As a result of storing object removals invisibly to transformations,
the view, on which an aspect operates, does not contain a removal
operation and hence cannot unapply it.

Moreover, we carry out transformations in sequential order as
well as storing model-change operations immediately following their
creating transformation, i.e., the transformation that initially created
the model that has been modified. In detail, the architecture of our
approach implicitly isolates aspects, i.e., represented by transforma-
tions in our approach, from model-change operations. Additionally,
any preceding transformations are enabled to initialize models with-
out limitations, which otherwise may be imposed by aspects.

Fig. 6 and Fig. 7 show two cases of how our approach employs
multiple aspects to produce an output result from a base model that
result in distinctively computed delta models. First, the result of the
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first aspect is used as input for the execution of the second aspect
(cf. right part of Fig. 6), i.e., representing a chained-calculation. Sec-
ondly, both aspects are executed on the base model (cf. Fig. 7). In
both cases, the output is the model sum of base model, transforma-
tion deltas, and user deltas. However, in the first case, all aspects
are independent from each other and in the second case, the second
aspects is able to see all changes that have been performed by the
first aspect. Thus, in case the second aspect Trans2 would add a
logging statement to each method, our chained-calculation would
also add it to methods that have been generated by the first aspect
Trans1.

Our current implementation supports two kinds of transformation
providers. First, the generic HENSHIN [4] transformation provider
allows to define aspects by executing HENSHIN model transforma-
tions. Secondly, the AOM-specific transformation provider for our
VASPECT language creates transformations from aspect definitions.
Finally, transformation provider instances, which have distinct trans-
formation and user deltas, are created for each base model of the
VJAVA language.

3.3 Editor Augmentation
In terms of editor-augmentation, we employ a customized XTEXT

editor to display our virtual model. In detail, we synchronize the
XTEXT model with our virtual model as a consequence of the XTEXT

framework not offering direct model manipulation. As a result, the
editor is augmented with information from the virtual model, which
is synchronized with the XTEXT model.

Moreover, for each structural feature value, we determine all
sources, i.e., all deltas and possibly the base model for the AOM
use case and all source models for the versioning use case, which
have contributed to a particular feature value. In the AOM case, we
distinguish between different types of features values: (i) nonderived
feature values, i.e., all such sources are user deltas or the base model,
(ii) derived feature values, i.e., all such sources are transformation
deltas, (iii) partly derived feature values, in all other cases.

In the versioning case, we distinguish between (i) base feature
values, i.e., feature values occurring in all source models and (ii)
nonbase feature values, i.e., feature values not occurring in at least
one single source model.

Additionally, at least partially derived feature values and nonbase
feature values are highlighted in different colors. Also, our imple-
mentation provides an aspect/model selection view that enables users
to select specific aspects/models, which they want to see in the ed-
itor. In detail, the model that is shown in the editor, is calculated
as sum of the base model, all transformation user deltas, and (only)
transformation deltas of selected aspects (cf. Fig. 8) or the union
of all selected source models. Additionally, any time a user selects
aspects to be displayed, the editor view is updated accordingly.

Hence, employing our virtual editor on the running example (cf.
Section ??) enables viewing and hiding particular aspects (cf. left-
hand side of Fig. 8) as well as ease the identification and isolation
of undesired behavior that has been woven into the final system due
to an error in the aspect definition (cf. right-hand side of Fig. 8).
Similarly, we can easily see changes done in specific models.

3.4 Synchronization of VIRTUALEDIT model and
XTEXT model

The general synchronization workflow of our approach entails that
modifications, which are performed on the Virtual Textual Model by
employing the virtual editor, trigger the execution of alterations that
carry out the necessary adaptations of the system model as well as
eventual changes in the content visualized by the virtual editor.

