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Starting from the (Hubbard) model of an atom, we demonstrate that the uniqueness of the mapping from the
interacting to the noninteractingGreen function,G → G0, is strongly violated, by providing numerous explicit
examples ofdifferentG0 leading to the samephysicalG.Weargue that there are indeed infinitelymany suchG0,
with numerous crossings with the physical solution. We show that this rich functional structure is directly
related to the divergence of certain classes of (irreducible vertex) diagrams, with important consequences for
traditional many-body physics based on diagrammatic expansions. Physically, we ascribe the onset of these
highlynonperturbativemanifestations to the progressive suppression of the charge susceptibility inducedby the
formation of local magnetic moments and/or resonating valence bond (RVB) states in strongly correlated
electron systems.
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Introduction.—For more than 50 years, nonrelativistic
quantum many-body theory (QMBT) has been successfully
applied todescribe thephysicsofmany-electronsystemsin the
field of condensed matter. Despite the intrinsic difficulty of
identifying a small expansion parameter (analogously to the
fine-structure constant of quantum electrodynamics), the
formalism of QMBT—in its complementary representations
in terms of Feynman diagrammatics [1,2] and of the universal
Luttinger-Ward (LW) functional [3,4]—is the cornerstone of
the microscopic derivation of Landau’s Fermi-liquid theory
and of uncountable approximation schemes [5–9].
Yet, the actual conditions of applicability of the QMBT

in the nonperturbative regime have been scarcely inves-
tigated. This is surprising because QMBT is extensively
applied to strongly correlated electron materials, where
band-theory and Fermi-liquid predictions fail, and some of
the most exotic physics of condensed matter systems is
observed. Recently, however, the quest for such investiga-
tions became particularly strong. This is because several
cutting-edge QMBT approaches, explicitly designed for
describing the crucial, but elusive, regime of intermediate-
to-strong interactions, have been developed, e.g., the
diagrammatic quantum Monte Carlo schemes [10] and
numerous diagrammatic extensions [11–16] of dynamical
mean-field theory (DMFT) [9,17].
Pioneering analyses of the perturbation theory breakdown

have been reported in the past four years [18–27]. The main
outcome can be summarized in two independent observa-
tions: (i) the occurrence of infinitelymany singularities in the
Bethe-Salpeter equations and (ii) the intrinsic multivalued-
ness of the LW functionals. The first problem appears as
an infinite series of unexpected divergences in irreducible
vertex functions [19], while the second is reflected in the

convergence of the perturbative series to an unphysical
solution [20]. The intrinsic origin of these nonperturbative
manifestations and their impact on themany-electron physics
as well as on the method development in the field represent a
challenge for the current theoretical understanding.
In this Letter, we report a fundamental progress in the

comprehension of the perturbation theory breakdown and of
its significance. In particular, going beyond the pioneering
work of Ref. [20], (i) we show that there are many (probably
an infinite number of) unphysical self-energies that become
equal to the physical one at specific values of the interaction.
This puts us into the position to (ii) demonstrate the actual
correspondence between the vertex divergences of the
Feynman diagrammatics and the occurrence of multiple
branches of the LW functional. Finally, (iii) we generalize
these results from the Hubbard atom to generic systems with
strong correlations. Regarding the nature of the singularities,
we show that vertex divergences of different kinds are
reflected in different natures of the crossings of the branches.
The emerging scenario, which mathematically depicts an

unexpectedly complex structure of the many-body formal-
ism, will be physically related to the progressive suppres-
sion of charge fluctuations, a generic property of strongly
correlated systems with a local interaction. The improved
understanding of QMBT beyond the perturbative regime
can serve as a guide for future developments of non-
relativistic many-electron algorithms.
Multivaluedness of the Luttinger-Ward functional.—

The Luttinger-Ward functional Φ½G� plays a crucial role
in traditional many-body physics [4]. It is a universal
functional of the full single-particle Green function G,
which only depends on the interaction but not on the
external potential. From Φ½G� the free energy can be
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determined. One can also obtain the electron self-energy
Σ½G� ∼ δΦ½G�=δG, entering the Dyson equation,

