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Modern cloud computing environments support a relatively high degree of automation in service provisioning, which allows
cloud service customers (CSC) to dynamically acquire services required for deploying cloud applications. Cloud modeling
languages (CMLs) have been proposed to address the diversity of features provided by cloud computing environments and
support different application scenarios, e.g., migrating existing applications to the cloud, developing new cloud applications,
or optimizing them. There is, however, still much debate in the research community on what a CML is and what aspects of
a cloud application and its target cloud computing environment should be modeled by a CML. Furthermore, the distinction
between CMLs on a fine-grained level exposing their modeling concepts is rarely made. In this article, we investigate the
diverse features currently provided by existing CMLs. We classify and compare them according to a common framework
with the goal to support CSCs in selecting the CML which fits the needs of their application scenario and setting. As a result,
not only features of existing CMLs are pointed out for which extensive support is already provided but also in which existing
CMLs are deficient, thereby suggesting a research agenda.
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1. INTRODUCTION
With the emergence of cloud computing, the effort required to get access to environments with
the scale of large distributed data centers has tremendously been reduced. Provisioning resources
of a cloud computing environment1 [Badger et al. 2012; ISO/IEC 2014b] can be carried out
on demand [Leymann 2011], without the need to negotiate with the cloud service provider
(CSP) [ISO/IEC 2014a]. This is because their offerings are considered as commodities that are read-
ily available as a service and consumable over the network even on a per minute basis. Companies
are no longer forced to plan far ahead for resource provisioning [Armbrust et al. 2010]. Instead, the
large-scale data centers of today’s CSPs ensure that resources are available through the services of

1In the following, we use the term “cloud environment” for the sake of brevity
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their cloud environments. Hence, cloud computing refers to both the applications hosted on a cloud
environment and the systems required to operate its internal resources and expose them as cloud
services (e.g., Amazon EC2). As cloud environments offer novel optimization opportunities, e.g.,
advanced scalable data persistence solutions, applications have to be tailored to exploit them [An-
drikopoulos et al. 2013] fully. At the same time, cloud applications need to comply with certain
peculiarities of cloud environments that might hinder their functioning, e.g., stateful components
in a highly scalable cloud environment. Ideally, architectural decisions can be expressed in terms
of models as a basis for the development of cloud applications [France and Rumpe 2010]. This
approach calls for appropriate modeling languages and tools that render it truly usable and useful.

The current field of cloud computing encompasses a multitude of different CSPs. The ability to
run and manage applications on different cloud systems without going into their technical config-
uration peculiarities may enlarge the potential set of cloud service customers (CSC)2 [Sheth and
Ranabahu 2010]. However, current cloud solutions are typically heterogeneous, and the provided
configuration features are often incompatible. This diversity is a significant obstacle for the realizing
the full potential of cloud computing since it harms interoperability and increases vendor lock-in, as
well as it requires dedicated CSP specific knowledge for development and administration of cloud
systems [Marston et al. 2011]. This challenge needs to be addressed accordingly.

Several languages emerged with partially overlapping but also diverse concepts to represent cloud
applications at the model level and to address the diversity of today’s cloud environments and their
offered services. A standard called TOSCA [OASIS 2013] for representing portable cloud applica-
tions and supporting their life-cycle management was adopted by the Organization for the Advance-
ment of Structured Information Standards (OASIS) in late 2013. In this article, we collectively refer
to them as cloud modeling language (CML). Generally, a CML can be considered as a domain spe-
cific language (DSL) [Mernik et al. 2005] where the domain refers to cloud computing. There is,
however, still much debate on what a CML is, what aspects of a cloud application and the target
cloud environment should be modeled by a CML, and which of the existing CMLs is appropriate
for a particular problem. For example, some CMLs emphasize virtual machine (VM) configuration
required for the provisioning of compute services with custom software stacks (e.g., the approach
by Nhan et al. [Nhan et al. 2012]). Others address also networking aspects such as custom ad-
dressing and segmentation of launched VMs (e.g., CloudNaaS [Benson et al. 2011]). While those
languages solely target infrastructure services, some CMLs turn the focus on platform services (e.g.,
StratusML [Hamdaqa et al. 2011]). Independent of the addressed cloud service categories [Badger
et al. 2012; ISO/IEC 2014a], some CMLs support the representation of elasticity rules to trigger the
provisioning of a compute service if a certain threshold is exceeded (e.g., RESERVOIR-ML [Chap-
man et al. 2012]). Moreover, they provide dedicated tools to allow CSCs seeking for compute ser-
vices that satisfy their requirements in terms of performance and costs (e.g., CloudMIG [Frey et al.
2013a]).

Consequently, there is an urgent need to investigate the diverse features of current CMLs. Ex-
isting surveys by Papazoglou and Vaquero [Papazoglou and Vaquero 2012] and Sun et al. [Sun
et al. 2012a] mostly analyze general description languages for service-oriented architectures and
low-level formats for resource virtualization with respect to their applicability to cloud computing.
Generic service description language can be considered as a source of inspiration for current CMLs
as they are often capable of capturing services offered by cloud environments. Some CMLs exploit
existing formats for resource virtualization for model serialization. As a result, models created by a
CML can directly be interpreted by a cloud environment that supports the selected format. One of
the obvious reasons why most of the current existing CMLs were not considered by the surveys of
Papazoglou and Vaquero and Sun et al. is that the majority of CMLs emerged around or shortly after
they carried out their surveys. In the survey of Silva et al. [Silva et al. 2013] a systematic literature
review (SLR) regarding existing solutions that address the “vendor lock-in” problem in the con-

2A cloud service customer (CSC) [ISO/IEC 2014a] consumes services offered by a cloud environment. A cloud service
provider (CSP) [ISO/IEC 2014a] operates a cloud environment and manages the exposed services.
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text of cloud computing is presented, whereas Jamshidi et al. [Jamshidi et al. 2013] conducted an
SLR of cloud migration research. However, their surveys do not focus on CMLs. More recently, the
representational capabilities of some CMLs were demonstrated in the setting of a cloud migration
scenario [Bergmayr et al. 2014b].

This article builds upon the results of existing efforts. It is further influenced by insights gained
from investigating individual CMLs, language concepts relevant in the context of architecture mod-
eling and software modeling, features of current cloud environments, and experiences and needs
of recently completed and ongoing research projects, ARTIST3 [Bergmayr et al. 2013], MODA-
Clouds4 [Ardagna et al. 2012], PaaSage5 [Jeffery et al. 2013], and REMICS6 [Mohagheghi et al.
2010]. The systematic review of CMLs presented in this article follows the guidelines of Kitchen-
ham and Charters [Kitchenham and Charters 2007]. We discuss how CMLs differ from architecture
description languages (ADLs) because the influence of ADLs on current CMLs is obvious. To clas-
sify and compare existing CMLs, we present a concise framework with the main emphasis on their
modeling capabilities and the toolset which comes with them. Please note that in this survey we
focus on CMLs but omit microservice and container orchestration platforms such as LXC7 and
Kubernetes8.

The remainder of this article is structured as follows. In Section 2, we discuss related surveys
and emphasize the need of this systematic literature review of current CMLs. The classification
and comparison framework applied by this review is defined in Section 3. In Section 4, we present
the process that was carried out to conduct the review. Our findings obtained from classifying and
comparing 19 selected CMLs are presented in Section 5 before we conclude in Section 6.

2. RELATED SURVEYS
In the work of Papazoglou and Vaquero [Papazoglou and Vaquero 2012], the need for knowledge-
intensive cloud services[ISO/IEC 2014a] that comprise metadata (e.g., offered services, quality of a
service, available service level agreements, technical service specification) of cloud environments is
motivated. Currently, the metadata are spread over and confined to the main cloud service categories
(i.e., IaaS, PaaS, SaaS) of such environments. As a consequence, they argue for the need for a
language that supports the description, the definition of constraints over such descriptions, and the
manipulation of cloud services and their metadata. Papazoglou and Vaquero identify and analyze
(modeling) languages that fall into these three categories. The set of selected languages spans a
broad spectrum, ranging from general languages used in the context of service-oriented architecture
(e.g., [Mietzner et al. 2008]) to low-level formats describing web resources (e.g., RDF) or virtual
resources (e.g., OVF). We share the approach of Papazoglou and Vaquero to use the cloud service
categories as introduced by the NIST [Badger et al. 2012] and ISO/IEC [ISO/IEC 2014a; ISO/IEC
2014b] to categorize existing CMLs regarding the target cloud environment they support. However,
we focus exclusively on modeling languages tailored to the cloud computing domain, hence claim
to be what we call CMLs. As a result, we use more fine-grained criteria to analyze existing CMLs
compared to the work of Papazoglou and Vaquero.

Sun et al. [Sun et al. 2012a] present a survey that considers seven different aspects of service
description languages: domain, coverage, purpose, representation, semantics, intended user, and
feature.9 By analyzing common modeling language characteristics (i.e., coverage, purpose, seman-
tics), their capabilities (i.e., representation) and intended users with respect to the cloud computing
domain, we cover all the aspects of this article. In contrast to our work, Sun et al. do not further

3http://www.artist-project.eu
4http://www.modaclouds.eu
5http://www.paasage.eu
6http://www.remics.eu
7https://linuxcontainers.org/lxc
8https://kubernetes.io
9It is used to capture additional informal comments over a language rather than to provide a feature-based analysis [Kyo
et al. 1990].
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refine the domain aspect, which is because their scope goes beyond cloud computing. As a result,
they include languages used in the context of service-oriented architecture (e.g., SoaML) or seman-
tic web (e.g., OWL-S).

Jamshidi et al. [Jamshidi et al. 2013] conducted an SLR of cloud migration research in which
they classified 23 publications from 2010 to 2013 according to 12 analysis dimensions. They con-
clude that cloud migration research is still in its early stages, but their study also provides evidence
that the maturity of the field is increasing. Jamshidi et al. do not focus on modeling techniques
and languages in the cloud computing context, which distinguishes their work from ours. Never-
theless, they cite the need for a common research agenda between cloud computing and software
engineering researchers, which further motivates our work.

Silva et al. [Silva et al. 2013] also conducted an SLR regarding existing solutions that address the
“vendor lock-in” problem in the context of cloud computing. They point out that the dependency
on a certain cloud environment is a major obstacle to cloud adoption [Dillon et al. 2010]. From an
initial set of 721 primary studies, 78 were selected and categorized according to 25 solution types
dealing with the portability of cloud applications and how the interoperability between offered cloud
services can be improved. Even though some of the introduced solutions types indicate that mod-
eling techniques and languages can counteract portability and interoperability challenges, Silva et
al. do not further categorize or compare them in terms of more fine-grained criteria. As some of
the reviewed CMLs mainly aim for portable cloud applications, the work of Silva et al. also further
motivates our work.

3. REVIEW FRAMEWORK
The diversity of features provided by today’s cloud environments and existing challenges cloud
adopters are faced with [Benslimane et al. 2014] has led to the design and development of several
CMLs. They have different origins, pursue different goals, and hence provide a partially overlapping
but also diverse language features. Still, a closer study of the set of features they propose and their
main purpose shows that there is a common theme among them, which we exploited to elaborate
our framework for classifying and comparing CMLs.

