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Parametric PID Controller Tuning for a Fast Steering Mirror

Ernst Csencsics and Georg Schitter

Due to increased application of PID hardware modules in
commercial and industrial applications [14] a major research

Abstract—Even though the design and tuning of
proportional-integral-derivative (PID) controllers appears

to be conceptually simple it can be difficult in practice,
especially when competing control objectives are present.
This paper presents a tuning method for PID controllers
applied to low stiffness mechatronic systems that allows a
direct and intuitive trade-off between the robustness and the
performance of the resulting system. With the required system
bandwidth typically determined by the targeted application
and an according parametrization, the controller tuning is
reduced to the selection of the cross-over frequency w. and
the variation of a single parameter «. It is demonstrated how
the a-value influences the resulting system properties, while
a larger o increases robustness but also diminishes control
quality. The tuning method is experimentally verified on a fast
steering mirror (FSM) system by implementing controllers
with a-values of 2, 3 and 4.5. It is shown that the settling time
for o = 2 is 4-times smaller than for o = 4.5, when applied
to the nominal plant. On the other hand the stability margins
for o = 2 are also significantly smaller, diminishing robustness
and increasing oscillating transients when plant uncertainties
are present. An «-value of 3 yields a good trade-off between
robustness and performance of the closed-loop operated
system.

I. INTRODUCTION

More than 90% of all control loops today employ
proportional-integral-derivative (PID) controllers with appli-
cations ranging from motor drives, mechatronic systems, and
instrumentation to process control, magnetic memories, flight
control and automotive [1]. The main reasons for its success
are clearly its robustness, simplicity and wide applicability
[2].

Even though the design and tuning of PID controllers
appears to be conceptually simple and straight forward it can
be difficult in practice, especially when competing control
objectives (e.g. robustness and short transients) are present.
Thus basically all text books from scientific fields that
utilize feedback control, such as process control [3], [4],
mechatronics [5], [6], or control engineering [7], [8] provide
a chapter on tuning PID controllers. Most early but still
widely spread tuning methods were proposed by Ziegler-
Nichols [9] and Cohen-Coon [10]. These more heuristic
tuning rules are, however, reported to give rather poor results
in many cases [1] and result in relatively poor closed-loop
robustness [11]. There are many more comparable [2] as well
as analytic tuning methods [12] reported and publications
on comparing the robustness and performance of these well-
known PID tuning formulas are available [13].

The authors are with the Christian Doppler Laboratory for Precision En-
gineering for Automated In-Line Metrology at the Automation and Control
Institute (ACIN), Vienna University of Technology, 1040 Vienna, Austria.
Corresponding author: csencsics@acin.tuwien.ac.at.

focus in recent years has been on the development of
various optimization based [15] and automated PID tuning
approaches [16]. Resulting optimization based tuning meth-
ods mainly rely on the maximization of stability margins
[15], shaping the loop transfer function (TF) [17], or the
optimization of closed-loop properties like bandwidth [18]
or control activity [19].
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Fig. 1. Bode plot of a low and quasi-zero stiffness mechatronic system.

The target cross-over frequency of the loop TF lies above the suspension
mode (see grey area), i. e. the systems are controlled on their mass line.

Particularly in mechatronic positioning systems PID con-
trollers are employed and tuned for a wide variety of appli-
cations and tasks, including motion control of fast steering
mirrors (FSMs) [20] and atomic force microscopes (AFMs)
[16], and disturbance rejection in active vibration isolation
systems [21], [22]. There are also analytic methods for the
design of PID controllers for motion systems reported, that
tune the controller to the requirements of a particular trajec-
tory [23]. In practice often a trade-off between robustness
and performance of the closed-loop system has to be made.
With many of the reported tuning methods it is, however,
hardly possible to perform this tradeoff in an analytic and
intuitive way, that clearly shows the effects of the parameter
tuning on these two aspects.

