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Oscillations of a visco-elastic belt drive

Alois Steindl1,∗

1 Institute for Mechanics and Mechatronics, TU Wien; Getreidemarkt 9; 1060 Wien

We investigate the loss of stability of the steady configuration of a planar visco-elastic belt drive. The belt is considered
as a linearly visco-elastic slender beam with small bending stiffness, which is driven by a steadily rotating drum. Due to
the presence of the small damping parameter and the small bending stiffness, the equations of motion are severly singularly
perturbed. By variation of system parameters, like the driving speed, the damping coefficient, the tension force and the radius
of the drums, we calculate the steady configuration and the stability limit of the belt. Our calculations show, that the viscous
damping, the distributed load and the strong bending at the drums can decrease the critical driving speed significantly and
lead to flutter oscillations.
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1 Introduction and model setup

Drive belts are frequently used tools for power transmission and their stable behaviour is important for the proper operation of
the facility. For slowly moving belts it is usually sufficient to consider the equilibrium states, but if the belt speed approaches
the wave speed in the belt, the influence of the drive motion has to be taken into account.
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Fig. 1: Mechanical model of the belt drive moving with veloc-
ity v

Fig. 2: Cross-sectional forces Fi, bending moment M , and
distributed forces qi acting on a beam segment

A simple model for the drive is displayed in Fig. 1: We assume, that the driving drum has radiusR2 and rotates in clockwise
direction. Furthermore, we assume, that there is no slip between the belt and the drum. Since in this configuration the tension
in the upper span of the belt is larger, we restrict our attention to this segment.

Before deriving the equations for the belt, we rescale the lengths by a reference length L0, like the distance between the
centers of the drum, the (generalized) forces by the pretension P0, and the time by

√
%AL2

0/P0, such that the wave speed in
the belt is scaled to unity. Assuming a Kelvin-Voigt material law and an extensible Euler-Bernoulli beam model for the belt,
we obtain the differential equations for a line segment displayed in Fig. 2, (see e.g. [1])

x′ = (1 + ε) cosϑ, y′ = (1 + ε) sinϑ, (1a)

ε+ δε̇ = βN = β(F1 cosϑ+ F2 sinϑ), γ(ϑ′ + δϑ̇′) =M, (1b)

M ′ = (1 + ε)(F1 sinϑ− F2 cosϑ), (1c)

F ′1 = −q1 + ẍ, F ′2 = −q2 + ÿ. (1d)

Here (·)′ denotes the derivative w.r.t. the rescaled unstrained arc length s, ϑ is the inclination angle, δ is the damping parameter,
β = P0/EA is the elongation due to pre-stretching and γ = EJ/(P0L

2
0) is the bending stiffness. For typical belts the

parameters δ, β and γ are very small.
In (1) the arc-length s denotes the length from a certain material point of the belt. In order to study steady motions, we set

s = S + vt, where the new variable S denotes the length along a steady configuration. With

∂u(s, t)

∂s
=
∂u(S + vt, t)

∂S
and

∂u(s, t)

∂t
=
∂u(S + vt, t)

∂t
+
∂u(S + vt, t)

∂S
v
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382 Section 5: Nonlinear oscillations
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Fig. 3: Variation of the critical eigenvalues for varying belt speeds
v. At v ≈ 0.64 a Hopf bifurcation occurs.

Fig. 4: Shape of the stationary state and the critical oscillations at
the Hopf bifurcation point

the time derivatives u̇ in (1) have to be replaced by vu′ + u̇, where the prime now denotes the derivative w.r.t. S. Therefore
the material laws and the equilibrium equations in (1) become

N = ε+ δ(vε′ + ε̇), M = γ(ϑ′ + δ(vϑ′′ + ϑ̇′)), (1b’)

F ′1 = −q1 + v2x′′ + 2vẋ′ + ẍ, F ′2 = −q2 + v2y′′ + 2vẏ′ + ÿ, (1d’)

where x′′ and y′′ are obtained by differentiating (1a). Since the parameters δ and γ are usually very small, the equations (1b’)
are severely singularly perturbed.

The boundary conditions at the endpoints state, that the free portion of the belt starts and ends at the circumference of the
drums and that the curvature is given by the radius of the drums. Further the time derivatives of ε and M vanish at the left
drum and the belt length remains constant

x(0) = −R1 sinϑ(0), x(L) = x1 −R2 sinϑ(L), (2a)

y(0) = R1 cosϑ(0), y(L) = y1 +R2 cosϑ(L), (2b)

ϑ′(0) = −1/R1, ϑ′(L) = −1/R2, (2c)

ε(0) = βN(0), γϑ′(0) =M(0), (2d)

−R1ϑ(0) + L+R2ϑ(L) = Lfix, (2e)

whereLfix denotes the unstretched cable length between the tops of both drums. It is initially calculated by requiringN(L) = 1
for the undriven belt v = 0. Also the length L of the belt’s free portion is an unknown quantity, which is obtained as part
of the solution of the boundary value problem. Contrary to [2] we assume, that no slipping occurs between the belt and the
drums.

2 Numerical Results

For the nondimensional parameter values R1 = R2 = 0.04, β = δ = 0.001, γ = 0.0001, q1 = 0, q2 = −0.2 the stationary
state and the eigenvalues were calculated for v ∈ [0.01, 2] using the BVP-solver Colsys ( [3]) and the continuation procedure
Hom ( [4]). The variation of the least stable eigenvalues over the drive speed v is displayed in Fig. 3, the shape of the stationary
state of the moving belt and the critical eigenfunctions at the Hopf bifurcation point is shown in Fig. 4. The strong bending at
the end points is clearly visible. While the stationary state is almost symmetrical, the eigenfunctions have a quite asymmetrical
shape. For the considered range of parameter values all other eigenvalues remain stable.
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