To establish a thorough framework, we studied the features of individual CMLs and work in the
field of cloud computing that discuss core domain concepts. Furthermore, we extracted common
characteristics of modeling languages from work in the area of language engineering. While, to a
great extent, our classification and comparison framework captures categories supported by all or
most existing CMLs, we also argue for features that are only supported by a few of them. They have
either been identified in the literature as important to develop cloud applications or have resulted
from our own experience gained from participating in research projects such as ARTIST [Bergmayr
et al. 2013], MODAClouds [Ardagna et al. 2012], PaaSage [Jeffery et al. 2013] and REMICS [Mo-
hagheghi et al. 2010]. Finally, to validate the practical relevance of our framework, we analyzed
features of current cloud environments (e.g., Amazon AWS, Google Cloud Platform, and Microsoft
Azure) and concepts of programming libraries (e.g., jclouds10 and Deltacloud11, now retired) that
provide an abstraction layer on top of cloud environments. In fact, such libraries enable CSCs to
connect to cloud environments for carrying out the software provisioning of cloud applications.

Now that we have discussed how our framework has been developed, Figure 1 depicts its main
categories and, where appropriate, provides possible manifestations for them. We developed a meta-
model for our framework, which enables us to provide a model conforming to this metamodel for the
results of each reviewed CML. Providing the framework in terms of a metamodel allows extensions
and modifications, which is crucial in a field that is still largely in its infancy.

Considering the language scope, we summarize the pragmatics for each reviewed CML and clas-
sify them according to widely accepted cloud service categories, i.e., IaaS, PaaS, SaaS, considered
as a target. Common language characteristics refer to the syntax and semantics of a CML, how

10jclouds: https://jclouds.apache.org
11Deltacloud: https://deltacloud.apache.org
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CML

name : String
url : String
hostLanguage : String

SaaS
PaaS
IaaS
XaaS

LanguageScope

pragmatics : String

LanguageCharacteristics

abstractSyntax : ASKind
concreteSyntax : CSKind
serialization : String
semantics : SemanticsKind
typing : TypingKind
realization : RealizationKind

ASKind

UML
MOF
XMLSchema
Grammar
DSLTools

CSKind

Textual
Graphical

RealizationKind

InternalDSL
ExternalDSL

TypingKind

linguistic
ontological

ModelingCapabilities

ComponentAndConnector

component : String
isComposable : Boolean
connector : EString

Deployment

artifact : String
service : String
link : String
network : String

ModelingConcern

ToolSupport

modeling : RepresentationKind
analysis : AnalysisKind
refinement : RefinementKind
generation : GenerationKind
provisioning : ProvisioningKind

Elasticity

specification : 
ElasticitySpecification

CloudServiceCategory

target : CloudServiceCategory

ServiceLevel

specification : 
ServiceLevelSpecification

CloudEnvironment

serviceConfiguration : 
ConfigurationKind

ElasticitySpecification

Multiplicity
RuleBased

ConfigurationKind

textuallyDescribed
capturedByFeatureModel
capturedByLinguisticType
capturedByOntologicalType

SemanticsKind

translational
operational

ApplicationStructure

ServiceLevelSpecification

non-structured
structured

RepresentationKind

graphical
textual
imposedByMetaLanguage

ProvisioningKind

declarative
imperative
mixture

GenerationKind

model-to-text (m2t)
text-to-model (t2m)
model-to-model (m2m)

RefinementKind

byEnrichment
byResolution

AnalysisKind

design-time
run-time

Fig. 1: Classification and comparison framework for CMLs.
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it has been realized, and the different kinds of typing mechanisms (i.e., linguistic and ontological)
that are supported. The different typing mechanisms seem to be not only relevant from a language
engineering perspective but also from an application one, as ontological typing allows extensions to
a language without manipulating its definition.

Modeling capabilities of a CML turn the focus on the core domain concepts to model the structure
of a cloud application, the services of a cloud environment required to operate the cloud application,
and the interconnection between the application and its environment. Cloud applications need to be
decomposed into components because the deployment of a cloud application usually enforces to
distribute them across a single or even multiple cloud environments [Andrikopoulos et al. 2014c;
Petcu 2014]. As a result, a CML must support CSCs to model two essential concerns: (i) cloud
environments in terms of their offered services and (ii) cloud application structure in terms of com-
ponents and their deployment on cloud services. The deployment of application components on
cloud services defines their interconnection. Several other technical concerns (e.g., elasticity) and
non-technical concerns (e.g., pricing) are desirable, but not sufficient to argue that a given language
is not a CML. At the same time, representing an application’s structure is not uncommon in the
context of architecture modeling [Clements et al. 2003]. In fact, architecture description languages
(ADLs) provide concepts to model the high-level structure of an application [Medvidovic and Tay-
lor 2000; Medvidovic et al. 2002]. What differentiates now a CML from an ADL? A CML can
be considered as an ADL for a particular domain. However, syntactic elements of a CML capture
cloud computing vocabulary, which is usually not the case for a general purpose ADL. As a result,
the semantics given to a CML is more specific compared to the semantics of general purpose ADLs
intended to be applied to arbitrary domains. For instance, the semantics of a CML can be grounded
in translators to executable languages or frameworks in the cloud computing context (e.g., Google
App Engine or Microsoft Orleans12) or engines that initiate the provisioning of modeled cloud ser-
vices including the application components on top of them. The latter motivates the importance of
explicitly representing the deployment of a cloud application as it specifies the desired state that
triggers the provisioning process. Hence, the semantics given to a language and the two essential
capabilities of representing the structure of a cloud application and their deployment on cloud ser-
vices enable us to determine whether or not a certain language is a CML. Finally, even though the
suitability of a CML is independent of the provided tool support, it appears clear that accompanied
tools are beneficial for a CML’s usefulness.

3.1. Language scope
3.1.1. Pragmatics. The pragmatics of a CML refers to its intended purpose including the over-

all goal that is pursued. The intended purpose of a modeling language can range from sketching
software architectures, over to specifying blueprints for manually realizing application components,
over to creating models for generating implementations or directly interpreting or even executing
them. Models are not only applied in a generative manner, but more and more they are used analyt-
ically in software engineering, e.g., for design-space exploration, optimization, validation, or even
for verification. It is worth noting that there is a strong influence of the pragmatics on language
characteristics [Karsai et al. 2009], such as syntax and semantics, and how the language is realized.

3.1.2. Target. Cloud environments considered as target of a CML can be differentiated accord-
ing to the commonly accepted cloud service categories [Armbrust et al. 2010; ISO/IEC 2014a]:
infrastructure, platform, and software. The higher the degree of virtualization is, the more is usu-
ally managed by a cloud environment, and the less is controlled by a CSC. For instance, Google
App Engine is a fully-managed platform service in the sense that the application container and the
programming language run-time is pre-configured and cannot be manipulated by the CSC. This
means that, aside from the application-related artifacts deployed on App Engine, the other artifacts
related to the platform down to the infrastructure are immutable and controlled by Google. This is

12Orleans: http://research.microsoft.com/en-us/projects/orleans
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certainly of interest to a CSC to select services that operate at the expected “virtualization layer”.
For instance, in the context of software modernization to the cloud, an on-premise environment is
partly or even completely replaced by a cloud environment, where in practice the typical scenario
requires “wiring” both environments [Andrikopoulos et al. 2013]. A concrete scenario may refer
to a cloud application whose frontend is hosted on Amazon’s platform service Beanstalk, utilizes
the software service Google Maps, and connects to a user-controlled MySQL backend system that
runs in a virtual machine hosted on an Amazon EC2 infrastructure service. In this work, we inves-
tigate the capabilities of CMLs to represent artifacts related to the main cloud service categories:
infrastructure-as-a-service (IaaS), platform-as-a-service (PaaS), and software-as-a-service (SaaS).
We use the abbreviation “XaaS” to refer to all categories.

3.2. Language characteristics
3.2.1. Syntax. The abstract syntax of a modeling language defines its concepts and how they

relate to each other. It is the common basis of a modeling language since the elements of the ab-
stract syntax are mapped to their concrete syntax, serialization syntax, and a proper semantic do-
main. Considering the concrete syntax, it is concerned with the form [Moody 2009] of a modeling
language and defines how abstract elements are realized in a concrete representation. Decorating
abstract syntax elements with concrete ones usually increases the readability and intuitive handling
of a modeling language. A modeling language may have one or more textual or graphical syntaxes
to represent models. In this work, we investigate solely which kind of notation is provided by a
CML. To persist or interchange models, they are encoded according to the serialization syntax of
the modeling language.

3.2.2. Semantics. The semantics gives meaning to the syntactic elements of a modeling language.
Most definitions of semantics are functions that map the abstract syntax elements of one language
onto elements of a well-understood formal semantic domain, where the degree of formality may
range from plain English to rigorous mathematics [Harel and Rumpe 2004].

Defining the semantics of a modeling language is far from trivial as it involves a decision about
a proper semantic domain, a mapping from valid syntactic elements to a selected semantic do-
main [Harel and Rumpe 2004], and the finding of an agreement between stakeholders thereon.
Therefore, most modeling languages do not have a rigorously defined semantics that goes beyond
natural language specifications, even though it is an undisputed requirement for the definition of a
modeling language. In particular, in the light of the growing number of domain-specific languages,
this requirement becomes even more important. In practice, however, a useful approach is to imple-
ment transformers that translate models of a given language into models of a commonly understood
or executable languages such as Java or C#. Another approach is to implement an interpreter that
directly operates on the models. In the context of CMLs, a model-based provisioning engine is a
concrete example of an interpreter. It is important to note that one could implement for a single CML
more than one provisioning engine that may behave differently. This raises the question whether or
not a provisioning engine should be considered as part of a CMLs semantics definition. However,
a provisioning engine gives meaning to modeled cloud services in the sense that it relates them to
concrete services of a cloud environment once the provisioning process has been enacted.

3.2.3. Typing. As pointed out by [Atkinson and Kühne 2007], two different kinds of classifica-
tion mechanisms need to be considered in developing modeling languages. Linguistic classification
refers to the commonly accepted approach that a user-defined model (token model [Kühne 2006]) is
directly expressed by instantiating types contained in a metamodel, which defines the modeling lan-
guage in use. Linguistic types determine which models are valid instances of a modeling language
definition. However, to support engineers to create custom types or even hierarchies of them with-
out modifying the modeling language definition directly, the notion of ontological classification has
been introduced. Ontological types can be considered as extensions to a modeling language even
though in contrast to linguistic types they are not grounded in the language definition. Instead, they
are defined using (linguistic) types of the modeling language and often provided in terms of a cus-
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tom type library to foster their reuse across different application scenarios. As a result, ontological
types may capture vital features that are however relevant in a specific context only, and thus lifting
them to a linguistic type appears unfavorable.13 This is certainly of relevance for CMLs. Current
cloud environments offer a considerable set of diverse services including processing power usually
provided by virtual machines that can be provisioned on-demand. Different virtual machine types
may be defined in terms of ontological types while keeping the language definition unchanged.
Furthermore, they may capture not only common features but also vital peculiarities imposed by a
cloud environment such as the availability zone in which a particular virtual machine instance must
be provisioned and the operating system hosted by it. For instance, these features are required to
provision a virtual machine in Amazon’s cloud environment, whereas in the context of the Google
App Engine the operating system of a virtual machine is pre-defined and the distribution of virtual
machine replicas is automatically accomplished without granting custom configurations.