To ensure the correct matching of elements, we store the target
virtual object for each object in the editor as text annotation which we
can use to build a correspondence map between XTEXT-EObjects
and VIRTUALEDIT-EObjects based on the position of the elements
in the text. As a result of the reparse operations performed by the
XTEXT framework, annotating model elements does not present a
viable solution. Hence, the synchronization has to be performed in
both directions as well as in a recursive fashion on the root elements
of a resource by synchronizing all feature values and their contained
model elements. We synchronize feature values by applying only
patches to each feature value to avoid unnecessary changes that
eventually lead to a loss of formatting.

Xtext model to VirtualEdit model. In this case, if matching ele-
ments do not share the same type any more, the type of the VIR-
TUALEDIT model element is directly changed by changing (only)
the object-to-class function. As a result, feature values of repeated
type changes are preserved. Elements are created by choosing the
correct user edit delta to place the elements in and generating a new
URI in that user edit delta.

VirtualEdit model to Xtext model. In this case, if matching ele-
ments do not share the same type any more, a new element of the
correct type is created and all features values of features which exist
in both types are copied. Next, elements are created using standard
Ecore facilities for element creation. After the system model has
been synchronized, all textual annotations regarding mapping and
derivation the status of are updated.

3.5 Current Limitations
Our approach and the VIRTUALEDIT framework currently have the
following limitations.

First, the VIRTUALEDIT model composition does not retain Core
Model editability for all types of aspects, i.e., it cannot propagate
all changes back to the Core Model where it would be possible in
principle. In detail, source-level modifiers are represented in terms
of primitive operations, i.e., ADD (+) and REMOVE (-). Therefore,
merging, reordering, or interleaving of model elements can not be
explicitly represented.

The tooling implementation currently does not make use of all
potential features of the approach. For example, (meta-)information
contained in the VIRTUALEDIT model like multi-to-single-feature
conflicts and exact source locations are not visualized in the editor
window.

4 EVALUATION
In general, the evaluation of the VIRTUALEDIT framework follows
the guidelines for case study research in software engineering [25]
and is based on a set of demonstration cases involving the most pop-
ular real-world languages of different domains. The objects of study
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Figure 8: Applying the VIRTUALEDIT virtual editor for the visualization of all available aspects and HENSHIN rules (left) and the
sole visualization of the “freeitems” HENSHIN rule (right).

and evaluation results are publicly available on the VIRTUALEDIT

project website http://virtualedit.big.tuwien.ac.at.

4.1 Setup
Objective. The objective of the evaluation of our framework is to
assess its capability to enable multi-versioning and aspect-orientation
applied to real-world languages of different domains.

The cases. Representative cases include a set of publicly available
XTEXT-based DSMLs and the application of our framework in
the context of scenarios that involve multi-versioning and aspect-
orientation.

Theory. We hypothesize that the VIRTUALEDIT framework can
be applied for enabling multi-versioning and aspect-orientation in
real-world XTEXT-based DSMLs by selectively focusing on specific
parts of their models.

Research questions. RQ1: Is the VIRTUALEDIT framework ca-
pable to handle typical multi-versioning and aspect orientation
scenarios? RQ2: How integrable is VIRTUALEDIT to real-world
XTEXT-based language implementations, and thus, offers typical
multi-versioning and aspect orientation capabilities?

Selection strategy. First, our selection strategy involves issuing
queries to Github for retrieving all projects containing XTEXT gram-
mar files. Next, resulting projects are sorted based on their number of
stargazers, i.e., amount of users that have added a particular project

to their list of starred projects. Finally, the set of our study objects
is formed by selecting the five most popular, i.e., highest-ranked
according to their number of stargazers, real-world XTEXT-based
projects that have been retrieved from Github.

Method. The methodology of our evaluation follows the subse-
quently mentioned steps that are repeated for each object of study.
We (i) create a new XTEXT project by employing the XTEXT cre-
ation wizard, which creates an exemplary DSML skeleton, (ii) re-
place its skeleton-grammar by a grammar that we retrieved from a
real-world XTEXT project, (iii) execute the project creation work-
flow to generate an executable DSML implementation, (iv) configure
the generated implementation to employ VIRTUALEDIT editors for
versioning and aspect-orientation, (v) select an available real-world
model as well as a previous version of the same model available in
the history of the real-world XTEXT project repository, (vi) apply
a model transformation that conducts changes to the model, and
(vii) load both the historical as well as the current model with our
VIRTUALEDIT model editor, respectively.