This paper presents a novel loop shaping based tuning
approach for PID controllers, which allows a direct and
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intuitive tradeoff between robustness and performance (e.g.
tracking performance) of the closed-loop controlled system
by tuning a single parameter. The method is applicable for
tuning controllers of low stiffness mechatronic systems that
are showing a double integrator characteristic above the sus-
pension mode and are typically controlled on their mass line
(see Fig. 1). This system class includes many mechatronic
positioning applications, ranging from wafer scanners [24]
over fast steering mirrors [20] to CD player pickup heads
and voice coil actuator based linear motion drives [25]. With
the bandwidth typically determined by the specific target
application, the parametrization of the tuning method reduces
the number of tuning parameters of the PID controller to
one. After a description of the controller parametrization
and the effects of tuning the variable parameter, the method
is experimentally demonstrated and evaluated by designing
three differently tuned controllers and applying them to a
low stiffness fast steering mirror (FSM) system.

II. PID ALPHA TUNING METHOD

The targeted class of mechatronic motion systems is
characterized by low or quasi-zero stiffness dynamics and
is typically controlled on the mass line with a bandwidth
above the suspension mode of the system (see Fig. 1). When
designing PID controllers for this system class, three tuning
parameters have to be adjusted:

o The P-gain is used to shift the magnitude slope of the

loop gain to place the intersection between mass- and
0 dB line at the targeted cross-over frequency.

e The D-gain is tuned to ensure sufficient phase lead
around the unity cross-over and is usually tamed at
higher frequencies to reduced the control effort.

o The I-gain increases the loop gain at low frequencies,
to achieve zero steady state error in the closed-loop
system.

In practice the closed-loop system specifications of interest
are typically bandwidth (speed, performance) and robustness
(stability margins, parameter variation). It is, however, not
intuitively clear how the three tuning parameters affect these
specifications, such that an intuitive and simplified tuning
procedure is desirable. Further, when tuning the controller
gains independently, the different control actions may overlap
and interfere with each other, mutually diminishing their
desired action and the overall system performance.

The Alpha Tuning Method enables such an intuitive tuning
and uses a parametrization for the controller gains that is
based on the cross-over frequency w, and the tuning param-
eter a only (see Section II-A). The cross-over frequency w,
is usually either maximized for high performance, typically
limited by structural modes of the positioned mass (see
Fig. 1), or fixed by the requirements of the respective appli-
cation, e.g. targeted trajectory in a scanning system (highest
harmonics) or required disturbance rejection performance
in active vibration isolation systems (disturbance frequency
components). The tuning parameter « adjusts the spectral
distance between the corner frequencies that separate the
control actions in the frequency domain and enables a direct

tradeoff between performance and robustness of the closed-
loop system.

For demonstration of the tuning method the low stiffness
system from Fig. 1 is considered as plant (the structural
modes are omitted) and the target cross-over frequency is
fixed to w. = 400 Hz. The system is a second order mass-
spring-damper system
Wo

Gs)=K - ———«+—— 1
(9) 52+2§w0~8+wg’ ()
with K = 12.45, wg = 130.1 rad/s and ¢ = 0.06.
A. Controller Parametrization
The parallel PID controller structure
k;
Cpid(s) = ]Cp + ; + kgs )

is considered as starting point for the controller tuning.

The P-gain is used to vertically shift the loop gain in order
to cross the 0 dB line at the targeted cross-over frequency
we. It is thus found by using the inverse of the plant gain at
the targeted cross-over frequency. To provide sufficient phase
lead at cross-over a D-control part will, however, be required.
The starting frequency of the D-action can be parametrized
by using the cross-over frequency w. and the a-value:

We

Wy = —. 3
«a

Above this starting frequency the D-control introduces a

phase lead and reduces the -2 mass line to a -1 slope, so

that the P-gain needs to be reduced by this factor « in order

to retain a loop gain of 1 at the targeted w.. This yields a

P-gain of

. 1
a-|G(s)| '

s=jwe

kyp “

The D-gain is needed to add phase lead (phase margin)
and damping to the loop TF around w,.. Looking only at the
PD-part of the initial controller in (2), it can be seen that the
D-term starts to dominate for w > k,/kq. Using this relation
together with the previously mentioned parametrization of wy
(3) the D-gain results to

Ky =k, 5)

To limit the D-control part to frequencies around w,, in
order to provide a steeper roll-off of the loop TF at higher
frequencies and to limit the control effort, the D-action is
tamed. The D-control part is terminated by introducing an
additional pole above the cross-over frequency at w; = a-we.
This results in an entire D-gain of