3.2.4. Realization. Two different approaches are common for realizing a modeling language in
general [Fowler 2010] and a CML in particular. Either the language is developed on top of an
existing, usually general-purpose language, or it is developed from scratch [Mernik et al. 2005].
Considering the former, they are internal in the sense that the selected host language provides the
base elements for which extensions and constraints are developed. In contrast, external modeling
languages have their custom concepts without explicit relationships to any existing language. Gen-
erally, there is no simple answer when to create an internal or external modeling language. However,
design guidelines [Karsai et al. 2009] and patterns [Mernik et al. 2005] have been proposed to aid
engineers in developing DSLs.

3.3. Modeling capabilities
As different stakeholders are usually involved in the development of a cloud application, their con-
cerns need to be covered by the models created with a CML. Essentially, a concern is a stakeholder’s
interest that “pertains to the development of an application, its operation or any other matters that are
critical or otherwise important” [van den Berg et al. 2005].14 A critical task in the development of
a cloud application is its decomposition into deployable components because they must eventually
be distributed across a cloud environment or even multiple ones. Hence, the capability of a CML to
represent the structure of a cloud application certainly matters.

3.3.1. Application structure. A component is a unit of computation in an application, whereas
connectors [Medvidovic and Taylor 2000] represent interactions among components. Components
and connectors are used to describe the high-level structure of an application in terms of a compo-
nent configuration. Composing components and connectors into another more abstract component
is beneficial in particular to hide complex structures of a cloud application.

To deploy a cloud application on the selected target environment, its application components need
to be allocated to cloud services. More precisely, what needs to be allocated to the cloud services
are the implementations of those components. The notion of a deployable artifact supports exactly
the reference between logical components and connectors to their implementations. Artifacts are
supposed to manifest any number of components and connectors. For instance, a cloud application
implemented in Java is possibly packaged into several archives, i.e., “JAR files”. Those archives
can be represented at the model level via artifacts. Allocating them to a cloud service, e.g., a com-
pute service including a Java platform, should have the effect that the “JAR files” are physically
allocated to the provisioned service. Furthermore, as cloud services can interact with each other,
modeling capabilities are required to connect them explicitly. We use the term link to refer to this
capability. Artifacts deployed on possibly connected cloud services constitute what is usually called

13The linguistic type is often considered as first-class, whereas the ontological as second-class.
14A concern is usually supported by a modeling viewpoint, e.g., component and deployment viewpoint.
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a deployment configuration.15 To ensure that connected cloud services can interact with each other,
properties related to networking concerns often need to be explicitly specified. For instance, a cloud
service at the infrastructure level needs to be assigned to a virtual network and possibly connected
to a middlebox to ensure that it can be accessed by other cloud services.

It is important to note that we aim to investigate the modeling capabilities of CMLs to represent
component, connector, and deployment concerns on a per-concept basis. As a result of this investi-
gation, the different vocabulary introduced by current CMLs is classified according to the common
terms of our framework, where the string-valued properties allow us to collect the concrete terms
used by them. This effort is a first step towards achieving interoperability between existing CMLs
and a core set of common cloud modeling concepts upon which semantic relations among different
CMLs can be defined [Malavolta et al. 2010].

3.3.2. Cloud environment. From a cloud application deployment perspective, a modeled cloud
service embodies a concrete service offered by the target cloud environment. For instance, several
compute services located in different availability zones and a storage service may be required to
provide a reliable and scalable cloud applications. The compute services may refer to Amazon EC2
offering and the storage service to its DynamoDB data store solution. As a result, services offered
by a cloud environment need to be available at the model level. Several possibilities are conceivable
to represent a configuration of cloud services required for the deployment of a cloud application.
Clearly, they can be described in textual form. However, providing them in a structured form would
certainly ease their interpretation by tools, e.g., engines that initiate the provisioning of compute
and storage services based on a deployment topology. In our framework, we distinguish between
three structured-based approaches for capturing cloud services: feature model, linguistic types, and
ontological types. Considering the first approach, existing compute and storage services may be
captured as features of a certain cloud environment denoting the root concept of the model. In
case of the last two approaches, a cloud service is captured in terms of a type as part of a CML.
Depending on the typing mechanism a CML supports, a cloud service type is either directly built
into the language definition (i.e., linguistic type) or realized as a custom type supplementing the
definition of a language without modifying it (i.e., ontological type).

3.3.3. Elasticity. As the main incentive of using cloud services is the capability of cloud environ-
ments to scale them with a user’s demand [Vaquero et al. 2011], a concern that matters is elasticity.
Lower and upper bounds of cloud service instances can be specified by a multiplicity associated
with the modeled service. To specify more sophisticated strategies when a cloud service must be
provisioned or released, a rule-based approach [Kritikos et al. 2014] tend to be more powerful com-
pared to specify service multiplicity. The elastic nature of cloud environments is also exploited to
utilize them to capacity by optimizing the workload scheduling of the different co-located CSCs
with consideration to their required quality of service.

3.3.4. Service level. A concern that matters is the specification of service levels, e.g., referring to
latency, availability, and security of a cloud service. Ideally, the quality of a cloud service is at least
equivalent [Venters and Whitley 2012] to what can be expected if an on-premise environment is
employed to host applications instead of a cloud environment. Currently, only a few of the reviewed
CMLs support modeling concepts for capturing service levels at a rather high level. As a result, we
distinguish in our framework whether a service level is captured using a structured approach or it is
described in natural language, i.e., a non-structured approach is employed.

3.4. Tool support
3.4.1. Modeling support. The means provided for the use of a CMLs notation and the validation

of created models according to its syntax and semantics are subsumed under modeling support.

15The term “topology” is often used in this context as well. A deployment configuration or topology is a connected graph
that describes deployment artifacts along with targets and relationships between them from a structural perspective.
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Depending on how the notation is defined for a CML either graphical or textual representations
of models are provided [Moody 2009]. In rare cases, both kinds of representations can be used.
Obviously, this requires that a textual as well as a graphical notation are available for a CML. The
notation of a CML may also be imposed by the meta-language used to realize it [Neubauer et al.
2015]. For instance, XML-based CMLs for which no further modeling support is available force
engineers to express their models directly in XML. If a CML is realized as internal DSL, it should
ensure the portability between the modeling tools that support the selected host language of the
CML. For instance, UML-based CMLs should be applicable for any standard conformance UML
modeling tool. This can be achieved if UML’s extension mechanisms are appropriately employed
for developing a CML [Selic 2007]. Furthermore, the multiple concerns supported by a CML should
ideally be manageable by several dedicated views (e.g., views for the component and deployment
concern) while ensuring consistency across them for the same cloud application [Medvidovic and
Taylor 2000].

3.4.2. Analysis support. To evaluate or predict certain (non-functional) properties of an applica-
tion, e.g., operational costs or performance, before it is hosted on a cloud environment is certainly
a significant incentive to use a CML. Moreover, selecting an adequate set of services from pos-
sibly multiple cloud environments is labor-intensive not only because of inevitable trade-offs be-
tween, e.g., operational costs and performance, but also the enormous design space that needs to
be explored for an optimal deployment of a cloud application [Harman et al. 2013]. CML toolset
developers have thus addressed analysis support for cloud applications and their underlying envi-
ronments. In addition to design-time analysis, support for analyzing cloud applications at run-time
is of particular interest because they may be migrated among cloud environments if a certain quality
of service can no longer be guaranteed.

3.4.3. Refinement support. Explicit refinement support can ensure that modifications to models
expressed by a CML are carried out in a stepwise systematic manner. Model refinement can be
considered as a process of transforming a given high-level model into a more concrete model. For
instance, deployment topologies of cloud applications are often modeled independently of the target
cloud environment in a first step. The refinement of the deployment topology towards the target
cloud environment is conducted in a second step [Ardagna et al. 2012]. This approach is particularly
beneficial if a cloud application needs to be migrated between environments. The high-level models
representing the cloud application are retained and enriched by environment-specific information to
accomplish the refinement. For instance, environment-specific information can be captured in terms
of custom (ontological) types [Atkinson et al. 2009] or profiles [Langer et al. 2012]. Refinement may
also include the process of discovering appropriate concrete solutions that are already available, e.g.,
an application service that is hosted on a cloud environment. To enable this kind of refinement, both
the requirements of high-level models and the capabilities of existing more concrete models must
be appropriately described, such that the former can be resolved according to the latter.

3.4.4. Generation support. Applying generative techniques is promising because executable arti-
facts can be produced for possible multiple target cloud environments from a single set of (archi-
tectural) models. Even though the environment for which artifacts were generated may change over
time, the investment in creating models is retained [Greenfield and Short 2003] provided that gen-
erators are capable of producing those artifacts for the new environment. This includes not only the
generation of implementations for the application itself but also deployment scripts and vice versa,
i.e., the generation of models from lower level code artifacts. Furthermore, a deployment plan ex-
pressed in terms of a workflow model may be generated from a deployment configuration to enact
the application provisioning. In this work, we distinguish between three kinds of generative tech-
niques [Czarnecki and Helsen 2006] possibly supported by a CML: model-to-code, code-to-model,
and model-to-model.

3.4.5. Provisioning support. One key characteristic of cloud environments is the support for dy-
namic service provisioning. CSCs can provision and release cloud services on demand and pay
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only for what they have consumed. A provisioning engine aims to automate such processes and the
(re-)deployment of application-related artifacts including the required middleware on top of those
services. Considering the support for application and service provisioning in the light of Talwar’s
classification [Talwar et al. 2005], current CML’s inherently apply a model-based approach as they
represent a deployment configuration in terms of a model. In case it is directly interpreted by a
provisioning engine, the approach can be characterized as declarative because the created model
describes only what has to be provisioned, but without providing any details about how the provi-
sioning shall be executed. In contrast to a declarative approach, an imperative approach explicitly
prescribes how the provisioning must be executed. For instance, a deployment script16 or a workflow
model is often used to capture the respective provisioning actions.17

Considering the two approaches from the perspective of a CML user, the declarative approach is
less invasive compared to the imperative approach because it requires describing solely the desired
state of the provisioning in terms of a deployment configuration [El Maghraoui et al. 2006; FuWeili
et al. 2017; Breitenbücher et al. 2014]. Since this loss of control is not always desirable, a mix
of the two approaches is supported by some CMLs. For instance, if a CML supports in addition
to a deployment configuration the specification of deployment scripts that shall be executed at a
certain point during the provisioning of an application component, then both approaches can be
combined to a certain degree. Such approaches typically employ life-cycle definitions that subdivide
the provisioning of an application component into multiple phases. Those definitions provide a hook
for custom scripts or other implementations that must be executed in a certain phase.

4. REVIEW PROCESS
To conduct the systematic review of CMLs, we followed the guidelines recommended by Kitchen-
ham and Charters [Kitchenham and Charters 2007]. The review commenced in mid-2014 in the
context of the ARTIST project, where some CMLs—with no claim for completeness—were demon-
strated in the setting of a cloud migration scenario [Bergmayr et al. 2014b]. However, this demon-
stration revealed already an initial set of CMLs, which was useful in several phases of the review
process. For instance, we used the initial set of CMLs of [Bergmayr et al. 2014b] to assess the
quality of the search queries we formulated in an early phase of the review process, as those CMLs
had to be covered by the obtained records. By this, we followed the guidelines by Kitchenham and
Charters [Kitchenham and Charters 2007] concerning the development, evaluation, and tuning of
the search queries by running a pilot study of the review process before executing the full study.
Furthermore, we exploited them to develop a list of keywords required to conduct a keyword-based
search as part of the study selection phase. The main phases we carried out in the course of the
review process are described in the following Sections 4.1 to 4.4.

