
Testing a Saturation-Based Theorem Prover:
Experiences and Challenges?

Giles Reger1, Martin Suda2, and Andrei Voronkov1,3,4

1 University of Manchester, Manchester, UK
2 TU Wien, Vienna, Austria

3 Chalmers University of Technology, Gothenburg, Sweden
4 EasyChair

Abstract. This paper attempts to address the question of how best to assure the
correctness of saturation-based automated theorem provers using our experience
with developing the theorem prover Vampire. We describe the techniques we cur-
rently employ to ensure that Vampire is correct and use this to motivate future
challenges that need to be addressed to make this process more straightforward
and to achieve better correctness guarantees.

1 Introduction
This paper considers the problem of checking that a saturation-based automated the-
orem prover is correct. We consider this question within the context of the Vampire
theorem prover [14], but many of our discussions generalise to similar theorem provers
such as E [22], SPASS [26], and iProver [13]. We discuss what we mean precisely by
correctness, describe how we detect bugs and, as our main contribution, outline the
challenges that need to be addressed.

Automated theorem provers (ATPs) are often used as black boxes in other tech-
niques (e.g. program verification) and those techniques rely on the results of the theo-
rem prover for the correctness of their own results. Another area that makes use of ATPs
is the application of so-called hammers [15, 12] in interactive theorem proving. These
combinations usually provide functionality to reconstruct the proofs of the ATP using
their own trusted kernels, although also offer users the option to skip such steps.

It is clear that correctness is important here, so how are we doing? Most theorem
provers seem to be generally correct. However, cases of unsoundness are not uncom-
mon. In SMT-COMP 2016 there were 603 conflicts (solvers returning different results)
on 73 benchmarks caused by three solvers giving incorrect results for various reasons.5

In the CASC competition [25], there is a period of testing where soundness is checked
and resolved, and there have been a number of solvers later disqualified from the compe-
tition due to unsoundness. In our experience, adding a new feature to a theorem prover is
a highly complex task and it is easy to introduce unsoundness, or general incorrectness,
especially in areas of the code that are encountered during proof search infrequently.
? This work was supported by EPSRC Grant EP/K032674/1, ERC Starting Grant 2014 SYM-

CAR 639270, Austrian research projects FWF S11403-N23 and S11409-N23, and the Wal-
lenberg Academy Fellowship 2014 – TheProSE.

5 See http://smtcomp.sourceforge.net/2016/.

This paper begins by describing what we mean by correctness with respect to satu-
ration-based theorem provers (Section 2) and the approach we take to finding and fixing
bugs (Section 3). This provides sufficient context to present a set of challenges that need
to be addressed to produce a better solution to this problem (Section 4). Addressing
these challenges is part of our current ongoing research. An extended version of this
paper containing examples of bugs found in Vampire is available online [20].

2 What Does Correctness Mean for Us?

Broadly there are two ways in which a theorem prover such as Vampire can be incorrect:
either it returns the wrong result, or it violates a contract of proper behaviour.

2.1 Incorrect result

To understand what a correct and incorrect result mean to Vampire, we need to intro-
duce some of the theoretical foundations of the underlying technique. We note that the
approach used by Vampire is the same as that taken by other first-order theorem provers,
so these discussions, and the challenges outlined later, generalise beyond Vampire.

Vampire accepts problems (formulas) in the form

(Premise1 ∧ . . . ∧ Premisen)→ Conjecture (1)

and can give one of three answers:

– Theorem, if (1) is true in all models,
– Non-Theorem, if there are models in which (1) is false, and
– Unknown, if Vampire cannot deduce one of the previous answers.

Providing one of the first two results when that result does not hold is clearly incorrect.
Providing Unknown as the result is clearly incorrect in the sense that there is a known
answer, but, due to the undecidability of first-order-logic and the general hardness of the
problem, it is often unavoidable. However, as discussed below, we should understand
the different ways in which Unknown as a result can be produced. Note that Unknown
will be returned if Vampire exceeds either the time or memory allotted to it.