G−1
0 − G−1 ¼ Σ; ð1Þ

where G0 is the noninteracting Green function determined
by the external potential. From Σ½G� one can compute all
irreducible vertices Γ entering the Bethe-Salpeter equa-
tions [8] for response functions. For instance, the charge
susceptibility is determined by the vertex [3,8,19,20]

Γc ¼
δΣ½G�
δG

: ð2Þ

Approximations built within this approach are guaranteed to
be conserving [3]; therefore, it is exploited for numerous
formal derivations [9,28–30]. Moreover, the full two-particle
nature of the vertices Γ represents an ideal building block for
approximations designed to preserve the Pauli principle
properties and related sum rules. In this respect, it is believed
that the parquet equations [8] are one of the most funda-
mental ways of performing diagrammatic summations.
In order for QMBT methods to be meaningful, an

important property of the functional G½G0� needs to be
fulfilled: The introduction of Σ in QMBT implicitly assumes
that there is a unique mapping between G and G0, G → G0.
Otherwise, several branches of Σ would exist, corresponding
to different G0, posing the general problem of an intrinsic
multivaluedness of any QMBT-based scheme. While—on
the basis of general representability arguments [31,32]—
only one of the possible branches of G0 can correspond to a
noninteracting physical Hamiltonian, the existence of multi-
ple G0 is not merely a formal issue. In fact, if two such
branches cross, Γ in Eq. (2) might become ill defined and
diverge. This would challenge important aspects of the
traditional many-body theory, such as, e.g., the definition
of physically meaningful parquet summations [33].
Figure 1 schematically illustrates such a scenario. The

general functional relation between G and G0 is depicted
by several red curves for different values of the electronic
interaction U [34]. G and G0 are here treated as numbers
rather than functions (of frequency, momentum, spin, etc.).
For U ¼ 0, G½G0� ¼ G0, and for any physical G (horizontal
blue line), the corresponding G0 is univocally determined.
WhenU > 0, however,G½G0� becomes “wavier,” displaying
several maxima and minima in the functional space. This
way, the intersection with Gphys would correspond to several
G0 (blue dots), of which only one describes the physical
system (Gphys

0 ). Even if unphysicalG0’s exist, many standard
numerical algorithms are able to converge to the solution that
is adiabatically connected with the U ¼ 0 one. This can,
however, turn into an actual problem, if for some values ofU
the intersection with Gphys occurs at one extreme of G½G0�.
This would correspond to the intersection of two different
solutions of G0 (and thus of Σ; see green dashed lines in
Fig. 1). At this point we would expect δG=δG0 ¼ 0.

Combining this with the Dyson equation and the definition
[Eq. (2)] of Γc, one would conclude that Γc diverges.
To go beyond the sketch of Fig. 1, we present calcu-

lations for the Hubbard model [35] with one site (Hubbard
atom) and show that differentG0 indeed do cross for certain
values of U. In Sec. I A of the Supplemental Material [36]
we then show that such a crossing indeed does lead to
divergences of Γc.
Method.—We have developed a method for finding

different G0’s which lead to the physical G for the
Hubbard atom. We use the Hirsch-Fye algorithm [40] to
obtain G from a guess for G0. This method involves a
summation over auxiliary spins, which is usually done
stochastically. Here we perform a complete summation
using the Gray code [41], thereby avoiding stochastic
errors. We guess a G0, and then use a Metropolis method
to search for improved guesses for G0. When a promising
guess has been found, the Hirsch-Fye equations are
repeatedly linearized and solved, until a G0 has been found
which accurately reproduces the physical G (see Sec. III of
Ref. [36]). It is crucial that there are no stochastic errors in
this approach. The method makes it possible to determine if
two G0 really become equal for some U and to determine
how they approach each other as U is varied.
Results for the Hubbard atom.—We start to present our

results by showing in Fig. 2 (left) TrΣGphys=ðβUÞ as a
function of U corresponding to the different G0 and, hence
Σ, via Eq. (1). For G0 ¼ Gphys

0 ¼ 1=iν, this quantity yields
the double occupancy (black curve). The colored (red and
orange) curves are the results for the other (unphysical) G0,
collapsing to Gphys

0 in the several crossing points shown
in the figure. The latter ones do coincide—within our
numerical accuracy—with the locations (marked by