4.1. Research questions
The aim of this systematic literature review is to provide an overview of current CMLs, classify
their main characteristics and core capabilities including the toolset they support, and identify the
gaps and future research directions for CML development. The overall objective is defined by four
research questions (RQ) as follows:

RQ1 What are the main purposes of current CMLs?
RQ2 What are their characteristics from a language engineering perspective?
RQ3 What core cloud modeling capabilities do they provide?
RQ4 What toolset is accompanied with today’s CMLs?

16A deployment script is sometimes executed at the remote environment that is considered as the target of the application
provisioning.
17A workflow model usually captures the data flow and the control flow among actions in an explicit way.
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4.2. Data sources and search strategy
In this systematic review, the electronic databases recommended by [Petersen et al. 2008; Kitchen-
ham et al. 2009; Kitchenham et al. 2010] have been used to search for primary studies.18 We decided
to search for publications in the period from 2006 to 2015 as Amazon Web Services (AWS) was
officially launched in 2006 and the term “cloud computing” appeared around 2007 [Venters and
Whitley 2012]. Since cloud computing is a highly diverse research topic, determining on the publi-
cation sources to search for relevant research works is a difficult task.

Hence, instead of taking this decision solely based on our expertise and knowledge in the area
of cloud computing, model-driven engineering (MDE), and related research areas, we additionally
formulated a search query with the main aim to figure out the publication sources where a CML may
have been published. Based on the topic of this systematic review and the research questions pro-
posed in Section 4.1, we defined the terms of the search queries according to the recommendations
of [Kitchenham and Charters 2007]. We considered the terms “model”, “modeling”, “modelling”,
“language”, “ontology”, “profile”, and “domain” as the main constituents of the search query. In
addition, we limited the search to studies that are indexed by the keyword “cloud computing”. Af-
ter several tests, we selected the search query that returned the largest result set. Depending on the
electronic database, the syntax of the search query obviously differs.

The exact search queries we executed against the selected electronic databases, including the
number of records we received as a result, are summarized in Table I. Based on the obtained initial
set of records, we determined the set of publication sources by a manual selection process in order to
limit the records of publications considered in study selection process. We selected those publication
sources that seemed to be relevant for this review. For instance, we discarded sources dedicated to
topics such as “e-health applications and services” or “green computing”. The selected publication
sources are available online in the electronic appendix.

Electronic database Search query Records
ACM Digital Library
http://portal.acm.org

"query": {(model, modeling, modelling, language, ontology, profile, do-
main) AND keywords.author.keyword:(+"cloud computing")} "filter":
{"publicationYear":{"gte":2006 }},{owners.owner=GUIDE}

3,208

IEEE Xplore
http://ieeexplore.ieee.org

((model OR modeling OR modelling OR language OR ontology OR
profile) AND "Author Keywords":"cloud computing") ? and refined by
Year: 2005–2016

4,020

ScienceDirect
http://www.sciencedirect.com

(model OR modeling OR modelling OR language OR ontology OR
profile) and KEYWORDS("cloud computing")[All Sources(Computer
Science)]

899

Scopus
http://www.scopus.com

ALL (model OR modeling OR modelling OR "language" OR ontol-
ogy OR profile OR domain) AND KEY(cloud computing) AND PUB-
YEAR > 2005 AND SUBJAREA (comp)

13,284

SpringerLink
http://www.springerlink.com

"cloud computing" AND (model OR modeling OR modelling OR
language OR ontology OR profile) within "Computer Science" AND
2005–2016

12,341

Table I: Search queries executed against electronic databases

4.3. Study selection
To select the most relevant and important studies, inclusion and exclusion criteria were developed
in a first step, see Section 4.3.1. They were applied in several stages of the study selection process
as described in Sections 4.3.2 to 4.3.5.

18We only discarded Google Scholar (http://scholar.google.com) from the list of recommended electronic databases as it
hardly allows publications to be downloaded in a batch process and a suitable format.
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4.3.1. Inclusion and exclusion criteria. Studies relevant to this review must propose language con-
cepts for modeling cloud applications. Those concepts must be defined in terms of a grammar19 or
a metamodel. For instance, even though the work of Sun et al. [Sun et al. 2012b] proposes a toolkit
for managing cloud services, the language concepts used to represent them have not formally been
defined but rather sketched using a single example. Similarly, CAMEL [Rossini 2015; Rossini et al.
2017] is currently developed and adopted by several projects (PaaSage, CloudSocket20 [Woitsch and
Utz 2015], CACTOS21 [Östberg et al. 2014], and Melodic22) to support the modeling and execution
of applications distributed over multiple cloud environments. However, until now, only an overview
of how CAMEL is used and which existing DSLs it integrates and extends has been published.
This criterion also excludes research works that introduce modeling methodologies independent of
a CML (e.g., MADCAT [Inzinger et al. 2014]).

Furthermore, proposed language concepts must enable engineers to model a cloud application
independent of the concrete target cloud environment. Shielding models from possible changes
of target cloud environments is one main requirement of a modeling language in general [Atkin-
son and Kühne 2003] and so also desirable for a CML. However, this does not mean that a CML
should not provide capabilities for creating environment-specific models at all. Ideally, it should
allow engineers to refine environment-independent models into models specific to the target cloud
environment [Ardagna et al. 2012], which is commonly known as the transition from a platform-
independent model (PIM) to a platform-specific model (PSM) in MDE. Languages that solely sup-
port PSMs, i.e., they are directly bound to a cloud environment such as Amazon’s CloudFormation23

and OpenStack’s HOT24, are thus excluded from this review. However, such languages are potential
transformation targets for CMLs to automate the provisioning of modeled application deployments.
In this respect, approaches such as jclouds and Deltacloud (now retired) may also be considered as
they provide an abstraction layer on top of the programming libraries provided for cloud environ-
ments. These approaches support a variety of cloud environments via dedicated connectors.

To limit the scope of this review, we consider studies that propose language concepts targeting
mainly the user rather than the provider of a cloud environment. One of the reasons for this decision
is that approaches addressing the CSP perspective tend to connect proposed language concepts with
internal resources of a cloud environment. This is hardly possible for a CML targeting CSCs as
providers of a cloud environment usually offer cloud services to their users without giving many de-
tails of the internal resources underlying those services, if at all. For instance, SCORCH [Dougherty
et al. 2011] assumes a scenario in which auto-scaling is realized by provisioning and releasing pre-
instantiated virtual machines from a queue, where its optimizer aims at determining the length of
this queue and the configuration of the pre-instantiated virtual machines in the queue. Moreover,
SCORCH is based on several computational models that specify, for example, the energy consump-
tion of resources and the costs for consuming such resources, which is of interest for cloud providers.
This is because they mainly benefit from utilizing their resources to capacity by co-locating different
CSCs on the same infrastructure resources. Providing explicit specifications of such infrastructure
resources is supported by Cloud# [Liu and Zic 2011] for improving the understanding of how re-
sources in a cloud environment are virtualized, scheduled, and isolated from each other.

The inclusion and exclusion criteria that were applied in this systematic review are described as
follows.

Inclusion criteria

19Please note that a grammar is not only defining the concepts by the abstract syntax but also their concrete appearance on
the basis of the concrete syntax.
20https://www.cloudsocket.eu
21http://www.cactosfp7.eu
22http://melodic.cloud
23CloudFormation: https://aws.amazon.com/de/cloudformation
24Heat Orchestration Template (HOT): http://docs.openstack.org/developer/heat
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(1) Studies that report on language concepts for cloud application modeling
(2) Proposed language concepts that are suitable to create models independent of target cloud en-

vironments
(3) Studies that address the CSC perspective

Exclusion criteria

(1) Studies or approaches that are bound to a cloud environment
(2) Studies that address the CSP perspective
(3) Studies that are not written in English

The selection of the primary studies was carried based on the initial set of records we obtained
from executing the search queries against the data sources given in Table I. To extract the studies
relevant for this review from the total number of studies, we passed through several pruning stages,
where in each stage the number of studies was significantly reduced compared to the result of the
previous stage. Overall, four researchers conducted the four pruning stages as illustrated in Figure 2.

Search based 
on relevant 

sources   

Whitelist-based 
keyword search 

Manual selection 
based on title and 

abstract 

Manual selection 
based on paper 

content 

13.284 
papers 

3.371 
papers 

439 
papers 

109 
papers 

19 
CMLs 

Fig. 2: Study selection process

4.3.2. Pruning stage 1: Search limited to relevant publication sources. Based on the initial set of
records obtained from the electronic databases, we extracted those studies that were published in the
selected publication sources. Additionally, the removal of duplicates as a result of using different
electronic databases was carried out at this stage. Duplicates were identified by considering the title,
authors, and publication year of a study. Overall, in this stage, we selected around 25 percent of the
total number of records for the next pruning stage.

4.3.3. Pruning stage 2: Whitelist-based keyword search. To accomplish this stage, we defined in
a first step a list of keywords from which at least one must be present in a certain study to consider
it for the next pruning stage. We elaborated the whitelist on the basis of CMLs we were already
aware of [Bergmayr et al. 2014b] and our own experience in the area of MDE and cloud computing.
The keywords we defined for the whitelist are summarized in Table II. After conducting the second
pruning stage, we ruled out around 85 percent of studies. Thus, the number of studies were consid-
erably pruned. The reduction to a manageable number of studies at this stage was necessary as the
two remaining stages are hardly achievable automatically and so were conducted manually.

4.3.4. Pruning stage 3: Manual selection based on title and abstract. As it is too often somewhat
difficult to determine the relevance of a study to a systematic review from solely considering its title,
we decided to evaluate in this stage both the title and abstract of each study against the inclusion and
exclusion criteria. Generally, we acted in a conservative manner in this stage, as in some cases even
more information in addition to the title and abstract of a study is required to determine whether a
study is relevant for this review. Finally, in this pruning stage, we ruled out around three-quarter of
the studies, thus leaving 108 studies for the fourth pruning stage.
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Keyword
[application|service] developer [application|service] definition deployment topology
[application|service] mode(l)ler [application|service] architecture infrastructure(-)as(-)a(-)service
[application|service] engineer [application|service] topology platform(-)as(-)a(-)service
[application|service] requirement resource provisioning software(-)as(-)a(-)service
[application|service] component resource description language engineering
[application|service] deployment cloud service [engineering] problem(-)oriented(-)language
[application|service] mode(l)l(ing) cloud service domain(-)specfic(-)language
[application|service] life(-)cycle cloud application domain modelling
[application|service] provisioning cloud mode(l)l(ing) [language] meta(-)mode(l)ling
[application|service] distribution deployment mode(l)l(ing) [language] meta(-)model

Table II: Keywords of the elaborated whitelist.

4.3.5. Pruning stage 4: Manual selection based on study content. In the final pruning stage, we
carefully read the remaining studies under the consideration of the goal of this systematic review
and the defined inclusion and exclusion criteria. After all, we selected 19 relevant studies that are
presented in Table III. The table provides in addition to a representative name of each selected
approach the main publications from which the data has been extracted relevant for this review.
Finally, we also performed a quality check of the final selected set of papers. In particular, we used
backward snowballing [Wohlin 2014] with the set of relevant studies by using their reference lists
to identify new papers to include in the study. However, based on this method, we could not identify
more relevant papers. Thus, we conclude that our search process already worked well to identify the
relevant literature.