More specifically, Vampire is a refutational theorem prover; it establishes the valid-
ity of problems in the form (1) by detecting unsatisfiability of its negation:

Premise1 ∧ . . . ∧ Premisen ∧ ¬Conjecture. (2)

This works by translating (2) into a set of clauses S and adding consequences of S until
the contradiction false is derived or all possible consequences have been added. This
process is called saturation and may not terminate in general for a satisfiable set S.

If Vampire derives a contradiction then it has shown that the problem (1) is valid,
i.e. a theorem. Deriving a contradiction when the problem in (1) is not valid is unsound
and an incorrect result.

If Vampire fails to derive a contradiction and saturates the set S in finitely many
steps then there is a result [2] telling us that under certain conditions we can conclude
that false cannot be a consequence of S and therefore problem (1) is a non-theorem.

2

These conditions capture the completeness of the underlying inference system and gen-
erally require that all possible non-redundant inferences have been performed.

However, there are many things that Vampire does to heuristically improve proof
search that break the completeness conditions. For example, (i) certain well-performing
selection functions [10] might prevent inferences that need to be performed for com-
pleteness conditions to hold; and (ii) some preprocessing steps and proof search strate-
gies explicitly remove clauses from the search space in an attempt to mitigate search
space explosion [11, 21]. If the completeness conditions do not hold then upon satura-
tion the result is Unknown. Sometimes it is easy to detect when these conditions hold,
sometimes it is non-trivial, and sometimes they are erroneously broken. In this last case
(when we think the conditions hold but they do not) this will lead to incorrectly report-
ing non-theorem i.e. this completeness issue is another kind of incorrect result.

To ensure the requirement that all possible non-redundant inferences will in the
end be performed, we impose certain fairness criteria on the saturation process. More
concretely, we require that no such inference is postponed indefinitely. Notice that this is
by nature a tricky condition to deal with as it cannot be seen to have been violated after
finitely many steps while the prover is running. And since, due to the semi-decidability
of first-order logic, there is no upper bound on the length of the computation required
to derive false , a non-fair implementation might in certain cases never be able to return
Theorem, even if it is the correct answer and instead keep computing indefinitely. Thus,
this fairness issue does not lead to an incorrect result per se, but rather just negatively
influences performance. As such it may be extremely hard to detect and deal with.

2.2 Violating the contract of proper behaviour
There are two kinds of contracts of proper behaviour that Vampire can violate: those
introduced implicitly by the underlying system, and those introduced explicitly by us in
the form of assertions. We discuss both kinds of bug below:

– Program crash. A program crash is where Vampire terminates unexpectedly, usu-
ally due to an unhandled exception, floating point error (SIGFPE), or segmentation
fault (SIGSEG). Unhandled exceptions are bugs as we should handle them. In gen-
eral, Vampire handles all known classes of exceptions at the top level, but we have
recently had issues with integrated tools (MiniSAT and Z3) producing exceptions
that we did not handle. Floating point errors and segmentation faults are typical
software bugs that should be detected and removed.

– Assertion violation. Vampire is developed defensively with frequent use of asser-
tions. For example, these are inserted wherever a function makes some assumptions
about its input or the results of a nested function call, and wherever we believe a
certain line to be unreachable. Vampire consists of roughly 194,000 lines of C++
code with roughly 2,500 assertions, meaning that there is roughly one assertion per
77 lines. The majority of potential errors are detected early as assertion violations.

3 Finding Bugs
In this section we briefly describe how we detect and investigate bugs in Vampire where
these two steps can be equally difficult. The search space for Vampire is vast, and find-
ing the combination of inputs that triggers a bug is very difficult. Some bugs are incred-

3

ibly subtle, particularly soundness bugs or those involving memory errors, and tracking
them down can involve hunting through thousands of lines of output.

3.1 The Input Search Space
The two inputs to Vampire are the input problem and a strategy capturing proof search
parameters. The space of possible input problems is infinite. However, we do not cur-
rently explore this space systematically. Instead we sample from sets of representative
benchmarks, e.g. TPTP [24] (∼20k problems) and SMT-LIB [4] (∼46k relevant prob-
lems). Vampire currently uses roughly 75 proof search parameters with more than half
of these having more than two possible values and some taking arbitrary numeric val-
ues (although in testing we fix these to a predefined sensible set). Therefore, the search
space is significantly larger than 275, i.e. too large to explore systematically.

