Update for the IPPM Framework: Adding Support for IPv6 and IP Options

(IP Options and IPv6 Updates for IPPM's Active Metric Framework: Packets of Type-P and Standard-Formed Packets)

draft-ietf-ippm-2330-ipv6-01

A. Morton, J. Fabini, N. Elkins, M. Ackermann, V. Hegde
mailto:draft-ietf-ippm-2330-ipv6@ietf.org
Background

• The IPPM Framework (RFC2330) identifies two key prerequisites for valid measurements:

1. Valid measurement packets
 • “Standard-formed” packets
 • “…all metric definitions … include an implicit assumption that the packet is *standard formed*”...
 • Explicit criteria catalogue

2. Result may depend on measurement packet type
 • Distinct treatment of measurement packets along the path
 • Abstract term: packet of Type-P
 • Measurement is representative for any type (Type-P) vs. result is valid for ICMP-packets-64-byte-payload
Motivation and History

- Any {RFC|draft|metric} that references **IPv6 is out of scope of the RFC2330 IPPM framework**!
 - RFC2330, sec. 15 “…includes a valid IP header: the version field is 4 (later, we will expand this to include 6)”…

- **Trigger**: GEN-ART review of RFC 2679-bis
 - Input by Brian Carpenter: **no IPv6 coverage**
 - RFC 2679-bis only vs. IPPM update
 - Decision for IPPM update

- **IPv6-support for IPPM “outsourced” to dedicated draft**
 - Precondition for –bis RFCs to pass GEN-ART and IESG review
 - More documents pending in the queue (active-passive, PDM, …)
 - Avoid replication: one document can do the update for all.
Status @IETF98

- **Adoption as IPPM WG item**, July 2016
- Extensive comments from Fred Baker and Marius Georgescu:
 - Extension Headers covered in Type-P and Standard Formed packet sections
 - Load balancer as an example of Class C (equal treatment)
 - Examples where Type-P *changes from Src to Dst.
 - IP address family coexistence means more circumstances to discuss (v4 v6 transition).
 - Major new section covers NAT, v4v6, Header Compression
Status @IETF98

• Discussion needed
 • Handling of large packets in IPv6 (including fragment extension headers, PMTUD, PLMTUD),
 • Extent of coverage for 6LO and IPv6 Header Compression, and
 • The continued need to define a "minimal standard-formed packet".
 • IPv6 header treatment in intermediate nodes
• Concluding that, WGLC…
Handling of large packets in IPv6

- Path MTU Discovery (PMTUD)
- Packetization Layer Path MTU Discovery (PLMTUD)
- Adopt RFC2330 IPV4 fragment handling procedure for IPv6 fragments, too
 - Fragments are NOT standard formed
 - Use of non-fragmented packets for measurements only.
 - Scope of IPPM framework metrics excludes fragmented IP(v4) packets.
 - Accepting IPv6 fragments would mean reviewing and updating **ALL** existing metrics
6lo and IPv6 Header Compression

• If we do not include them explicitly, 6lo and ROHC IPv6 packets are out of scope of the IPPM (like IPv6 is right now).

• 6lo and IPv6 HC rely on state to be stored in gateway nodes (ingress, egress)
 • 6lo and ROHC modify Type-P
 • Distinct MTUs, physical-layer support, encryption,…
 • IPv6 addresses mapped to 6LoWPAN addressing scheme
 – No source, destination IPv6 addresses available

• Conclusion: 6LoWPAN for further study
 • Considered out of scope for this draft
 • No more work
• **Definition** of minimal standard-formed packet
 "A particular type of standard-formed packet often useful to consider is the "minimal IP packet from A to B" - this is an IP packet with the following properties:
 – It is standard-formed.
 – Its data payload is 0 octets.
 – It contains no options."

• “Note that we do not define its protocol field…”

• **Who has used this definition?**
 • Practical use (router handling of "undefined“ protocol?)
 • IANA allocation: "no transport header“?

• Proposal: **remove** definition of **minimal standard-formed packet** for IPv4 and IPv6
IPv6 Extension Header Treatment

- IPv6 extension header treatment in intermediate nodes
 - Subject to discussions in v6ops
- Inspection/addition/removal of extension headers useful in the context of IPPM
 - Restricted to closed (enterprise) segments?
 - In-situ OAM (ioam)
- Challenges:
 - Extension header modifications change Type-P
 - Treatment in subsequent nodes (Segment routing?)
- **Proposal:** allow, point out challenges/drawbacks
Status and Next Steps

• Proposals (solutions) presented for all open topics.
• Asking for WG and list feedback on proposals
• Integrate changes into document.
• Following: draft ready for WGLC.
RFC 2330, Sec. 13:

- “A fundamental property of many Internet metrics is that the value of the metric depends on the type of IP packet(s) used to make the measurement…”
- “…Whenever a metric's value depends on the type of the packets involved in the metric, the metric's name will include either a specific type or a phrase such as "type-P".
- “…Generic notion of a "packet of Type-P“…”
 - Fully defined (port-http-tcp-connectivity-50byte-payload)
 - Partially defined (UDP packet)
 - Generic (Type-P)

- **Type-P becomes part of any metric definition**
 - Example: Define "IP-Type-P-connectivity" metric instead of "IP-connectivity" metric
RFC 2330 Update: Type-P

• Mention **special treatment of packets**
 - Diffserv, ECN, Router alert, extension headers, …

• Identify case when **Type-P changes along the path**
 - Type and length changes because of IPv4 <-> IPv6 translation, or IPv6 extension headers adding or removal
 - Modified values SHOULD be noted and reported with the results

• Discuss possible **impact of NAT** along path
 - Unpredictable impact on delay
 - Stateful NAT: state created on first packet: delay penalty

• RFC2330 Note: **class C equivalence** for path (MAP RG!)
 - “…it would be very useful to know if a given Internet component treats equally a class C of different types of packets. If so, then any one of those types of packets can be used for subsequent measurement of the component. This suggests we devise a metric or suite of metrics that attempt to determine C.”
RFC 2330, Sec. 14:

• “…all metric definitions … include an implicit assumption that the packet is *standard formed*”…

• “…a packet is standard formed if it meets all of the following criteria:…”

 • Length (IP header) = sizeof (IP header) + sizeof(payload)
 • Valid IP header: “version field is 4 (later, we will expand this to include 6)” (quote RFC2330!)
 • Header length >= 5, checksum is correct, no IP fragment.
 • Src and dest addr. correspond to the hosts in question.
 • TTL sufficiently large or 255
 • No IP options unless explicitly noted.
 • If transport header is present: valid checksum and fields.
 • Length B: 0 <= B <= 65535 …
RFC 2330 Update: Std-Formed Packet

- **IPv4 and IPv6** allowed

- Basic requirements (aggregated IPv4 and IPv6):
 - Valid IP header
 - Not an IP fragment.
 - Source and Destination addresses intended.
 - Transport header: valid checksum and valid fields

- Separate discussion of IPv4 and IPv6
 - IPv4 unchanged

- **IPv6**
 - Version field 6, total length including extension headers
 - Extension headers: none or correct types and correct order, extension header parameters conforming with IANA
 - Note controversies (RFCs 6564 and 7045) : intermediate nodes inspect/add/delete/change IPv6 extension headers
Next Steps

• **Urgent need to update IPPM for IPv6**
 • RFCs and documents in queue depend on it!
 • Draft scope and structure is stable
 • Feedback and Input requested

• **Call for adoption as IPPM WG item.**

Contact (all draft authors):
mailto:draft-ietf-ippm-2330-stdform-typep@ietf.org