FIG. 1. Sketch of the functional G½G0; U�, where G0 and G are
assumed to be just numbers. The red curves correspond to cuts
for different values of U, the horizontal blue lines show the
corresponding values of Gphys, while the blue dots represent the
G0 which produce Gphys.
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vertical arrows) of the first six divergences of Γc in the
Hubbard atom [19]. The red G0’s are associated with a
milder violation of physical constraints than the orange
ones [e.g., the former can acquire a nonzero real part, but
the latter can even violate the generic condition: G0ðνÞ ¼
G0ð−νÞ� [36] ]. The left-hand red curve was found by
Kozik et al. [20], although, there, it could not be converged
around the crossing with Gphys

0 .
There are important connections between the frequency

dependence of the divergences of Γc, coded by red and
orange colors [19], and the detailed behavior of G0 at a
crossing. The divergences of Γc can be divided into two
classes [18,19]. To this end, we consider the generalized

charge susceptibility χνν
0ðω¼0Þ

c [42], which depends on two
fermionic Matsubara frequencies, ν and ν0, and a bosonic
frequency ω ¼ 0. Γc is then given by

Γc ¼ β2½χ−1c − χ−10 �; ð3Þ
where χ0 is the noninteracting generalized susceptibility
and χc and χ0 are treated as matrices of ν and ν0. These
matrices can be diagonalized,

χνν
0ðω¼0Þ

c ¼
X

l

VlðνÞ�εlVlðν0Þ; ð4Þ

with VlðνÞ and εl being the corresponding eigenvectors
and eigenvalues. While the divergences of Γc always corre-
spond to the vanishing of one εl, they differ in the frequency
structure of VlðνÞ: For the divergences marked by the
red arrows, VlðνÞ has only two nonzero elements [at
ν ¼ �νn ¼ �ð2n − 1Þπ=β, with n ¼ 1; 2;…], reflecting a
localized divergence at ν ¼ �νn, while for the orange arrows,
VlðνÞ ≠ 0∀ν, reflecting a global divergence of Γc [19].

An analogous classification is also applicable to the
different G0 resolved in frequency space: In Fig. 2 (right)
we plot the ratio ImG0ðνÞ=ImGphys

0 ðνÞ corresponding to the

first two crossings for the three lowest ν. As Gphys
0 is purely

imaginary, the condition G0ðνÞ ¼ Gphys
0 ðνÞ is reflected in

their ratio being 1 and ReG0=ImGphys
0 ¼ 0 (shown in

Supplemental Material [36]). Figure 2 (right) demonstrates
that the red andorange crossings observed inTrΣGphys indeed

correspond to an actual identity ofG0ðνÞ ¼ Gphys
0 ðνÞ∀ν, both

at U ¼ 1.81 (red) and 2.58 (orange). Yet, the corresponding
zooms in the insets show a qualitative difference between the
two cases. For the red case, the crossing of G0 with Gphys

0 is
linear inU only for ν ¼ π=β (solid line),while it isOðU2Þ for
all other νn (dashed line). In the orange case, the crossings
display the same behavior for all the frequencies; see insets of
Fig. 2 and the discussion in Sec. I A of Ref. [36]. There, an
analytical proof is given that this leads to a divergence of Γc
for ν, ν0 ¼ �π=β at the red crossing and for all frequencies at
the orange crossing. Similar results are found for the second
and third red and orange crossings, but for the former
the linear crossing happens for ν2 ¼ 3π=β (second) and
ν3 ¼ 5π=β (third). This is consistent with the result in
Ref. [19] that the corresponding divergences of Γc happen
at these specific νn.
The one-to-one correspondence of red (orange) crossings

with the local (global) divergences of Γc illustrates how the
heuristic scenario of Fig. 1 is actually realized for the
Hubbard atom. The result also indicates the existence of an
infinite number of unphysical G0, since infinitely many red
and orange divergences were found for the Hubbard atom
[19]. Furthermore, there are indications that the infinity of
the total number ofG0 might be of a higher cardinality than
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FIG. 2. Left: TrΣG=ðβUÞ as a function of U corresponding to different G0 for the Hubbard atom for β ¼ 2. Red and orange arrows
mark the divergences of Γc according to Ref. [19]. The curve corresponding to Gphys