4.2 Results
In the endeavour to answer RQ1, we first examined the extend of the
VIRTUALEDIT framework to support typical concepts that appear
in the AOM world [33]. Thus, we considered several tutorials and
books on ASPECTJ, e.g., by Laddad [20] and DZone [17], during

http://virtualedit.big.tuwien.ac.at
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the design and implementation of the VASPECT language, which
covers recurring AOM concepts, such as, pointcuts, i.e., matching
conditions, and advices, i.e., code modifications. Further, we found
that many Java-based aspect languages instrument byte code instead
of producing woven code.

To answer RQ2, we validated the applicability of our framework
to our set of study objects. First, we found that the three projects
wesnoth/wesnoth, eclipse/smarthome, and ufoai/ufoai

could successfully be employed by VIRTUALEDIT and two projects,
i.e., antlr4ide and Jnario, could not be employed as a result of
their dependence on additional Java files or other grammars, which
require the functionality of imports that is not yet supported by
our current implementation. Moreover, we found that replacing the
application of the default XTEXT editor with our virtual editor can
be performed with an acceptable amount of effort and thus enable
the use of VJAVA-files as described earlier. However, we found that
VIRTUALEDIT requires valid input models with references that are
available within non-imported models. Thus, models that contain
such references require manual investigation before they can be
displayed by the VIRTUALEDIT editor.

Furthermore, the implementation of the code required to execute
VASPECT aspect definitions, which produce woven code, is suffi-
ciently easy. On one hand, we found out that ASPECTJ pointcuts and
advices can be seen as transformation context and actions, which
has been shown for generic aspects in modeling [23]. For example,
execution together with before, after or around only add the advice
code at a specific point and do not even require dynamic conditions.
On the other hand, some advices, such as cflow may require a static
and thread-local variable that has to be checked at runtime. Thus,
we hypothesize that most remaining advices, may be implemented
with a similar effort.

During the evaluation, we found numerous bugs in our implemen-
tation and a potential limitation. Files in the wesnoth language lose
their formatting, possibly due to their use of hidden tokens. However,
we think that these bugs are not a result of the approach itself, but
rather of implementing the approach without testing enough. In fact,
several of the most important bugs were detected and fixed as a result
of the evaluation.

To summarize, we conclude that, VIRTUALEDIT is capable to
handle multi-versioning and aspect orientation scenarios found in
selected literature and our current implementation is integrable to a
subset of investigated real-world XTEXT-based language implemen-
tations.

4.3 Discussion and Validity
Although the current implementation of VJAVA does not provide
dedicated support for debugging, which would allow the developer
to set conditional breakpoints on a generated advice and hence focus
on a particular aspect during the debugging process, we hypothesize
that such a debugger eases the detection and reasoning behind er-
roneously applied advices, which are based on dynamic values. In
other words, the causes of violated requirements may be found with
less effort when selectively enabling advice-postconditions. More-
over, our composition allows developers to easily edit code that has
been generated by advices as well as preserve such edit-operations
during the re-application of aspects. Thus, existing challenges such

as code location and data values as well as limitations of existing
fault models, which do not claim to be complete, i.e., able to rep-
resent any possible kind of fault [10] are tackled by our approach
through the concept of virtualization.

Internal Validity. The internal validity of our evaluation is limited
to a subset of Java and ASPECTJ, which have been implemented in
terms of VJAVA and VASPECT, respectively. Hence, the compatibil-
ity of our approach with the complete set of concepts available in
Java and ASPECTJ, which have not been applied in any of the inves-
tigated examples found in books and tutorials but may be depicted in
different AOM applications, has still to be evaluated. In other words,
during the construction of VJAVA and VASPECT we did not evaluate
the impact and possible limitations of using aspect applications as
transformations.