« 1
by —k - X
T e T

awe

Q)

The I-gain is introduced to increase the loop gain at low
frequencies, in order to achieve zero steady-state error in
the response to the reference and to disturbances. It can be
neglected for quasi-zero stiffness systems in which the plant
itself already provides sufficient loop gain at low frequencies.
The I-control part adds 90° phase lag to the loop TF. To
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not affect the phase lead introduced by the D-control part
the I-control needs to be terminated well below the starting
point wy of the D-action. At the termination of the I-control,
parametrized by w; = wgy/a, the term k;/s from (2) should
be equal and at larger frequencies smaller than k. The I-gain
can thus be found by

We

ki=ky 7)

B. Variation of a-Value

By tuning the only remaining independent parameter o
it is possible to directly tradeoff the robustness and perfor-
mance of the closed-loop system. According to the previous
parametrization, a value of o = 3 places the I-control
termination to w; = w,/9, and the start and the end of the
D-control t0 wg = w./3 and w; = 3w,, respectively. The
resulting controller TF is depicted in Fig. 2 and the loop
TF with the model from (1) results in a phase margin (PM)
of 54°, according to Table. I. Increasing the a-value (e.g.
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Fig. 2. Influence of the tuning parameter o on the TF of the resulting
controller. The controllers for a-values of 2, 3 and 4.5 are shown.

«a = 4.5, see Fig. 2) leads to

« an increase of the D-control range and of the PM (66°)

« adecrease of the controller gain at low frequencies and

« an increase of the controller gain at high frequencies.
This means that for large values of « the system becomes
more robust, but the disturbance rejection and tracking
performance at low frequencies is reduced. The increased
gain at higher frequencies additionally leads to an increased
sensor noise feedback. Decreasing the «a-value (e.g. o = 2,
see Fig. 2) on the other hand results in

« a decrease of the D-control range and of the PM (37°)

« an increase of the controller gain at low frequencies and

« a decrease of the controller gain at high frequencies.
This means that for small values of « the robustness of the
system is reduced, but the performance at low frequencies is

increased. The reduced gain at high frequencies also leads
to a reduced sensor noise feedback.

C. Robustness

To demonstrate the previously mentioned effects of differ-
ent a-values on the robustness of the system the controllers
with a-values of 2, 3 and 4.5 are applied to the low stiffness
system from (1). Values smaller than o = 1.5 lead to PMs
that are smaller than 20°, while at a-values from 4.5 upwards
the conjugate complex zeros terminating the I-control and
starting the D-control are separating into two real valued
Zeros.

The effects of different a-values on the loop TF is depicted
in Fig. 3a. All loop TFs show the same cross-over frequency
of 400 Hz, with o = 2 showing the highest gain at low
frequencies, the steepest slope at the cross-over and the
lowest gain at high frequencies. The phase lead at the cross-
over is significantly lower as compared to the higher o-
values. Additionally the maximum phase lead is not at the
cross-over but at a higher frequency. This is due to the
I-control part which is for a < 2.5 still influencing the
resulting phase lead at the cross-over frequency, shifting the
maximum phase lead of the loop TF to increasingly higher
frequencies with decreasing alpha value. The reduced phase
margin clearly indicates that the system with a controller with
a =2 is less robust to plant variations than when a controller
with a = 4.5 is applied. As an indicator for the robustness of
the controlled system the resulting gain margins (GM) and
PMs for different a-controllers are listed in Tab. 1.

TABLE I
PHASE AND GAIN MARGINS FOR DIFFERENT a-VALUES BETWEEN 1.5
AND 4.5.
@ PM [°] GM [dB]
1.5 21 8.2
2 37.4 13.1
2.5 47.2 17
3 53.9 20.5
35 58.8 23.7
4 62.6 27
4.5 65.5 30.5

As consequence to a smaller PM the peaking in the
complementary sensitivity function of the closed-loop system
(see Fig. 3b) is 5 dB for a = 2. With a-values of 3 and 4.5
the peaking can be reduced below 2 dB. The resulting -3dB
bandwidth of the system varies from 615 Hz for o = 4.5, to
706 Hz for a = 3 and 770 Hz for a = 2.