3.2 The Debug Process
Bug reports come from two sources:

– Users of the Vampire system may report bugs to us. Currently this is an informal
process carried out by personal email. Sometimes these bugs are actually feature
requests, and other times they can be due to a misuse of Vampire.

– More commonly, they come from randomly sampling the parameter space and sets
of available problems (ensuring reasonable diversity in terms of features and status,
e.g. theorems and non-theorems). We use a cluster6 that enables us to carry out
around a million checks a day (using varying short time limits).

Once an error is detected, we must diagnose and fix the fault. Below we describe some
of our methods for doing this.

– Tracing. Vampire has its own library for tracing function calls. A macro is manually
inserted at the start of each significant function. This macro enables the tracing
library to maintain the current call stack, which is then printed on an assertion
violation or during signal handling along with the number of such call points passed
so far. This second piece of information can be used to explicitly log function calls
for some range of call points, e.g. those just before the erroneous point. This feature
is invaluable in quickly locating the cause of an assertion violation.

– Memory Checking. Vampire implements its own memory management library, al-
lowing fine-grained control of memory allocation and deallocation and enforcement
of soft memory limits. In debug mode, Vampire keeps track of each allocated piece
of memory and checks that the corresponding deallocation is as expected. Vampire
also reports memory leaks i.e. unallocated memory at the end of the proof search.

– Segmentation Faults and Silent Memory Issues. The most difficult bug to debug is a
rogue pointer or piece of uninitialised memory. We find that a first step of applying
Valgrind7 will often detect the more straightforward issues. However, such bugs are
often only noticed via incorrect results and fixed by much manual effort.

– Proof Checking. To detect unsoundness we employ proof checking, which we dis-
cuss further below. We do not currently have a corresponding method for checking
that a saturated set complies with necessary completeness conditions.

6 Consisting of 46 nodes with quad-core Intel Xeon CPUs and 12GB RAM.
7 http://valgrind.org

4

3.3 Proof Checking

The easiest way to confirm a result indicating that the input formula is a theorem is to
check that the associated proof only performs sound inference steps. This process is
called proof checking and here we briefly describe the capabilities and limitations of
the proof checking technique as currently realised in Vampire.

We introduce the idea of proof checking using an example (see [17] for more infor-
mation about proofs in Vampire). Given the clauses

p(a) ¬p(x) ∨ b = x ¬p(b)

Vampire will produce the following proof in TPTP format8

1. p(a) [input]
2. ˜p(X0) | b = X0 [input]
3. ˜p(b) [input]
4. a = b [resolution 2,1]
5. ˜p(a) [backward demodulation 4,3]
7. $false [subsumption resolution 5,1]

A proof is a directed acyclic graph printed in a linear form where nodes that have no
incoming edges are either input formulas or axioms introduced by Vampire, and the
single node with no outgoing edges contains the contradiction. In the above proof each
derived clause is labelled with the name of the inference and the lines of the premises.

To check a proof we just need to establish that for each inference its conclusion
logically follows from its premises. By running vampire -p proofcheck we can
produce a series of TPTP problems capturing each proof step. For example the follow-
ing problem captures step 5 in the above proof.

fof(pr4,axiom, a = b).
fof(pr3,axiom, ˜p(b)).
fof(r5,conjecture, ˜p(a)).

We can pass these directly to an independent theorem prover9 and if a step cannot be
independently verified then it should be investigated.

4 A Sample of Bugs

We now illustrate the kinds of bugs that can appear in Vampire. The majority of these
bugs were detected during development, but still managed to exist in the development
version of Vampire for some time before they were detected and fixed. We attempt to
include explanations of why the bugs were not detected immediately, which informs
our later discussion of what could be done better.