External Validity. Although our evaluation is based on real-world
languages of different domains, our findings are limited to a set
of investigated demonstration cases. To provide a good level of
representativeness of the employed cases, we investigated the most
popular publicly-available DSMLs. However, we cannot state any
results going beyond the selected cases before making a larger study
with a statistically significant amount of DSMLs.

5 RELATED WORK
This section discusses work related to our VIRTUALEDIT model
composition approach applied by clustering it in (i) View-based
Modeling, (ii) Model Composition, and (iii) AOM.

View-based Modeling. Goldschmidt et al. [13] present a survey
that analyzes and organizes existing approaches for view(point)-
based aspects in DSMLs, which are scattered across publications,
and contributes a taxonomy on view-based modeling from a tool-
oriented perspective. For example, their taxonomy includes means
to describe editor capabilities such as “bidirectionality”, i.e., ability
to synchronize models and their views, and “update strategy”, i.e.,
when to execute synchronization transformations. ModelJoin [7] and
EMF Views [6] (previously VirtualEMF [9]), enable the creation of
model views, which combine models of different metamodels with
an SQL-like syntax. Further, they also use EMF but do not provide
a virtual textual editor, which enables dynamic visualization and
hiding of aspects.

Generally, view(point)-based approaches typically focus on pro-
viding multiple different views on the same model as opposed to one
complete or filtered view on multiple models. On the contrary, the
VIRTUALEDIT approach enables dynamic views as well as direct,
multi-language, and language-independent manipulation to which a
view may be associated. As a result, dynamic views and direct multi-
language model manipulation, which is achieved by our approach,
may ease and speed-up the process of debugging due to decreased
complexity and accelerated falsification and localization of errors.

Model Composition. Although, model composition has been in-
vestigated in literature from various angles, such as (i) specific ap-
plication on model families [26], (ii) formal semantics and potential
composition operators [15, 31], as well as (iii) methods for au-
tomating the identification and composition of relationships among
elements [12, 18], several challenges have been addressed by EMF
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Views [6] (previously VirtualEMF [9]), which combines heteroge-
neous and interrelated models in terms of on-demand computed
views defined by an SQL-like and XTEXT-based query language, in-
cluding increased efficiency in memory consumption and formation
time caused by data duplication. Similarly to Goldschmidt et al. [13],
“View Scopes” represent the visualization of a specific selection of
elements. Kolovos et al. [18] introduce the “Epsilon Merging Lan-
guage (EML)” and an approach to merge multiple models, which
are based of different metamodels, into one model. However, users
have to manually create EML-based matching rules instead of be-
ing automatically provided with a virtualized view that presents the
merge-result.

AOM.. Hovsepyan et al. [16] show that modeling in terms of
all-aspectual processes, in which concerns are kept separated, in-
creases modeling performance to up to 20% and results in smaller,
less complex, and more modular implementations when compared
with hybrid processes, in which concerns are composed. Thus, all-
aspectual processes also shorten the versioning cycle.

Schoettle et al. [27] present “TouchCORE” (previously “Touch-
RAM”), i.e., a modeling tool to support Concern-Driven Software
Development (CDSD). TouchCORE enhances tracability in CDSD
by visualizing feature models, e.g., in terms of class diagrams, and
thus exemplifies one use case of our more generic approach. In detail,
our approach may be applied in CDSD to derive such visualizations
but also in other code weaving or code virtualization scenarios.

Mehmood et al. [22] present a systematic mapping study, which
identifies two ongoing distinct lines of research: (i) model weav-
ing as special case of a model-to-model transformation and (ii)
approaches that transform aspect models into a target AO language,
such as ASPECTJ, and thus rely on target language weavers to deal
with crosscutting aspects. They state that approaches following the
first line of research, are (i) rare and limited in the sense that they dis-
regard advanced pointcut specification and (ii) predominantly static
and therefore unable to weave and un-weave aspects during model
execution [14, 32]. Our approach follows the first line of research
on AO presented by Mehmood et al. However, instead of composing
base and aspect model separately, both core and crosscutting con-
cerns are edited in one place, i.e., in our VIRTUALEDIT editor. As a
result, the modeler stays within the all-aspectual process, which has
been found to lead to better performance [16], and simultaneously
compose core and crosscutting concerns. Moreover, our approach
is dynamic and hence prepared for weaving and un-weaving during
model execution. Further, the DSMLs in the AOM use case, on
which our approach has been applied, may be able to be extended to
support advanced pointcut specifications.