0 is shown in black. Beyond the red and orange

curves, one finds further crossings (gray lines) for which, however, G0ðνÞ ≠ Gphys
0 ðνÞ and. hence, no divergence of Γc is found (see

Sec. IC of the Supplemental Material [36]). Dashed curves indicate that TrΣG=ðβUÞ also has an imaginary contribution (not shown).
Right: Imaginary part ofG0 (normalized to ImGphys

0 ) for the first red and orange curves. Results for the lowest (bold lines), second lowest
(dashed lines), and (in insets) third lowest (dotted lines) jνnj are shown.
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that of the vertex divergences, as we discuss in Sec. IV
of Ref. [36].
Generic strongly correlated systems.—To make closer

contact to strongly correlated physical systems, we consider
the Hubbard model in DMFT [9,17], where the Hubbard
atom is embedded in a self-consistent, noninteracting host.
The LW functional is unchanged, since it only depends on the
interacting part of the Hamiltonian. The external-potential
part, however, changes, and therefore bothGphys andG

phys
0 are

different. We can exploit the relation of the crossings with the
divergences ofΓc and the zero eigenvalues inEq. (4), and gain
further insight by analyzing the physical local charge sus-
ceptibility. In DMFT, this is given by [33]

χch ¼
1

β2
X

νν0
χνν

0ðω¼0Þ
c ¼ 1

β2
X

l

εl

����
X

ν

VlðνÞ
����
2

: ð5Þ

The corresponding DMFT results are reported in Fig. 3.
By increasing U, the electrons gradually localize, building
up local magnetic moments with longer lifetimes. These, in
turn, freeze the local charge dynamics, with χch becoming
very small especially in the proximity of or after the Mott
metal-insulator transition (in the range U ¼ 2.3�2.4 for
β ¼ 40). While the physics of this generic trend is known,
the projection of χch in its eigenvalue basis yields highly
nontrivial information. We analyze χch in terms of the
contributions from positive and negative εl. For small and
moderate U, all εl are positive. As U increases, one εl after
the other goes through zero (see inset of Fig. 3). Each time
Γc diverges [see Eqs. (3) and (4)], a new G0 becomes
identical to Gphys

0 , and the negative component of χch
becomes more important. Such a negative component of
χch plays a crucial role in realizing the correct strong-
coupling physics. Neglecting it would lead to a χch

approximately saturating at some sizable value in the
Mott phase, instead of being strongly suppressed. We also
note that a small value of χch in itself is not sufficient for
this scenario to be realized (e.g., in a dilute system χch can
be small, but all εl > 0). Here, the crucial factor is the
mechanism responsible for the reduction of χch: the gradual
local moment formation which manifests itself in a pro-
gressively larger contribution of the negative εl. This is,
thus, the underlying physics responsible for the occurrence
of the (infinitely many) unphysical G0 crossing Gphys

0 , and
the related divergences of Γc. This also applies to the
corresponding breakdown of perturbative expansions, such
as parquet-based approximations. A certain class of dia-
grams can give a positive infinite contribution, which is
canceled by another class of diagrams [33]. Then the
diagrammatic expansion is not absolutely convergent, as
was also found in Ref. [20]. This makes conventional
diagrammatic expansions highly questionable for inter-
mediate-to-strong correlations. While it is not surprising
that perturbative approaches might break down at the Mott
transition, it is interesting that this happens well before
the Mott transition occurs, where Fermi-liquid physical
properties still control the low-energy physics.
It is important to stress that the nonperturbative manifes-

tations discussed in this Letter are affecting not only models
dominated by purely local physics (such as the Hubbard
atom or its DMFT version). In fact, divergences of Γc have
also been found [33] studying the two-dimensional Hubbard
model, by means of the dynamical cluster approximation
[29]. In this case, the underlying physics behind the change
of sign of the εl could be related to the formation of a RVB
state [43], also responsible [44] for the opening of a spectral
pseudogap [45]. Increasing the size of the cluster in the
dynamical cluster approximation might even push the
occurrence of the first εl ¼ 0 and the pseudogap towards
lower U, due to strong antiferromagnetic fluctuation
extended on larger length scales [33,46,47].
Conclusions.—We have reported important progress