CML References
Blueprint [Nguyen et al. 2011; Nguyen et al. 2012]
Caglar et al. [Caglar et al. 2013]
CAML [Bergmayr et al. 2014a; Bergmayr et al. 2014; Bergmayr et al. 2016]
clADL [Pérez and Rumpe 2013; Hermerschmidt et al. 2014]
CloudDSL [Silva et al. 2014]
CloudMIG [Frey and Hasselbring 2010; Frey and Hasselbring 2011; Frey et al. 2013b; Frey et al. 2013a]
CloudML-SINTEF* [Ferry et al. 2013; Ferry et al. 2014]
CloudML-UFPE* [Gonçalves et al. 2011]
CloudNaaS [Benson et al. 2011]
GENTL [Andrikopoulos et al. 2014b; Andrikopoulos et al. 2014a]
Holmes [Holmes 2014a; Holmes 2014b; Holmes 2015b; Holmes 2015a]
MOCCA [Leymann et al. 2011]
MULTICLAPP [Guillén et al. 2013b; Guillén et al. 2013a]
Nhan et al. [Nhan et al. 2012]
PDS [Lu et al. 2013]
RESERVOIR-ML [Chapman et al. 2010; Chapman et al. 2012]
StratusML [Hamdaqa et al. 2011; Hamdaqa and Tahvildari 2014; Hamdaqa and Tahvildari 2015; Hamdaqa and Tahvildari 2016]
TOSCA [OASIS 2013; OASIS 2013; Binz et al. 2014]
VAMP [Etchevers et al. 2011a; Etchevers et al. 2011b]
* As both languages use the same acronym, we added suffixes to better highlight their difference.

Table III: Selected approaches

4.4. Data extraction
In a first step, we converted our proposed classification and comparison framework for CMLs into
several spreadsheets. They were used to collect the relevant data. The single columns of the created
spreadsheets were derived from the properties of the classes constituting the framework. Following
this approach, the properties determine the concrete data items that we had to extract from the se-
lected studies. For instance, the scope of a certain CML is described by a single row, which captures
its pragmatics and the kind of target cloud environments that are supported. The scope of a CML has
been derived from the natural language descriptions of the respective studies. Similar for the toolset
provided by a CML, we extracted the relevant data from the available studies. Concerning the char-
acteristics of a CML and its modeling capabilities, we extracted them from the language definition.
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Considering the process of collecting and interpreting the data itself, a series of consensus meetings
were held with the goal to carefully analyze each reviewed CML according to the properties of the
prepared tables. As a result of this process, we established the basis necessary to answer the research
questions as defined in Section 4.1.

5. RESULTS
Until now several CMLs have been proposed. In the following, we classify and compare them along
the dimensions of the presented review framework (see Section 3) with the main aim to answer the
defined research questions (see Section 4).

CML Pragmatics Target

Blueprint Cloud service composition and description of deployment configurations XaaS

Caglar et al. Cloud service simulation and description of deployment plan configurations IaaS

CAML Cloud application architecture description and refinement of deployment configurations towards target
cloud environment

XaaS

clADL Architecture description of interactive cloud services and generation of implementations for the cyber-
physical systems domain

XaaS

CloudDSL Description of deployment configurations XaaS

CloudMIG Application migration to the cloud with emphasis on optimal deployment configurations and their
conformance with target cloud environments

PaaS IaaS

CloudML-
SINTEF

Automated provisioning of multi-cloud applications and re-configuration of provisioned cloud services
at run-time

XaaS

CloudML-
UFPE

Description of cloud services IaaS

CloudNaaS Description of deployment configurations with emphasis on network aspects IaaS

GENTL Description of deployment configurations with emphasis on cost-efficient application provisioning XaaS

Holmes Description of deployment configurations and their automated provisioning XaaS

MOCCA Optimal (re)arrangement of (existing) deployment configurations for application provisioning to mul-
tiple target cloud environments

XaaS

MULTI-
CLAPP

Application code generation for target cloud environments from component configurations XaaS

Nhan et al. Feature model based software stack (re-)configuration and their automated provisioning IaaS

PDS Deployment plan generation from described deployment configurations IaaS

RESERVOIR-
ML

Description of deployment configurations with emphasis on application-triggered elasticity rules for
infrastructure-related cloud services

IaaS

StratusML Generation of executable deployment descriptor and run-time adaptation rule from described deploy-
ment configurations

XaaS

TOSCA Description of portable composite cloud applications for their automated provisioning and life-cycle
management

XaaS

VAMP Automated provisioning of distributed cloud applications with emphasis on support for establishing
communication between components

IaaS

Deployment configuration: connected graph of deployment artifacts, targets, and their relationships (see Section 3.3)
Deployment plan: imperative description of the provisioning process
Component configuration: connected graph of components and connectors (see Section 3.3)

Table IV: Language scope
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5.1. RQ1: What are the main purposes of current CMLs?
5.1.1. Pragmatics. The majority of CMLs deals with the description of cloud deployment con-

figurations. CAML considers them as part of the overall cloud application architecture. To refine
cloud deployment configurations towards the target environment, CAML provides dedicated UML
profiles. CloudMIG aims at migrating on-premise deployment configurations into optimal cloud de-
ployment configurations and assuring that those configurations conform to the target cloud environ-
ment. GENTL and MOCCA also address optimization of cloud deployment configurations. While
GENTL places emphasis on cost-efficient application provisioning, MOCCA primarily deals with
the distribution of cloud application components to multiple target cloud environments. CloudML-
SINTEF exploits cloud deployment configurations not only at design-time but also at run-time for
model-based reconfigurations of provisioned cloud services. CloudNaaS places emphasis on captur-
ing networking aspects (e.g., addressing and segmentation of compute services at the infrastructure)
by cloud deployment configurations, whereas PDS exploits them for generating deployment plans.
Deployment plans25 are suggested by TOSCA to describe the process used to create and terminate
cloud services and to manage them throughout their whole lifetime. In the approach of Caglar et
al., deployment plan configurations are created based on previous simulation results obtained from
CloudSim [Calheiros et al. 2011].

CMLs that are capable of describing cloud deployment configurations also support the repre-
sentation of cloud services. In contrast to these CMLs, CloudML-UFPE places emphasis solely
on describing cloud services without providing dedicated concepts to model a cloud deployment
configuration. Still, cloud services described by CloudML-UFPE can be considered as a poten-
tial source for describing cloud deployment configurations. Blueprint addresses the composition of
cloud services.

Several CMLs aim at automating the provisioning of cloud services and possible application com-
ponents deployed on top of them. To exploit TOSCA-based provisioning support, CAML provides
a mapping to TOSCA. CloudML-SINTEF comes with its provisioning engine. Such an engine is
also available for TOSCA. Other approaches (Holmes, Nhan et al. and PDS) rely on configura-
tion management systems, such as Cloud-Init or Chef, whereas StratusML generates deployment
descriptors for platform-related cloud services (e.g., Azure App Service). In contrast to those ap-
proaches, VAMP exploits OVF to describe VM configurations including application components. It
provides a dedicated protocol for exchanging configuration parameters (e.g., remote addresses and
ports) between remote VMs to establish the communication among application components. Gen-
erally, generative techniques play an important role in automated provisioning to the cloud because
a variety of artifacts (e.g., deployment plans or scripts, run-time models, and VM images) are auto-
matically produced. Aside from generating deployment or provisioning-related artifacts, the goal of
MULTICLAPP is to generate application code for the Java environment. Generation of cloud appli-
cation code is also supported by clADL. It proposes an architecture style for modeling interactive
cloud services in the context of cyber-physical systems (e.g., services that process sensor data from
industrial production machines). Cloud environments are considered as the deployment target for
those services.

A few CMLs emphasize the representation of elasticity rules (RESERVOIR-ML, StratusML)
capable of triggering the provisioning of cloud service at application run-time.

5.1.2. Target. Almost half of the CMLs are capable of representing cloud services at any of the
three considered cloud service categories. CMLs that target IaaS mainly deal with the description of
compute services or the configuration of VMs. CloudMIG provides cloud service descriptions for
both categories IaaS and PaaS, whereas StratusML considers PaaS up to SaaS.

5.1.3. Summary of CML scope. Current CMLs pursue different goals and show various levels
of maturity. Still, they also show similarities with respect to their pragmatics. For instance, the

25In the TOSCA specification the term “management plan” is used.
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majority of CMLs deal with the description of deployment configuration and some of them even
support automated application provisioning. On the other hand, the observed diversity of the current
CMLs is beneficial in the sense that a broad spectrum of application scenarios is supported. At the
same time, the exchange of models between approaches and provided tools, respectively, is hardly
supported. As a result, a well-connected mix of existing CMLs is currently not available. The finding
of common ground between the current approaches is thus highly desirable. GENTL did already
a first step in this direction. Mappings from Blueprint and TOSCA to GENTL are presented in
the work of Andrikopoulos et al. [Andrikopoulos et al. 2014a]. In this respect, the semantics of
the CMLs play a major role [Kappel et al. 2006] since useful mappings, which are the basis for
language interoperability (cf. e.g., [Malavolta et al. 2008]), can otherwise hardly be identified. A
common metamodel [Atzeni et al. 2005] may serve as a useful means in such an endeavor.

Another interesting aspect is that most CMLs are used solely at design-time, whereby the rep-
resentation of the cloud application at run-time is outside the scope of most CMLs. For instance,
run-time information may provide the current status and workload of a certain provisioned compute
service. CloudML-SINTEF is capable of annotating the design-time model with run-time infor-
mation, which allows run-time adaptations to be performed not only by human operators but also
reasoning engines in order to manipulate models at run-time automatically. This capability is fa-
cilitating “models@run-time” [Blair et al. 2009], which is an architectural pattern for dynamically
adaptive systems that leverages upon models at both design-time and run-time.

5.2. RQ2: What are the characteristics of CMLs from a language engineering perspective?
Main language characteristics of current CMLs are summarized in Table V. While they appear to
be primarily relevant for language engineers, some of them may also be of interest for the users of
a CML. For instance, the notation of a CML clearly affects its users.

5.2.1. Syntax. Considering how the abstract syntax of CMLs is represented, two meta-languages
seem to be dominant in the field of cloud computing: MOF and XML Schema. The majority of
CMLs provide a MOF-based metamodel.26 Two of them uses UML as a host language (CAML
and MULTICLAPP). Around a quarter define their modeling elements in terms of XML Schemas
(BLUEPRINT, CloudML-UFPE, PDS, TOSCA, VAMP). The remaining languages follow either a
grammar-based approach (clADL, CloudNaaS, Holmes) or rely on Microsoft’s DSL tools27 (Stra-
tusML).

Regarding the concrete syntax of CMLs, the majority provides either a graphical notation or a
textual one. A few of them provide both. In case of CloudML-UFPE and VAMP models need to be
expressed directly in XML. Even though the TOSCA standard does not define a graphical notation,
with Vino4TOSCA [Breitenbücher et al. 2012] service templates can be visually represented. The
representational capabilities of some of the reviewed CMLs are demonstrated in [Bergmayr et al.
2014b].