Eaddy et al. [10] highlight challenges associated with source-level
debugging, in which debuggers strive to maintain the illusion of a
source-level view of program execution by maintaining a correspon-
dence between source and compiled code. They emphasize that the
consequence of surrendering correspondence, which is a result of
applying various transformations, leads to the inability to perform
source-level debugging, which makes matching expected and ac-
tual behavior difficult for the human debugger. Thus, giving rise
to code location problems, i.e., displaying the wrong call stack of
source line, or depicting byte code instead of source code, and data
value problems, i.e., incorrect displaying of new fields or variables,

that occur when correspondences between source code variables and
memory locations have been obscured. Moreover, Eaddy et al. define
“full source-level debugging” as a set of six AOM-specific activities
that represent an extension of an AOM fault model by Ceccato et
al. [8], i.e., itself an extension of Alexander et al. [2]. Additionally,
AOM-specific fault models presented in literature do not claim to
be complete and thus their application is limited to particular parts
of source code that represents one of those AOM-specific activities.
Consequently, faults introduced by (i) activities that are not covered
by the fault model and (ii) faults that arise from base code, are ne-
glected by existing AOM-specific fault models. When compared
to our approach, we neither impose limitations on AOM-specific
activities and thus specific fault types but provide a framework that is
capable to deal with complete source code debugging. Furthermore,
as a consequence of preserving the correspondence between source
and target (woven) code, the problems associated with code location
and data value are implicitly omitted in our approach.

6 CONCLUSION AND FUTURE WORK
In this work, we presented a virtual model composition approach
to support versioning and AOM by enabling developers to (i) dy-
namically include or exclude source models from the merged model
view, (ii) dynamically show and hide individual aspect applications
without affecting the actual application of aspects by highlighting
elements with their different origins and at the same time (iii) pre-
serve editing capabilities by eventually redirecting model operations
to the base model or the source models or store them in delta mod-
els. Moreover, our model representation enables a commutative and
associative addition and a subtraction of models as well as change
conflicts to be resolved implicitly.

The results of our initial experience report, i.e., evaluating our
approach as well as its implementation in the VIRTUALEDIT frame-
work, indicate that both advices and multiple model versions can
be suitably represented in virtual code. Hence, we hypothesize that
source-level software versioning significantly benefit from virtual
views that are created by our VIRTUALEDIT model composition
approach.

However, to evaluate our hypothesis for the aspect orientation
showcase, the implementation of a debugger, which require consid-
erable effort but has been done several times for different editors,
has to be considered.

Therefore, future work involves the extension of our approach as
well as its implementation. Regarding the approach, (i) the derivation
of identifiers will be made customizable [21], such that developers
can specify certain model elements as equal, and (ii) the transforma-
tion execution and model composition, which are currently separated,
will be merged by extending transformation providers to directly
derive output model from input model and offer means for asynchro-
nous execution of performance-intensive transformations.

Regarding the implementation, (i) the performance will be im-
proved by caching complete models and employ incremental trans-
formations, (ii) the implementation of features, which address iden-
tified limitations (cf. Section 3.5), (iii) the implementation of a
debugger and other assistive features in order to fulfill the means for
conducting a user study to evaluate the impact of our approach on



SLE’17, October 23–24, 2017, Vancouver, Canada Robert Bill, Patrick Neubauer, and Manuel Wimmer

the productivity in the development of dynamically composed sys-
tems and (v) make more meta-information about the VIRTUALEDIT

model accessible in a user-friendly way, a.o. to support the merge
process by the visualization and configuration of tentative merges..
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