towards the understanding of the mathematical structures
of quantum many-body theories in the nonperturbative
regime, and of the physics behind them. The structure of
the LW functionals is even richer than the pioneering work
by Kozik et al. suggested [20]: We find a very large,
probably infinite, number of noninteracting G0 leading to
the same dressed G. This can be regarded as a formal
problem, to be treated by means of a restriction to the
domain of the physical G0’s [27,31,32], as long as the
unphysical and physical G0 do not intersect. However, in
the nonperturbative regime we find many crossings. These
crossings reflect the analytical structure of the LW func-
tional for interacting systems. We show that they lead to
divergences of irreducible vertex functions. This challenges
current quantum many-body algorithms in several respects,
e.g., causing noninvertibility of the Bethe-Salpeter equation
and breakdown of the parquet resummations. These
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(χch) [Eq. (5)] (black line) as a function of U for a two-
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4t ¼ 1 at β ¼ 40. Both χch and its contributions from positive
(orange) and negative (blue) eigenvalues (εi) are shown. The
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problems, which occur when the correlation is still sub-
stantially weaker than in a Mott insulator, originate, none-
theless, in underlying strong-coupling physical mechanisms,
which also control the formation of local moments and RVB
states. This is reflected in the progressive suppression of the
charge susceptibility in correlated systems. Further inves-
tigations of the theoretical foundations beyond the pertur-
bative regime should play a central role for future method
developments in condensed matter physics.

We thank S. Ciuchi, P. Chalupa, P. Thunström, M.
Capone, S. Andergassen, and K. Held for insightful dis-
cussions. The authors would like to thank all attendees to the
Workshop “Multiple Solutions in Many-Body Theories”
held in Paris for interesting discussions. A. T. also thanks
the group of A. Rubtsov for the hospitality at the Russian
Quantum Center. We acknowledge support from FWF
through Project No. I 2794-N35 (T. S. and A. T.) and from
the research unit FOR 1346 of the DFG (G. S.).

[1] A. A. Abrikosov, L. P. Gorkov, and F. A. Davis, Methods
of Quantum Field Theory in Statistical Physics (Dover,
New York, 1963).

[2] A. L. Fetter and J. D. Valecka, Quantum Theory of Many-
Particle Systems (McGraw-Hill, New York, 1971).

[3] G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 (1961).
[4] J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960).
[5] L. Hedin and S. Lundqvist, Solid State Phys. 23, 1 (1970).
[6] N. E. Bickers, D. J. Scalapino, and S. R. White, Phys. Rev.

Lett. 62, 961 (1989).
[7] W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, and

K. Schönhammer, Rev. Mod. Phys. 84, 299 (2012).
[8] For a review, see, e.g., N. E. Bickers, Int. J. Mod. Phys. B

05, 253 (1991); Theoretical Methods for Strongly Corre-
lated Electrons, edited by D. Senechal, A. Tremblay, and C.
Bourbonnais (Springer-Verlag, New York, 2004), Chap. 6.

[9] A. Georges, G. Kotliar, W. Krauth, and M. Rozenberg, Rev.
Mod. Phys. 68, 13 (1996).

[10] K. Van Houcke, E. Kozik, N. Prokof’ev, and B. Svistunov,
in Computer Simulation Studies in Condensed Matter
Physics XXI, edited by D. Landau, S. Lewis, and H.
Schuttler (Springer-Verlag, Berlin, 2008); E. Kozik, K. V.
Houcke, E. Gull, L. Pollet, N. Prokof’ev, B. Svistunov, and
M. Troyer, Europhys. Lett. 90, 10004 (2010).

[11] A. Toschi, A. A. Katanin, and K. Held, Phys. Rev. B 75,
045118 (2007).

[12] A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein,
Phys. Rev. B 77, 033101 (2008).

[13] A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein,
Ann. Phys. (Amsterdam) 327, 1320 (2012).

[14] G. Rohringer, A. Toschi, H. Hafermann, K. Held, V. I.
Anisimov, andA. A.Katanin, Phys.Rev.B88, 115112 (2013).

[15] T. Ayral and O. Parcollet, Phys. Rev. B 92, 115109 (2015);
93, 235124 (2016).