While the serialization format of a language is usually imposed by the meta-language used to
define it (e.g., XMI is the standard interchange format for MOF-based metamodels), some CMLs
support alternative formats mainly for compatibility between tools. For instance, the provisioning
engine of CloudML-SINTEF can also consume models serialized in the JSON format.

5.2.2. Semantics. Turning the focus from the syntactical aspects of the CMLs to their semantics,
the majority of approaches comes with a toolset (see Table VIII) that directly interprets or exe-
cutes the models of a CML, e.g., a provisioning engine. In this case, the semantics of the CMLs is
defined based on an operational approach. A translational approach is applied for defining the se-
mantics of CAML, clADL and MULTICLAPP. Both CAML and MULTICLAPP provide a mapping
to Java for generating application code from models. In addition, CAML also provides a mapping to

26Since Ecore is a reference implementation of the essential part of MOF, CMLs which provide an Ecore-based metamodel
follow a MOF-based approach.
27https://msdn.microsoft.com/en-us/library/aa905334.aspx
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CML Syntax Semantics Realization Typing

Abstract Concrete Serialization

Blueprint XML schema graphical XML operational external linguistic

Caglar et al. MOF graphical custom
XML

operational external linguistic

CAML UML graphical XMI translational internal UML linguistic
ontological

clADL Grammar textual custom translational internal
MontiArc

linguistic

CloudDSL MOF graphical XMI English prose only external linguistic

CloudMIG MOF graphical XMI operational external
linguistic
ontological

CloudML-
SINTEF

MOF textual
graphical

XMI
JSON

operational external
linguistic
ontological

CloudML-
UFPE

XML schema textual
in XML

XML operational external linguistic

CloudNaaS Grammar textual custom operational external linguistic

GENTL MOF graphical XML operational external linguistic
ontological

Holmes Xtext*

grammar
textual custom

XMI
operational external

linguistic
ontological

MOCCA MOF graphical XMI operational external linguistic

MULTI-
CLAPP

UML graphical XMI translational internal UML linguistic
ontological

Nhan et al. MOF
Feature model

textual
graphical

XMI
JSON
SXFM

operational external linguistic

PDS XML schema textual
XML
Ruby operational external lingusitic

RESERVOIR-
ML

MOF textual
graphical

XMI
XML

operational external linguistic

StratusML Microsoft
DSL toolkit

graphical XML operational external linguistic

TOSCA XML schema textual
graphical

XML
YAML

operational external
linguistic
ontological

VAMP XML schema textual
in XML

XML operational internal OVF linguistic

* Xtext is a language engineering framework: https://eclipse.org/Xtext compatible with MOF

Table V: Language characteristics

TOSCA for reasons of exploiting existing TOSCA containers, e.g., OpenTOSCA [Binz et al. 2013],
which enable automatic provisioning of cloud applications. clADL is grounded in FOCUS [Broy
and Stølen 2001], which enables the formal specification of distributed systems in terms of compo-
nents communicating via channels. The communication between the components is formally rep-
resented by the concept of streams [Ringert and Rumpe 2011]. MULTICLAPP provides a mapping
to Java for generating application code from models. Finally, in case of CloudDSL neither an oper-
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ational nor a translational semantics is defined. However, it seems that a mapping from CloudDSL
to TOSCA is currently being developed.

5.2.3. Realization. Four out of the 19 CMLs are realized as internal domain-specific languages.
Both CAML and MULTICLAPP are embedded in UML. While MULTICLAPP solely relies on
UML’s profile mechanism to annotate components that are expected to be deployed onto a cloud
environment, CAML exploits both the library concept of UML as well as profiles. The modeling
concepts of CAML’s cloud library are generic in the sense that they are independent of a cloud
environment, whereas profiles are used to capture services offered by cloud environments. This is
in contrast to MULTICLAPP, where generic cloud modeling concepts are captured by means of
a profile. Additionally, MULTICLAPP comes with a feature model for capturing concrete cloud
services. clADL is realized on top of MontiArc [Haber et al. 2012], which is a textual domain-
specific language for modeling distributed interactive systems, whereas VAMP is integrated into
OVF.

5.2.4. Typing. More than a third of the reviewed CMLs support in addition to linguistic typing
also ontological typing. From a language engineering perspective, all CMLs primarily rely on a
spanning hierarchy [Atkinson and Kühne 2005] where ontological types are considered orthogonal
to linguistic types. Thus, ontological types are referenced by instances of linguistic types. The lat-
ter would require a stacking hierarchy [Atkinson and Kühne 2005]. In UML, an additional typing
dimension can be accomplished by combining libraries and profiles. CAML applies this approach.

5.2.5. Summary of CML characteristics. One aspect that requires consideration refers to the in-
teroperability between CMLs. The heterogeneities imposed by the different meta-languages used
to implement them certainly impede such an endeavor. Realizing a mapping between two CMLs
defined with different meta-languages would require the implementation of a technical bridge in
addition to the definition of language correspondences. Hence, the use of different meta-languages
for realizing CMLs poses a challenge for exchanging models between them. With CMLs that solely
provide an XML Schema but not a human-usable notation, the users are bound to the verbose angle-
bracket syntax, which is complex in terms of human-comprehension and therefore impedes main-
tainability [Badros 2000]. For instance, XMLText [Neubauer et al. 2015] provides a semi-automatic
approach for generating Xtext-based grammars with a human-readable textual concrete syntax while
ensuring backward compatibility to the original XML-based representation.

Proposals for new CMLs or extension to them come ideally together with a machine-interpretable
and human-usable language definition. The latter is preferably available in a commonly accepted
format. Once they are defined, sharing them via an open repository such as AtlanMod’s Metamodel
Zoo28 or ReMoDD29 allows them to be easily accessed. It may also further stimulate their reuse in
the development of new languages or additional features for them.

Another interesting aspect is that currently little attention is paid to general-purpose software
modeling languages, such as UML, even though they provide modeling concepts to represent soft-
ware, platform, and infrastructure artifacts from different viewpoints (only two approaches provide
cloud-specific extensions to UML). With the relatively recent emergence of TOSCA and its stan-
dardization by OASIS, it appears obvious that aligning cloud modeling approaches with existing
software modeling approaches to provide continuous modeling support is highly required [Jamshidi
et al. 2013].

5.3. RQ3: What core cloud modeling capabilities do CMLs provide?
Probably most important to the users of CMLs are their modeling capabilities. A black-box view
on the modeling concerns addressed by current CMLs is summarized in Table VII. The results of a
closer investigation of the component and deployment viewpoint are given in Table VI.

28Metamodel Zoo: http://www.emn.fr/z-info/atlanmod/index.php/Zoos
29ReMoDD: http://www.cs.colostate.edu/remodd/v1
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CML Application
structure

Cloud environment
services

Elasticity Service
level

Blueprint Component
Deployment textually described Multiplicity structured by policies

Caglar et al. Deployment linguistic types 7 7

CAML
Class
Component
Deployment

ontological types Multiplicity 7

clADL Component
Deployment ontological types 7 7

CloudDSL Deployment textually described 7 7

CloudMIG Class
Deployment ontological types Rule-based 7

CloudML-
SINTEF

Component
Deployment ontological types Multiplicity 7

CloudML-
UFPE

Deployment linguistic types 7 7

CloudNaaS Deployment linguistic types 7 7

GENTL Component
Deployment ontological types 7 structured by annotations

Holmes Deployment ontological types Multiplicity 7

MOCCA Component
Deployment ontological types 7 7

MULTI-
CLAPP

Component
Deployment feature model 7 structured by properties

Nhan et al. Deployment linguistic types 7 7

PDS Deployment linguistic types 7 7

RESERVOIR-
ML

Component
Deployment linguistic types Rule-based 7

StratusML Task
Deployment linguistic types Rule-based 7

TOSCA Component
Deployment ontological types Multiplicity structured by policies

VAMP Component
Deployment linguistic types 7 7

* Blueprint does not directly support to represent service levels but instead exploits existing languages
such as WS-Policy or SLAng.

Table VI: Cloud modeling concerns

5.3.1. Application structure. As expected, all the reviewed CMLs provide capabilities to model
the structure of a cloud application from a deployment viewpoint. Around half of the CMLs support
in addition to the deployment viewpoint also the component viewpoint. Reasons for including the
latter viewpoint are manifold. For instance, representing the interaction between a cloud application
and a cloud service requires the consideration of application components. Connectors are used to
represent the interconnection among them and with cloud services. Having components explicitly
represented is also of particular relevance for application modernization to the cloud if components
are replaced by cloud services already offered by the selected target environment. Furthermore,
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components may need to be re-allocated to deployable artifacts if the cloud application is migrated
only partially.

In addition to the component and deployment viewpoints of a cloud application, CloudMIG also
addresses the class viewpoint. In case of CAML, the class viewpoint is exploited to generate ap-
plication code from structural models annotated with platform-specific UML profiles [Bergmayr
et al. 2016]. The profiles are automatically generated from programming libraries, e.g., DynamoDB
and Objectify, provided or recommended by cloud environments. As CloudMIG aims at supporting
application migration to the cloud, it captures technical constraints of cloud environments (e.g., di-
rectly instantiating Java’s Thread class is not permitted on the Google App Engine) against which
conformance checks are carried out automatically. Dedicated validators operate at the class level
of KDM models [OMG 2011] to investigate whether the application satisfies all the captured en-
vironment constraints. KDM models are directly associated with cloud nodes, which explains the
absence of components and connectors in CloudMIG.

Considering the component and deployment viewpoints in more detail (see Table VI), the high
diversity of the vocabulary used by the reviewed CMLs is revealed. At the same time, it shows that
even though various syntactical terms have been proposed, they can be classified at least according
to a high-level categorization. Almost all CMLs that deal with both viewpoints component and
deployment support artifacts as a means of allocating concrete implementations to cloud services.
In case of PDS, the artifact is specific to Java-based applications. RESERVOIR-ML and StratusML
do not distinguish between logical components and their implementations in terms of deployable
artifacts. Components are directly allocated to cloud services where the interconnection between
them is solely modeled from the deployment viewpoint by connecting cloud services to each other.
As a result, connectors between components can hardly be modeled in particular if a variety of
components are allocated to cloud services.

Regarding cloud services, it is important to note that, as a result of the varying pragmatics of the
CMLs, they refer to different categories (see the superscript annotation determining the category).
For instance, CMLs targeting IaaS mainly focus on the representation of compute services and their
configuration in terms of virtual machine characteristics such as CPU, memory, and local disc space.
As a result, they can hardly deal with PaaS or SaaS-related cloud services. Moreover, deployment
models represented by CMLs that also support PaaS or even SaaS-related cloud services may only
be partially translated to CMLs with a focus on IaaS. Clearly, the border between IaaS and PaaS
is becoming blurred with the emergence of new “cross-layered” cloud services (e.g., Azure App
Service on different virtual machines). Still, the cloud service category appears to be relevant to
consider. For instance, defining useful correspondences between the language concepts with the goal
to achieve better interoperability between CMLs requires considering the supported target cloud
environment.

Finally, TOSCA distinguishes between deployment artifact and implementation artifact. The for-
mer refers to the implementations of application components, whereas the latter is used to capture
the implementation of a management operation. A management operation is attached to a deploy-
ment model and executed in the context of the application provisioning, e.g., “start” of a provisioned
cloud service or “install” of an application-related artifact.