D. Performance

From the sensitivity function of the closed-loop system in
Fig. 3c it can be seen that with a controllers with o = 2
the disturbance rejection performance up to about 200 Hz
is clearly superior to controller with lower a-values. As
a consequence of the Waterbed-effect [5] the disturbance
rejection performance is however diminished from 200 Hz
up to 1.5 kHz with a maximum disturbance amplification
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Fig. 3. Simulated frequency response functions of the exemplary plant G(s) with controllers for a-values of 2, 3 and 4.5. (a) shows the loop gain with
cross-over frequencies at 400 Hz, (b) shows the complementary sensitivity function and (c) the sensitivity function of the closed-loop system.

of 44 dB at 550 Hz. A more robust controller design
with an a of 3 or 4.5 shows less performance at low
frequencies but also a reduced disturbance amplification at
higher frequencies.

The effects of different a-values on the performance in the
time domain is investigated by evaluating the systems step
response as measure for a set-point change (see Fig. 4a).
While the system with controllers with an a of 3 and 4.5
shows moderate overshoot of 25% and 15%, respectively,
and aperiodic transients, the system with the controller with
« = 2 shows large overshoot of 50% and longer transients.
The shortest settling time was achieved with o = 3.

Considering a plant with up to 50% mass uncertainty, the
benefits of a robust controller design can be demonstrated. A
plant with a 50% larger inertial mass leads to a decrease of
the loop gain at frequencies above the suspension mode due
to a lowered mass line. This means that the actual cross-
over frequency is smaller than the one the controller was
designed for, leading to a decreased PM. Fig. 4b depicts the
step response with the designed controllers and the plant with
increased mass. It shows that with the least robust controller
(o = 2) a significant increase of the oscillating transients

can be observed, while with the more robust controllers,
apart from a slightly increase in settling time and overshoot,
the transient behavior of the step response remains basically
unchanged.
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Fig. 4. Simulated step response of the exemplary plant G(s) with controllers
for a-values of 2, 3 and 4.5. (a) shows the step response with the nominal
plant. (b) shows the step response with a plant with a 50% larger mass.

Similar investigations in the time domain with comparable
results can be done for e.g. the tracking error of a raster
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trajectory in scanning systems or evaluation or the remaining
position uncertainty in disturbance rejection applications.

III. PID ALPHA CONTROLLER FOR FSM
A. Experimental setup

To experimentally investigate the performance with con-
trollers of different c-values a single axis of a commercial
FSM (Type: OIM101, Optics in Motion LLC, Long Beach,
USA) with a maximum range of +/-26.2 mrad (+/-1.5 deg)
is used as system plant. To measure the mirror rotation
for closed-loop operation the FSM has an internal optical
sensor system. The system axis is actuated by two voice
coil actuators (moving magnet type), which are operated in
a push-pull configuration. The actuator coils are driven by a
custom made current amplifier (OPA544T, Texas Instruments
Inc., Dallas, TX, USA) with a bandwidth of 10 kHz. The
controller implementation is done on a dSpace platform
(Type: DS1202, dSPACE GmbH, Germany) running with a
sampling frequency of f; = 50 kHz.

To identify the system dynamics a system analyzer
(3562A, Hewlett-Packard, Palo Alto, CA, USA) is used. The
input of the power amplifier is considered as the system input
and the signal of the internal sensor represents the system
output. The mirror, the amplifier and the internal sensor are
thus together considered as the plant. To model the measured
frequency response a second order model

P(s) =G(s) - e T*, ®

with G(s) from (1) and K = 12.45, wy=130.1 rad/s and
(¢=0.06 is fitted. The dead time T'=le-4 is used to model
the phase loss due to the internal sensor and the sampling of
the digital system.

B. Controller Design

To demonstrate the explained performance tradeoffs three
controllers with different a-values are designed and imple-
mented for the experimental plant, following the method
presented in Section II. As in Section II the smallest a-value
is chosen to be 2 (o = 1.5 would already result in a PM of
less than 5°). Additionally o = 3 is chosen as a moderate
and « = 4.5 as a higher value. For reasons of implementation
the I-control is tamed below 1 Hz. The resulting controllers
are of the form

52 4+ 2¢w, s + w?
(s +wp1) - (s + wp2)

Cals) =K (&)

with parameters according to Table II.