8 All TPTP-compliant provers must produce proofs in this format (see http://www.cs.
miami.edu/˜tptp/TPTP/QuickGuide/Derivations.html). We note that the
TPTP project also provides separate proof checking tools [23].

9 Currently we use E [22], iProver [13], and CVC4 [3] as independent provers but could use any
accepting TPTP formatted problems.

5

4.1 A Very Effective Skolemisation Optimisation

Skolemisation is a necessary step of the process used to translate an input formula into a
clause (see [19] for how Vampire implements this process). The standard transformation
is as follows

(∃x)(ϕ[x]) −→ ϕ[fx(y1, ..., yk)]

where y1, ..., yk are variables universally quantified in the containing formula. An opti-
mised version of this transformation can be produced by noticing that in

(∀x)((∃y)(p(y, y)) ∨ (∃z)(q(x, z)))

the variable y does not rely on x and (∀x) can be pushed in; this is called miniscoping.
A buggy implementation of this optimisation introduced the transformation

(∃x)(ϕ[x]) −→ ϕ[fx(y1, ..., yk)]

where y1, ..., yk are variables universally quantified in the containing formula and oc-
curring in ϕ[x]. To understand why this is buggy consider

(∀u)(∃x)(p(x, u) ∧ (∃y)q(x, y))

here we have (∃y)q(x, y) not containing u so it would be Skolemised to q(f(u), g)
according to the above rule. However, this is incorrect as x is itself dependent on the
universally quantified u. The correct rule should instead be

(∃x)(ϕ[x]) −→ ϕ[fx(y1, ..., yk)]

where y1, ..., yk are variables universally quantified in the containing formula and oc-
curring in ϕ[x]σ where σ is a substitution containing previous Skolemisations.

With this corrected rule, the Skolemised example formula becomes:

p(f(u), u) ∧ q(f(u), g(u)).

We expected this optimisation to improve performance, so when it did we did not
immediately realise that this was due to Vampire solving a different, often slightly eas-
ier, problem. This was only detected when inspecting a different proof to understand a
separate issue.

4.2 Troubles in Parsing

When the parser in Vampire was first extended to handle the unary minus arithmetic
operator it erroneously parsed −t as (t) − (−t), effectively resulting in 2t. This was
caused by incorrectly modifying a function that previously handled binary operators
only. Whilst we would expect such an error to lead to a crash, the function instead fell
through a case statement treated it as binary minus with−t as the second term. This was
not immediately detected as we did not have many non-theorem problems containing
unary minus in our test set.

6

4.3 Memory Issues
Bugs involving memory allocation can be very difficult to debug. In one case a class for
representing propositional clauses declared an array

SATLiteral _literals[1];

i.e. with implicit size of 1 but then ensured that the correct amount of memory was al-
located and initialised. With one exception: in the case of the empty clause no memory
was allocated. Later the class was extended with extra fields and a non-trivial construc-
tor, which implicitly initialised the array. In the case of the empty clause this caused a
constructor to be called on an unallocated piece of memory i.e. a random piece of mem-
ory, most likely already used, was written to, leading to non-deterministically unsound
behaviour.

In a similar case, an implementation of skip lists employed a similar trick which
behaved as expected in debug mode. However, in release mode a higher level of optimi-
sation (-0 3) was applied, which removed necessary code. It was unclear whether the
trick or the optimisation were at fault but in either case the bug was difficult to diagnose
as it only occurred in release mode.

4.4 Problems with Hashing over Raw Data
Vampire makes heavy use of data structures which rely on hashing. For each class of
objects that could be a key we typically have overloaded functions specifying what it
means to hash such objects. However, there is also a fallback implementation which
simply hashes the sizeof(o)-many bytes starting from the address &o.

This became the source of a hard to discover bug when moving to a new platform.
To meet a memory alignment requirement, a new compiler decided that a struct holding
an int and a pointer should occupy 16 bytes, but only 12 of these corresponded to
the actually stored values. The remaining 4 bytes of padding would in principle hold
arbitrary values, while still participating in the hash computation.

Here the original code worked correctly and it was moving to a new platform that
introduced the bug. Therefore, it was difficult to apply the what changed recently ques-
tion in a specific way.