5.3.2. Cloud environment. Considering how CMLs represent cloud environment services, the ma-
jority captures them in terms of linguistic or ontological types that are instantiated to model the
cloud application structure from a deployment or component viewpoint or even both. Generally,
CMLs that advocate ontological types over linguistic types for capturing cloud services provide a
richer collection of pre-defined custom service types mainly because their definition is less intru-
sive compared to defining linguistic types. Capturing cloud services in terms of a feature model can
be considered as an orthogonal approach compared to providing service types. From a language
engineering perspective, a feature model is not expressed using a CML but rather one of the exist-
ing notations (cf. e.g., [Czarnecki and Eisenecker 2000]). Both MULTICLAPP and the approach of
Nhan et al. exploit feature models to let engineers configure the target cloud environment by select-
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CML Component & connector Deployment
Component Connector Service Link Networking Artifact

Blueprint Blueprint
Resource-
Requirement BlueprintX Require 7

Implementation-
Artifact

Caglar et al. 7 7 VMI 7 7 Cloudlet

CAML ComponentC Prov./Req.
Interfaces

CloudServiceX Communication-
Channel

Addressing Artifact

clADL ComponentC Prov./Req.
Interfaces RuntimeX Endpoint 7 Artifact

CloudDSL 7 7 ServiceX Endpoint 7 Resource

CloudMIG 7 7 CloudNodeI Cloud
Link

Addressing KDM
model

CloudML-
SINTEF

Component Relationship External-
ComponentX Hosting Addressing Resource

CloudML-
UFPE

7 7 NodeI Link Addressing 7

CloudNaaS 7 7 GroupI Virtual
Net

Addressing
Segmentation
NetworkService

7

GENTL Component Connector ComponentX Connector 7 7

Holmes 7 7
Hosting
UnitX

Ports Security-
Groups Service

MOCCA Component Component-
Relation

Virtual-
System

Network
Port
Profiles

Addressing Artifact

MULTI-
CLAPP

Cloud
Artefact
ElementC

Prov./Req.
Interfaces

Cloud
Artefact
InterfaceX

7 7
Cloud
Artefact

Nhan et al. 7 7 VMNodeI Connection Addressing Software-
Component

PDS Service 7 NodeI Database
connection

Segmentation War file

RESERVOIR-
ML

Component 7
Virtual-
Machine-
DescriptorI

Network
Port
Profiles

Addressing
Segmentation 7

StratusML
Service
Task
Activity

Connector
Call

TaskS,P Connector
Endpoint Addressing Service

Adaptation

TOSCA Node-
Template

Relationship-
Template

Node-
TemplateX

Relationship-
Template Addressing

Deployment-
Artifact
Implementation-
Artifact

VAMP Component Binding
Dynamic-
Virtual-
SystemI

Network
Port
Profiles

Addressing 7

C Component is composable
I IaaS
P PaaS
S SaaS
X XaaS (Services of all three categories can be modeled)

Table VII: Component and deployment viewpoint
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ing the required cloud services. They are considered as a feature of a cloud environment denoting
the root concept of the feature model. As feature models are often used to represent the common-
alities and variabilities of a certain domain explicitly, they appear to be a useful source to define
cloud service types assuming that the analyzed domain refers to cloud computing. The variabilities
indicate the information required to instantiate a cloud service type in a CML [Mernik et al. 2005].

5.3.3. Elasticity. Turning the focus on how the elastic nature of cloud environments can be treated
at the model level, less than half of the CMLs allow engineers to define upper and lower-bounds
for service instances or elasticity rules based on which new service instances are provisioned or
released. Considering the CMLs supporting a rule-based approach, they all rely on the notion of
event condition action (ECA) rules that are triggered by monitors observing the cloud environment.
Events may refer to increasing virtual machine workload when considering the infrastructure level
or growing response time of application servers operating at the platform level. CloudMIG seems to
focus solely on infrastructure-level events whereas both RESERVOIR-ML and StratusML do also
consider events created at the platform-level.

5.3.4. Service level. Regarding the representation of service levels, only few CMLs have reported
on how they can be captured. Blueprint exploits existing languages such as WS-Policy30 or SLAng31

to express QoS constraints, e.g., “response time < 3 sec” or “Data storage is only within the Nether-
lands”. GENTL is capable of representing those QoS constraints in terms of typed annotations.
MULTICLAPP provides some stereotypes capable of capturing QoS constraints using key-value
pairs along with an operator that can be selected from a predefined enumeration. It covers standard
relational operators such as “equal to”, “greater than”, or “less than”. Finally, TOSCA supports the
definition of policies for expressing non-functional behavior or a kind of QoS that a node type can
declare to expose. A declared policy type can be instantiated via a policy template used within a
node template and processed by a TOSCA container. For instance, policies are processed during
service provisioning to guarantee that the provisioned services of a cloud environment satisfy the
requirements captured by policies [Waizenegger et al. 2013].

5.3.5. Summary of CML modeling capabilities. The reviewed CMLs provide a considerable set of
modeling concepts to support a variety of viewpoints relevant in the context of cloud application
and service modeling. Still, modeling concepts for capturing non-functional aspects are underrepre-
sented. The spectrum of non-functional requirements is certainly broad, however directly attaching
information, such as service levels and pricing [Cardoso et al. 2010], to the deployment artifacts and
targets may be a further improvement [Glinz 2007]. As a result, technical and non-technical aspects
are brought together in a possibly single view, which can support the selection of an appropriate CSP
and the optimization of the application provisioning. Regarding the latter aspect, CAML covers pric-
ing information of cloud environments for the selection of cloud services, whereas CloudMIG and
GENTL provide this information for the optimization of deployment configuration.

Considering the modeling concepts of Table VII in the light of interoperability, it gives a first
impression of how they relate to each other. Still, it is a first step in this direction as achieving inter-
operability between the CMLs also requires the consideration of concept specializations and possi-
ble available custom types. For instance, the TOSCA primer provides a set of pre-defined custom
types that may not only be of value for TOSCA users, but cloud application engineers in general.
As a result, conceptual mappings between the CMLs as a basis for accomplishing interoperability
among them need to consider both intensional and extensional levels [Kühne 2006].32 This requires
a good understanding of the modeling levels addressed by a CML, which may include not only the
design-time models but also run-time models [Rossini et al. 2015].

30http://www.w3.org/TR/ws-policy
31http://uclslang.sourceforge.net
32Custom types are at the intensional level. They are instantiated at the extensional level by assigning concrete values to
their features.
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CML Modeling Analysis Refinement Generation Provisioning

Blueprint Graphical
model editor

7 resolution 7 7

Caglar et al. Grapical
model editor

7 7
m2t: Deployment script
Simulation code

imperative

CAML Arbitrary UML
model editor

7
enrichment by
UML profiles

m2t: UML-Java
t2m: Java-UML
m2m: CAML-TOSCA

declarativeT

clADL Textual
model editor

7 7
m2t: Monticore
facility 7

CloudDSL Graphical
model editor

7 7 7 7

CloudMIG Graphical
model editor

design-time:
Conformance
checking and
Deployment
optimization

7 t2m: Java-KDM 7

CloudML-
SINTEF

Textual & graphical
model editor

7
enrichment by
ontological types

m2m: Runtime model
m2t: Adaption script declarative

CloudML-
UFPE

Directly repre-
sented in XML

7 7 7 7

CloudNaaS 7 7 7 m2t: network rules declarative

GENTL Graphical
model editor

design-time:
Deployment
optimization

enrichment by
ontological types 7 7

Holmes Textual
model editor

7
enrichment by
ontological types m2t: Deployment script declarative

MOCCA Graphical
model editor

design-time:
Deployment
optimization

7 m2m: Deployment plan declarative

MULTI-
CLAPP

Arbitrary UML
model editor

7
refinement by
UML profile

m2t: Service adapter
m2m: Deployment plan 7

Nhan et al. Graphical feature
configuration editor 7 resolution m2t: Deployment script declarative

PDS Directly repre-
sented in XML

7 7 7 declarative

RESERVOIR-
ML

Textual & graphical
model editor

7 7 m2t: Deployment script declarative

StratusML Graphical multi-
view model editor

design-time:
Performance
Availability
Price
analysis

7

m2t:
Deployment descriptor*

Adaptation rules
m2m: Performance models

7

TOSCA Graphical
model editor

7

enrichment by
ontological types
and Implementation
artifacts

m2m: Deployment plan mixture

VAMP Directly repre-
sented in XML

7 7 m2t: VM image declarative

* A deployment descriptor is directly interpreted by the cloud environment.
T Based on OpenTOSCA as CAML provides a mapping to TOSCA.

Table VIII: Tool support
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5.4. RQ4: What toolset is accompanied with existing CMLs?
Given the fact that the first CML was published in 2010, a considerable set of diverse tools beyond
model editors for CMLs is already available as summarized in Table VIII.

5.4.1. Modeling support. The majority of CMLs provide a custom textual or graphical model edi-
tor. Both CloudML-SINTEF and RESERVOIR-ML provide a textual as well as a graphical notation
to represent models. The latter uses a textual approach for representing elasticity rules. UML-based
CMLs (CAML and MULTICLAPP) can be used by arbitrary modeling tools supporting UML and
its profile mechanism. Most current UML modeling tools provide multi-view model editors. Also,
StratusML comes with a multi-view model editor implemented on top of Microsoft’s DSL tools.
Even though the TOSCA specification does not define a standard graphical notation, Winery [Kopp
et al. 2013] is a web-based model editor capable of visually representing TOSCA models. For some
of the reviewed CMLs, a dedicated model editor is missing. CloudML-UFPE, PDS, and VAMP are
XML-based languages where models are intended to be represented directly in XML. In case of
CloudNaaS, only a parser is available for its language. Hence, engineers are forced to use a plain
text editor to represent network policies.

5.4.2. Analysis support. Only two of the reviewed CMLs bring analysis support to deployment
topologies. CloudMIG’s toolset is capable of validating a cloud application against constraints de-
fined over cloud environments (see Section 5.3). Furthermore, it supports engineers seeking for
the Pareto optimal set of deployment configurations with the objective to minimize response time,
the number of violations of an upper-bound response time, and costs. In fact, the solutions in the
Pareto optimum are a trade-off between performance and costs. MOCCA addresses the problem of
distributing cloud application components over a single or multiple cloud environments. For that
reason, a deployment topology is translated into a labeled connected graph where the labels capture
the information (e.g., data throughput per time unit or the workload of an application component)
according to which the set of optimal graph partitions are calculated using a cohesion metric.

5.4.3. Refinement support. Considering the toolset of CMLs for refinement tasks, the Blueprint
approach enables the resolution of defined service requirements by performing a string-based
matching against service offerings. As a result of this resolution process, explicit interconnections
between concrete service blueprints are derived. A resolution process is also carried out by the ap-
proach of Nhan et al. to derive a valid configuration of a feature model from an initial one. In fact,
the resolution is achieved by additionally selecting required features that are not covered by the
initial configuration. As some CMLs propose to model a cloud application independent of a cloud
environment in a first step (CAML, CloudML-SINTEF, MULTICLAPP, the approach of Holmes,
StratusML, and TOSCA), they employ dedicated approaches to achieve a refinement towards the tar-
get cloud environment. In essence, all of them exploit predefined environment-specific information
that is associated with an environment-independent model. How the environment-specific informa-
tion is in fact captured and associated with a model from a technical perspective varies between
the CMLs mainly because they are realized on top of different platforms. Furthermore, three of the
CMLs (CloudML-SINTEF, the approach of Holmes, and StratusML) employ matching techniques
to achieve the refinement step semi-automatically.