TABLE II
CONTROLLER PARAMETERS FOR «« VALUES OF 2, 3, 4.5,

a K w, [rad/s] ¢ wp1 [rad/s]  wp2 [rad/s]
2 40.2 795 0.71 5.03e3 6.28
3 40.2 459 0.85 7.54¢€3 6.28
45 | 759 257 1.05 1.13e4 6.28

C. Experimental Validation

For evaluation of the system performance and robustness
with the three designed controllers, the resulting stability
margins, the complementary sensitivity function and the
response to a set-point change are investigated and compared.

Fig. 5 depicts the gain and phase margins of the open
loop system resulting from a simulation using the plant
model P(s) from (8) and controllers with a-values of 1.5,
2,25, 3, 3.5, 4, and 4.5. Additionally the measured margins
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Fig. 5. Simulated and measured gain and phase margins for controllers

with different c-values. Above o = 3 the additional increase in gain and
phase margin with increasing values of « is significantly smaller than up
to o = 3. The measured margins show good matching with the simulated
values.

of the FSM with the implemented controllers are shown,
demonstrating good agreement with the simulated curves.
The slight deviations in the gain margin are results of
unmodeled structural modes of the system.It can be seen
that below an a-value of 3 the stability margins decrease
very quickly, while above o = 3 there is only a comparably
slight increase of GM and PM observable, suggesting a = 3
(PM = 40°) as a good tradeoff value for a robust controller.
In Fig. 6 the complementary sensitivity functions of the
closed-loop systems are shown. As discussed in Section 1I-C
the peaking of the TF increases for lower a-values due to
the reduced PM of the open loop and is 7.4 dB for a = 2
(a = 4.5 yields 1.9 dB). The -3dB bandwidths are ranging
from 785 Hz for o = 4.5 to 813 Hz for a = 2. Above 1 kHz
unmodeled structural modes of the plant are observable,
which have, however, no influence on the performance.
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Fig. 6. Measured closed-loop TFs using controllers with a-values of 2,

3, and 4.5. Lower values yield higher peaking of the TF. Above 1 kHz
structural modes of the plant can be observed.
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The responses to a set-point change of the closed-loop
system are shown in Fig. 7a. It can be seen that the system
with the less robust controller for o = 2 yields the largest
overshoot (40%) but also the shortest settling time of 5 ms.
The system with the controller for o = 3 shows significantly
less overshoot (11%) at a still moderate settling time of
10 ms. The system with the controller for o = 4.5 shows only
an overshoot of 5% but has also a significantly longer settling
time of more than 20 ms. To demonstrate the robustness
of the three systems with respect to uncertainties of the
system mass, the measured step responses of a plant with
50% larger inertial mass and the same controllers is depicted
in Fig 7b. It can be seen that the system with the less
robust controller shows an enlarged overshoot of about 70%
and a significant increase of oscillating transients, that also
increases the settling time to more than 13 ms. The system
with the other controllers shows overshoots well below 25%
and reduced settling times due to the reduced PMs. Both
step responses show excellent agreement with the simulated
responses in Fig. 4.
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Fig. 7. Measured step responses using controllers with a-values of 2, 3,
and 4.5. (a) shows the nominal plant with the accordingly designed nominal
controllers applied. (b) shows a plant with a 50% increased inertial mass,
still applying the same nominal controllers.

An evaluation of the positioning uncertainty after the
transients also revealed that the noise in the system output
signal increases from 5.33e-4 Vrms for o = 2 and 4.97e-
4 Vrms for o = 3 to 3.6e-3 Vrms for o = 4.5 (Section II-B).

In summary it is shown that the presented tuning method
for PID controllers can be applied to directly and intuitively
tradeoff the robustness and performance of a feedback con-
trolled mechatronic low stiffness motion system.

IV. CONCLUSION

In this paper a tuning method for PID controllers applied
to low stiffness mechatronic positioning systems is proposed,
which enables a direct tradeoff between robustness and
performance. With the cross-over frequency determined by
the target application, the tuning relies on a single parameter
a only. It is discussed and experimentally demonstrated how
a variation of the a-value influences the closed-loop system
properties by designing three PID controllers for a FSM
system. According to the presented results an a-value of
3 appears to be a good tradeoff between robustness and
performance of the closed-loop system.
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