[16] T. Ayral and O. Parcollet, Phys. Rev. B 94, 075159 (2016).
[17] W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324

(1989); M. Jarrell, Phys. Rev. Lett. 69, 168 (1992).

[18] T. Schäfer, G. Rohringer, O. Gunnarsson, S. Ciuchi, G.
Sangiovanni, and A. Toschi, Phys. Rev. Lett. 110, 246405
(2013).

[19] T. Schäfer, S. Ciuchi, M. Wallerberger, P. Thunström, O.
Gunnarsson, G. Sangiovanni, G. Rohringer, and A. Toschi,
Phys. Rev. B 94, 235108 (2016).

[20] E. Kozik, M. Ferrero, and A. Georges, Phys. Rev. Lett. 114,
156402 (2015).

[21] V. Janiš and V. Pokorny, Phys. Rev. B 90, 045143 (2014).
[22] T. Ribic, G. Rohringer, and K. Held, Phys. Rev. B 93,

195105 (2016).
[23] A. Stan, P. Romaniello, S. Rigamonti, L Reining, and J. A.

Berger, New J. Phys. 17, 093045 (2015).
[24] R. Rossi and F. Werner, J. Phys. A 48, 485202 (2015).
[25] G. Lani, P. Romaniello, and L. Reining, New J. Phys. 14,

013056 (2012).
[26] R. Rossi, F. Werner, N. Prokof’ev, and B. Svistunov, Phys.

Rev. B 93, 161102(R) (2016).
[27] W. Tarantino, P. Romaniello, J. A. Berger, and L. Reining,

Phys. Rev. B 96, 045124 (2017).
[28] J. M. Luttinger, Phys. Rev. 119, 1153 (1960).
[29] T. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler, Rev.

Mod. Phys. 77, 1027 (2005).
[30] L. Pollet, N. V. Prokof’ev, and B. V. Svistunov, Phys. Rev. B

83, 161103 (2011); S. Biermann, F. Aryasetiawan, and A.
Georges, Phys. Rev. Lett. 90, 086402 (2003).

[31] M. Potthoff, Eur. Phys. J. B 32, 429 (2003).
[32] M. Potthoff, Condens. Matter Phys. 9, 557 (2006).
[33] O. Gunnarsson, T. Schäfer, J. P. F. LeBlanc, J. Merino, G.

Sangiovanni, G. Rohringer, and A. Toschi, Phys. Rev. B 93,
245102 (2016).

[34] Actually, this representation corresponds to the so-called
one-point model; see, e.g., Refs. [23–26].

[35] J. Hubbard, Proc. R. Soc. A 276, 238 (1963); M. C.
Gutzwiller, Phys. Rev. Lett. 10, 159 (1963); J. Kanamori,
Prog. Theor. Phys. 30, 275 (1963).

[36] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.119.056402 for further
analytical derivations and numerical results, which also
includes Refs. [37–39].

[37] J. Hubbard, Phys. Rev. Lett. 3, 77 (1959).
[38] J. E. Hirsch, Phys. Rev. B 28, 4059 (1983).
[39] F. J. Dyson, Phys. Rev. 85, 631 (1952).
[40] J. E. Hirsch and R.M. Fye, Phys. Rev. Lett. 56, 2521 (1986).
[41] F. Gray,U.S. PatentNo. 2632, 058 (1953); C. D.Miller,Binary

Numbers and the Standard Gray Code. Mathematical Ideas,
9th ed. (Addison-Wesley, Reading, MA, 2000), Chap. 4.

[42] G. Rohringer, A. Valli, and A. Toschi, Phys. Rev. B 86,
125114 (2012).

[43] P.W. Anderson, Science 235, 1196 (1987); S. Liang, B.
Doucot, and P.W. Anderson, Phys. Rev. Lett. 61, 365 (1988).

[44] J. Merino and O. Gunnarsson, J. Phys. Condens. Matter 25,
052201 (2013); Phys. Rev. B 89, 245130 (2014).

[45] T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999).
[46] T. Schäfer, F. Geles, D. Rost, G. Rohringer, E. Arrigoni, K.

Held, N. Blümer, M. Aichhorn, and A. Toschi, Phys. Rev. B
91, 125109 (2015).