4.5 Inconsistent Theory Axioms
For reasoning in theories Vampire adds theory axioms (formulas such as x+y = y+x).
When these were added the incorrect axiom

0 ≤ x ∨ abs(−x) = x

was added instead of
¬(0 ≤ x) ∨ abs(−x) = x

where abs is meant to give the absolute value of a number. This allowed Vampire to
derive an inconsistency using the added theory axioms alone. However, this was not
detected for some time as the theory axiom was used to describe a feature that was
rarely used and never used in a non-theorem problem in our testing set of problems. At
another point a more subtle inconsistency was introduced that survived for a while as
the proof of inconsistency from theory axioms was very long. Since encountering these
issues we have added an assertion that a proof should contain formulas from the input!

7

4.6 Misusing Z3
In a recently added feature we make use of the Z3 SMT solver [?], which we use via
its API. A number of bugs occurred due to misusing this API and Z3 in general. The
first bug was based on failing to guard statements that could represent division by zero.
Z3 treats division as an underspecified function and is allowed to assign any value to
t/0. This was inconsistent with our use of Z3 and led to unsound inference steps. In
another case we made use of an API call that returned an object without increasing a
reference counter, and consequently had memory issues as the object was sometimes
deleted. A final bug was traced to Z3 itself and quickly fixed by their developers. This
demonstrates the additional issues involved with integrating other tools.

5 Proof Checking

The easiest way to confirm a result indicating that the input formula is a theorem is to
check that the associated proof only performs sound inference steps. This process is
called proof checking and here we briefly describe the capabilities and limitations of
the proof checking technique as currently realised in Vampire.

5.1 Checking a Proof
We introduce the idea of proof checking using an example (see our previous work [17]
for more information about proofs in Vampire). Given the clauses

p(a) ¬p(x) ∨ b = x ¬p(b)

Vampire will produce the following proof

1. p(a) [input]
2. ˜p(X0) | b = X0 [input]
3. ˜p(b) [input]
4. a = b [resolution 2,1]
5. ˜p(a) [backward demodulation 4,3]
7. $false [subsumption resolution 5,1]

A proof is a directed acyclic graph printed in a linear form where nodes that have
no incoming edges are either input formulas or axioms introduced by Vampire, and the
single node with no outgoing edges contains the contradiction. In the above proof each
derived clause is labelled with the name of the inference and the lines of the premises.

To check a proof we just need to establish that for each inference that its conse-
quence logically follows from its premises. By running vampire -p proofcheck
we can produce the following output in TPTP format which captures the three problems
that need to be solved to check that the proof is correct.

fof(r4,conjecture, a = b). %resolution
fof(pr2,axiom, (! [X0] : (˜p(X0) | b = X0))).
fof(pr1,axiom, p(a)).
%#
fof(r5,conjecture, ˜p(a)). %backward demodulation

8

fof(pr4,axiom, a = b).
fof(pr3,axiom, ˜p(b)).
%#
fof(r7,conjecture, $false). %subsumption resolution
fof(pr5,axiom, ˜p(a)).
fof(pr1,axiom, p(a)).

We can pass these directly to an independent theorem prover and if a step cannot be
independently verified then it should be investigated.

5.2 What We are Missing

The above description suggests that we have a good method for checking the correctness
of proofs. However, there are two problems with the above approach. The first problem
is that in our experience it is not uncommon for a proof step to not be independently
verified whilst still being sound. Such false positives take a lot of time to investigate.
The second, and more substantial, problem is that there are parts of the proof process
that cannot be handled by the above approach. There are two main classes of inferences
that cannot be handled in this way:

Symbol Introducing Preprocessing. Certain inference steps of the clausification phase,
e.g. Skolemization and formula naming [19], introduce new symbols and as such do
not preserve logical equivalence. This means the conclusion of the inference does not
logically follow from its premises. What these steps only preserve is global satisfiabil-
ity of the clause set they modify. One necessary condition for correctness is that the
introduced symbols be fresh, i.e. not appearing elsewhere in the input. This cannot (in
principle) be checked by the described approach and requires a non-trivial extension.