5.4.4. Generation support. The majority of CMLs exploit generative techniques. Caglar et al.
provide a code generation facility capable of producing simulation code for CloudSim. Similarly,
CAML, clADL and MULTICLAPP33 support automated forward engineering capabilities. CAML
and CloudMIG support model-based reverse engineering. Whereas the former uses UML for repre-
senting generated models, the latter exploits KDM. Several CMLs support the generation of deploy-
ment scripts, descriptors, and plans from deployment configuration (see the approaches of Caglar et
al., Holmes, and Nhan et al., MOCCA, MULTICLAPP, RESERVOIR-ML, StratusML, TOSCA).

33Whereas clADL exploits Monticore’s code generation facility [Krahn et al. 2010], CAML and MULTICLAPP focus on
code generation for the Java platform.
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Virtual machine images can be generated from deployment configuration by the VAMP. They are
represented in OVF. A few approaches deal with environment-related artifacts such as a run-time
model (CloudML-SINTEF), adaption scripts or rules that allow the manipulation of provisioned
cloud services at run-time (CloudML-SINTEF and StratusML), and network rules capable of re-
provisioning virtual networks to support different fail-over scenarios (CloudNaaS).

5.4.5. Provisioning support. Finally, more than half of the reviewed CMLs come with tool support
capable of automatic application and service provisioning. Most of them suggest a declarative ap-
proach, thereby reducing the effort for engineers to describe the provisioning actions explicitly. In-
terestingly, the CML of Caglar et al. supports the opposite approach. Their CML provides modeling
concepts for expressing the provisioning actions in a strict imperative style. The TOSCA-compliant
run-time container OpenTOSCA [Binz et al. 2013] combines the declarative and imperative ap-
proach [Breitenbücher et al. 2014]. It enables automated plan-based provisioning and management
of cloud applications, which allows imperative deployment scripts to be integrated into a deploy-
ment plan. The latter is generated from a deployment configuration represented in terms of TOSCA.

5.4.6. Summary of CML tool support. Current CMLs span a broad spectrum of tools supporting
engineers in the design, development, and provisioning of cloud applications. Moreover, the existing
set of tools enable them to deal with different application scenarios, e.g., migration of a non-cloud
application to a cloud environment, distribution of application components in a single or multi-cloud
environment, optimization of cloud applications. Having categorized the core tools provided by
existing CMLs can be considered as a first step towards a canonical CML toolkit [Medvidovic and
Taylor 2000]. Overall, existing CMLs have placed the greatest emphasis on modeling, generation,
and provisioning of cloud applications and the least on analysis and refinement.

5.5. Threats to validity
Two main threats may jeopardize the internal validity of this systematic literature review. First, the
search of potentially relevant research works was carried out on a set of publication sources that
we determined. Since cloud computing is a highly diverse research topic, we may have excluded
publication sources in which research works relevant to this review are published. To reduce the
possibility of missing publication sources, we formulated in a first step a relatively generic search
query for obtaining a set of potentially relevant publication sources. From this obtained initial set
of publication sources, we excluded those sources that seemed to be out of the scope of this review
in a second manual step. Second, the definition of keywords used to prune the set of studies is a
critical task, in the sense that many studies are already excluded before the manual search process
is carried out. To reduce the risk of defining a keyword list that is too restrictive, we carefully
tested it with a set of studies we were aware of from previous work. Concerning external threats
to validity, we cannot claim any results regarding language features outside of our classification
and comparison framework even though some CMLs are realized as extensions to existing general-
purpose or architecture description languages.

6. CONCLUSION AND FUTURE RESEARCH DIRECTIONS
Several CMLs accompanied by a considerable set of tools have been proposed so far. As they ad-
dress the diversity of modern cloud environments and their services, existing CMLs pursue different
goals, differ in scope, and provide thus partially overlapping but also diverse modeling concepts.
Consequently, the investigation of the diverse features currently provided by CMLs is of high inter-
est. In this article, we presented a common classification and comparison framework with the goals:
(i) to support CSCs in selecting the CML that fits the needs of their application scenario and setting;
and (ii) to investigate language characteristics and concepts of existing CMLs for which extensive
support is already provided and also in which current CMLs are deficient. In this respect, the current
framework is an important advance for highlighting the essence of current CMLs and providing an
effective means to compare them. We expect that our framework for CMLs is going to be refined,
e.g., with consideration of application behavior in addition to the structure, and extended, e.g., with
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consideration of other cloud service categories or support for extensibility. The main findings of our
evaluation of 19 CMLs are summarized in 6.1 whereas possible future research directions are drawn
up in 6.2.

6.1. Main Findings
Finding 1: High diversity in current cloud modeling languages. Current CMLs pursue different,
sometimes even specific goals. Hence, they propose diverse modeling concepts and show various
levels of maturity. At the same time, there is a common theme among them, as the majority of
CMLs are capable of representing the structure of cloud applications in terms of components and
their deployment on cloud services. However, even though there are structural correspondences
among most of the languages, there is still the question of whether there are semantic mismatches
that are only evident during run-time. This is particularly true for CMLs that use different run-time
environments. As MDE follows the convention over configuration principle, the conventions may
be different in different run-time environments [Bergmayr et al. 2015].

Finding 2: Little attention paid to existing standardized software modeling languages. Even
though general-purpose languages such as UML and ADLs provide modeling concepts to represent
applications from a variety of viewpoints, only two CMLs currently provide extensions to UML.
With the relatively recent adoption of the TOSCA standard, it appears even more desirable to
align modeling CMLs that emerged in the area of cloud computing and software engineering for
providing continuous modeling support.

Finding 3: Primary focus of CMLs on design-time aspects. The majority of currently existing
CMLs is primarily used for representing design-time artifacts such as application components
manifested by deployable artifacts or deployment targets. However, considering run-time aspects at
the model level appears also promising for capturing the current status and workload of a certain
provisioned compute service. This run-time information can be exploited for various tasks such
as adaptation or optimization as the models@run-time paradigm [Blair et al. 2009] propagates
it. A few CMLs have already taken up this idea to further use the models in the life-cycle of an
application.

Finding 4: Considerable set of tools for current CMLs. Current CMLs are equipped with a
broad spectrum of tools supporting engineers in the design, development, and provisioning of
cloud applications. Overall, existing CMLs have put much emphasis on modeling, generation, and
provisioning of cloud applications, but only limited efforts on analysis and refinement of cloud
applications.

Finding 5: Lack of interoperability between CMLs. The exchange of models between CMLs
requires currently manual effort for replicating those models in the different languages. Model
transformations for an automated model exchange are not available even though scenarios such as
application modernization would benefit from a combined set of tools provided by different CMLs.
In previous work, we have outlined a modernization process that consists of several activities
requiring automation support. While there is no single CML to cover all of these activities, a com-
bination of CMLs and their accompanying tools would be suitable to perform them [Bergmayr et al.
2014b]. However, there is currently a lack of interoperability among CMLs. As a result, a tedious
manual model recreation task is required for performing certain activities in the modernization
process.

Finding 6: Heterogeneous language engineering background. From a language engineering
perspective, two dominant meta-languages are used to realize CMLs: MOF and XML Schema.
Some CMLs are realized using a grammar-based approach while others employ meta-languages of
proprietary language workbenches such as Microsoft’s DSL tools. The heterogeneities imposed by
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the different meta-languages used to implement them certainly impedes to achieve interoperability
between CMLs. However, the good news is that the CMLs are realized with explicit language defi-
nitions, which allows to reason about the language concepts in a precise manner. Furthermore, for
several meta-language combinations, there are already bridges available to translate the language
definitions as well as the model representations between different metamodeling stacks [Kurtev
et al. 2002].

Finding 7: Creation, evolution, and eventual convergence of CMLs. Based on the survey
information we derived, we have also analyzed the evolution of the different CMLs. Seven CMLs
have been developed before the first official version of the TOSCA standard has been published in
2013. Even more interestingly, eleven CMLs emerged mostly in parallel with the TOSCA standard.
Some CMLs are still further developed in newer publications. However, it has to be noted that there
has not been a single new CML published after 2014. This may have several reasons, one being
the existence and emergence of the TOSCA standard, which also contributes to the convergence of
different CMLs as some extensions of these CMLs aim for integration with TOSCA. Furthermore,
while all other languages have their metamodel—this also applies to the two UML extensions where
only the host language is standardized, but not the extensions themselves—having interoperability
with a standardized language may be of practical importance.

Finding 8: Sparsely connected CML research communities. Another finding based on the gath-
ered survey information is that different research communities have contributed on CMLs, or even
if it is the same research community, then the languages have been proposed for very specific fields.
We documented in a citation matrix how the different CMLs cite each other in their correspond-
ing (denoted with an “X”). The matrix can be found in the electronic appendix (see Figure 3). For
example, it can be seen how Blueprint refers to StratusML. The citation matrix also contains infor-
mation about the possibility to cite papers. This means, when a paper cannot be referenced because
it was not yet published, we use a less than sign, meaning that the CML has been published before
the other CML. Empty cells indicate that it was most likely possible to cite the paper based on
the publication date, but it has not been done. An interesting outcome of the citation matrix is that
some CMLs are not even citing one of the other CMLs and that some CMLs are not cited by any
of the other ones. One explanation may be that the CMLs considered a very particular case such as
cyber-physical systems combined with cloud computing or migration of existing systems to cloud
platforms. Another difference between the CMLs that are unaware of each other is that they are
coming from different paradigms such as component-orientation vs. service-orientation. The most
cited CMLs in the context of the citation matrix are CloudML-SINTEF and TOSCA. Please note
that we could not trace potential influences for TOSCA as the standard document does not provide
references to other CMLs.

6.2. Future Research Directions
Direction 1: Continuous cloud modeling support. Since most CMLs introduce their own set of
modeling concepts, a well-connected mix of CMLs is currently not available. Surprising is the fact
that the supported modeling concepts for the component and deployment viewpoint are largely
inconsistent. Having the TOSCA standard, it is desirable to align existing and potential new CMLs
for providing continuous modeling support, e.g., by achieving interoperability among the languages.

Direction 2: Run-time models for cloud applications. Run-time aspects at the model level appear
promising for capturing the status and workload of a provisioned compute service. This run-time
information can be exploited for various tasks, e.g., optimization and adaptation. For instance, if
a modeled compute service is replaced by another one for some purpose, e.g., to save costs or
increase performance, the running service instances need to be adapted according to the changes in
the run-time model. These changes could then be propagated to the running cloud services.
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Direction 3: Simulation of deployment configurations. Analyzing and predicting non-functional
properties such as costs and performance before the actual application provisioning is carried out
seems of high interest. The simulation of deployment configurations refined towards a cloud envi-
ronment could contribute to predicting operational costs of certain cloud services. It could support
engineers to evaluate the effectiveness of defined elasticity rules before they are applied to the run-
ning application. This requires an operational semantics that captures the behavior of cloud services
to simulate them rather than execute their provisioning. As more than half of the CMLs are realized
based on MOF, a first promising step could be to explore fUML [OMG 2016] because it can be used
to define the operational semantics of MOF-based languages [Mayerhofer et al. 2013].

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.
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