[47] O. Gunnarsson, T. Schäfer, J. P. F. LeBlanc, E. Gull, J.
Merino, G. Sangiovanni, G. Rohringer, and A. Toschi, Phys.
Rev. Lett. 114, 236402 (2015).

PRL 119, 056402 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

4 AUGUST 2017

056402-5

https://doi.org/10.1103/PhysRev.124.287
https://doi.org/10.1103/PhysRev.118.1417
https://doi.org/10.1016/S0081-1947(08)60615-3
https://doi.org/10.1103/PhysRevLett.62.961
https://doi.org/10.1103/PhysRevLett.62.961
https://doi.org/10.1103/RevModPhys.84.299
https://doi.org/10.1142/S021797929100016X
https://doi.org/10.1142/S021797929100016X
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1209/0295-5075/90/10004
https://doi.org/10.1103/PhysRevB.75.045118
https://doi.org/10.1103/PhysRevB.75.045118
https://doi.org/10.1103/PhysRevB.77.033101
https://doi.org/10.1016/j.aop.2012.01.002
https://doi.org/10.1103/PhysRevB.88.115112
https://doi.org/10.1103/PhysRevB.92.115109
https://doi.org/10.1103/PhysRevB.93.235124
https://doi.org/10.1103/PhysRevB.94.075159
https://doi.org/10.1103/PhysRevLett.62.324
https://doi.org/10.1103/PhysRevLett.62.324
https://doi.org/10.1103/PhysRevLett.69.168
https://doi.org/10.1103/PhysRevLett.110.246405
https://doi.org/10.1103/PhysRevLett.110.246405
https://doi.org/10.1103/PhysRevB.94.235108
https://doi.org/10.1103/PhysRevLett.114.156402
https://doi.org/10.1103/PhysRevLett.114.156402
https://doi.org/10.1103/PhysRevB.90.045143
https://doi.org/10.1103/PhysRevB.93.195105
https://doi.org/10.1103/PhysRevB.93.195105
https://doi.org/10.1088/1367-2630/17/9/093045
https://doi.org/10.1088/1751-8113/48/48/485202
https://doi.org/10.1088/1367-2630/14/1/013056
https://doi.org/10.1088/1367-2630/14/1/013056
https://doi.org/10.1103/PhysRevB.93.161102
https://doi.org/10.1103/PhysRevB.93.161102
https://doi.org/10.1103/PhysRevB.96.045124
https://doi.org/10.1103/PhysRev.119.1153
https://doi.org/10.1103/RevModPhys.77.1027
https://doi.org/10.1103/RevModPhys.77.1027
https://doi.org/10.1103/PhysRevB.83.161103
https://doi.org/10.1103/PhysRevB.83.161103
https://doi.org/10.1103/PhysRevLett.90.086402
https://doi.org/10.1140/epjb/e2003-00121-8
https://doi.org/10.5488/CMP.9.3.557
https://doi.org/10.1103/PhysRevB.93.245102
https://doi.org/10.1103/PhysRevB.93.245102
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1103/PhysRevLett.10.159
https://doi.org/10.1143/PTP.30.275
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.056402
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.056402
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.056402
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.056402
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.056402
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.056402
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.056402
https://doi.org/10.1103/PhysRevLett.3.77
https://doi.org/10.1103/PhysRevB.28.4059
https://doi.org/10.1103/PhysRev.85.631
https://doi.org/10.1103/PhysRevLett.56.2521
https://doi.org/10.1103/PhysRevB.86.125114
https://doi.org/10.1103/PhysRevB.86.125114
https://doi.org/10.1126/science.235.4793.1196
https://doi.org/10.1103/PhysRevLett.61.365
https://doi.org/10.1088/0953-8984/25/5/052201
https://doi.org/10.1088/0953-8984/25/5/052201
https://doi.org/10.1103/PhysRevB.89.245130
https://doi.org/10.1088/0034-4885/62/1/002
https://doi.org/10.1103/PhysRevB.91.125109
https://doi.org/10.1103/PhysRevB.91.125109
https://doi.org/10.1103/PhysRevLett.114.236402
https://doi.org/10.1103/PhysRevLett.114.236402