SAT and SMT solving. Vampire makes use of SAT and SMT solvers in various ways
(see [18]). This means that we have some inferences in Vampire that are of the form P1∧
. . .∧Pn → C by SAT/SMT, or even the argument that some abstraction or grounding of
the premises leads to C by SAT or SMT solving. To handle such proof steps we need to
collect together the premises (potentially apply the necessary abstraction or grounding)
and run a SAT or SMT solver as appropriate.

6 Challenges

We now present a discussion of what we have identified as the main challenges left to
be solved, or at least addressed, given in order of importance, as we perceive it.

6.1 Full and Automated Proof Checking

As described in Section 3.3, there is already reasonable support for independently
checking the correctness of proofs. However, this situation could still be improved.

Missing Features. There are parts of proofs that cannot currently be proof checked, the
two main parts are:

9

– Symbol Introducing Preprocessing. Certain inference steps of the clausification
phase, e.g. Skolemization and formula naming [19], introduce new symbols and
as such do not preserve logical equivalence. This means the conclusion of the in-
ference does not logically follow from its premises. What these steps preserve is
global satisfiability of the clause set they modify. One necessary condition for cor-
rectness is that the introduced symbols be fresh, i.e. not appearing elsewhere in the
input. This requires a non-trivial extension to the described approach.

– SAT and SMT solving. Vampire makes use of SAT and SMT solvers in various ways
(see [18]). This means that we have some inferences in Vampire that are of the
form P1 ∧ . . . ∧ Pn → C by SAT/SMT, or even the argument that some abstraction
or grounding of the premises leads to C by SAT or SMT solving. To handle such
proof steps we need to collect together the premises (potentially apply the necessary
abstraction or grounding) and run a SAT or SMT solver as appropriate.

Extra information may need to be added to proofs to support these checks.

Automating Proof Checking. Having tools able to check the correctness of proofs is
irrelevant if those tools are not used. Ideally, theorem provers should provide the func-
tionality to check the proofs that they produce automatically. As the problems produced
during proof checking are often easy to solve, one could imagine a situation where, in
a certain mode, a theorem prover applied proof checking to its proof output.

Independence. It might not be possible to find an independent solver able to handle
the problems produced by proof checking. A solver might not be able to check an
individual step, because it is too hard, or not be able to handle the language features
the problem contains. A weaker independence could be achieved by making use of a
previous version of the original theorem prover that we are more confident in.

6.2 Analysability of Unsound Proofs
Checking whether a proof is correct or not is essential. However, knowing that a proof is
incorrect is not, in itself, very useful. Another missing piece to this puzzle are tools that
can analyse proofs and extract, summarise or explain the reason the proof is incorrect.
The proof checking process will reveal the proof step that fails to hold, but the problem
of detecting the underlying reason for that proof step to have occurred is non-trivial.

One step in this direction is the application of delta-debugging [27] to reduce the
input to a simpler form to aid debugging efforts. This approach has been explored for
SAT/QBF solvers [5, 1] applied to both the input problem and the parameter space.

6.3 Handling Non-theorem Results
So far we have ignored the incorrect result of reporting a problem to be satisfiable when
it is not. It is not clear how to practically check whether a saturated set is indeed satu-
rated as the notion of saturation is dependent on the used calculus and its instantiation
with parameters such as the term ordering and literal selection methods.

Non-redundant inferences. A necessary condition for completeness it that proof
search never deletes anything that is not redundant. Checking this is significantly more
complex than proof checking. In proof checking we must check that each inference of
the proof is sound i.e. that we were allowed to perform those inferences to derive a

10

contradiction. If we have a saturated set then we should check that every inference that
we chose not to perform was redundant; this is what we often have to do manually, with
some intuition about what such inferences might be. The number of such inferences is
typically a few orders of magnitude larger than the length of a typical proof.

Monitoring fairness. To avoid missing a saturated set we need to satisfy the fairness
criteria discussed in Section 2.1. However, this is not monitorable in a formal sense
[8, 9] as it cannot be satisfied or violated based on a finite number of observations.
However, if we were to introduce a stronger property of bounded fairness [7], e.g. a
clause of age A will be processed within kA iterations for some constant k, then this
property becomes monitorable (this is now a response property).

6.4 Achieving Better Coverage with Random Testing
As previously discussed, due to the enormous variability in proof search parameters
and possible problem inputs, the best approach to detecting errors and incorrect results
is through random search. However, the current approaches to random search are not
optimal. Here we briefly outline areas of improvement.

Code Coverage. Our current approach makes no attempts to ensure that testing covers
all lines in the code. Even though this is a very weak notion of coverage, it could be
used to detect areas of code that should be tested, or removed if never used.

Coverage of the Parameter Space. Whilst random sampling of the parameter space can
be effective at discovering bugs, it is not clear that all areas of the parameter space
are of equal interest. Clearly, combinations of features that have not been tested to-
gether should have priority, and features added more recently should be tested more
thoroughly. In this vein we could borrow from T-wise test case generation strategies for
Software Product Lines [16] which aims to test all T-combinations of features.

Coverage of the Problem Space. This is an area where relatively little has been done (in
the first-order setting). We currently use libraries of existing problems as possible in-
puts to the testing process. However, if we do not have a problem that exercises a certain
feature sufficiently, we are unlikely to detect bugs related to that feature. For example,
the TPTP language contains features that are very rarely used within the TPTP library.
This issue is not confined to language features. Proof search is dependent on particu-
lar dimensions of the input problem (e.g. size, signature) that are difficult to quantify.
If the input problems do not cover these dimensions sufficiently then certain parts of
Vampire will not be tested effectively. A useful area of research would be the automatic
generation of problems, or fuzzing of existing problems, to cover such dimensions. In
this direction we could borrow from successful results in SAT/QBF solving [5, 6].

7 Conclusion
This paper describes our experience testing the Vampire theorem prover and what we
see as the challenges to overcome to help us improve this effort. The ideas we discuss
generalise to other theorem provers and some efforts, such as proof checking techniques
and better problem coverage, would be widely beneficial. Addressing the challenges set
out in this paper is part of our current research and we plan to provide a proof checking
tool that can fully and automatically check proofs produced by Vampire.

11

References

1. C. Artho, A. Biere, and M. Seidl. Model-based testing for verification backends. In Proc. 7th
Intl. Conf. on Tests & Proofs (TAP’13), LNCS, p. 17 pages. Springer, 2013.

2. L. Bachmair and H. Ganzinger. Resolution theorem proving. In Handbook of Automated
Reasoning, vol. I, chapter 2, pp. 19–99. Elsevier Science, 2001.

3. C. Barrett, C. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King, A. Reynolds, and
C. Tinelli. CVC4. In Proceedings of the 23rd International Conference on Computer Aided
Verification, number 6806 in Lecture Notes in Computer Science, pp. 171–177. Springer-
Verlag, 2011.

4. C. Barrett, A. Stump, and C. Tinelli. The Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org, 2010.

5. R. Brummayer, F. Lonsing, and A. Biere. Automated Testing and Debugging of SAT and
QBF Solvers, pp. 44–57. Springer Berlin Heidelberg, 2010.

6. N. Creignou, U. Egly, and M. Seidl. A Framework for the Specification of Random SAT and
QSAT Formulas, pp. 163–168. Springer Berlin Heidelberg, 2012.

7. N. Dershowitz, D. N. Jayasimha, and S. Park. Bounded Fairness, pp. 304–317. Springer
Berlin Heidelberg, 2003.

8. V. Diekert and M. Leucker. Topology, monitorable properties and runtime verification. The-
oretical Computer Science, 537:29 – 41, 2014. Theoretical Aspects of Computing (ICTAC
2011).

9. Y. Falcone, J.-C. Fernandez, and L. Mounier. Runtime Verification of Safety-Progress Prop-
erties, pp. 40–59. Springer Berlin Heidelberg, 2009.

10. K. Hoder, G. Reger, M. Suda, and A. Voronkov. Selecting the selection. In Automated
Reasoning: 8th International Joint Conference, IJCAR 2016, Coimbra, Portugal, June 27 –
July 2, 2016, Proceedings, pp. 313–329. Springer International Publishing, 2016.

11. K. Hoder and A. Voronkov. Sine qua non for large theory reasoning. In Automated Deduction
- CADE-23 - 23rd International Conference on Automated Deduction, Wroclaw, Poland, July
31 - August 5, 2011. Proceedings, vol. 6803 of Lecture Notes in Computer Science, pp. 299–
314. Springer, 2011.

12. C. Kaliszyk and J. Urban. Hol(y)hammer: Online ATP service for HOL light. Mathematics
in Computer Science, 9(1):5–22, 2015.

13. K. Korovin. iprover - an instantiation-based theorem prover for first-order logic (system
description). In Automated Reasoning, 4th International Joint Conference, IJCAR 2008,
Sydney, Australia, August 12-15, 2008, Proceedings, vol. 5195 of Lecture Notes in Computer
Science, pp. 292–298. Springer, 2008.

14. L. Kovács and A. Voronkov. First-order theorem proving and Vampire. In CAV 2013, vol.
8044 of Lecture Notes in Computer Science, pp. 1–35, 2013.

15. L. C. Paulson and J. C. Blanchette. Three years of experience with sledgehammer, a practical
link between automatic and interactive theorem provers. In IWIL 2010. The 8th International
Workshop on the Implementation of Logics, vol. 2 of EPiC Series in Computing, pp. 1–11.
EasyChair, 2012.

16. G. Perrouin, S. Sen, J. Klein, B. Baudry, and Y. l. Traon. Automated and scalable t-wise
test case generation strategies for software product lines. In Proceedings of the 2010 Third
International Conference on Software Testing, Verification and Validation, ICST ’10, pp.
459–468. IEEE Computer Society, 2010.

17. G. Reger. Better proof output for Vampire. In Vampire 2016. Proceedings of the 3rd Vampire
Workshop, vol. 44 of EPiC Series in Computing, pp. 46–60. EasyChair, 2017.

18. G. Reger and M. Suda. The uses of sat solvers in vampire. In Proceedings of the 1st and 2nd
Vampire Workshops, vol. 38 of EPiC Series in Computing, pp. 63–69. EasyChair, 2016.

12

19. G. Reger, M. Suda, and A. Voronkov. New techniques in clausal form generation. In GCAI
2016. 2nd Global Conference on Artificial Intelligence, vol. 41 of EPiC Series in Computing,
pp. 11–23. EasyChair, 2016.

20. G. Reger, M. Suda, and A. Voronkov. Testing a Saturation-Based Theorem Prover: Experi-
ences and Challenges (Extended Version). ArXiv e-prints, 2017.

21. A. Riazanov and A. Voronkov. Limited resource strategy in resolution theorem proving. J.
Symb. Comput., 36(1-2):101–115, 2003.

22. S. Schulz. E - a brainiac theorem prover. AI Commun., 15(2-3):111–126, 2002.
23. G. Sutcliffe. Semantic Derivation Verification: Techniques and Implementation. Interna-

tional Journal on Artificial Intelligence Tools, 15(6):1053–1070, 2006.
24. G. Sutcliffe. The TPTP problem library and associated infrastructure. J. Autom. Reasoning,

43(4):337–362, 2009.
25. G. Sutcliffe. The CADE ATP system competition - CASC. AI Magazine, 37(2):99–101,

2016.
26. C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar, M. Suda, and P. Wischnewski. SPASS

version 3.5. In Automated Deduction - CADE-22, 22nd International Conference on Auto-
mated Deduction, Montreal, Canada, August 2-7, 2009. Proceedings, vol. 5663 of Lecture
Notes in Computer Science, pp. 140–145. Springer, 2009.

27. A. Zeller. Yesterday, my Program Worked. Today, it Does Not. Why?, pp. 253–267. Springer
Berlin Heidelberg, 1999.

13

