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Abstract

We introduce a novel kind of P systems in which the appli-
cation of rules in each step is controlled by a function on the
applicable multisets of rules. Some examples are given to exhibit
the power of this general concept. Moreover, for three well-known
models of P systems we show how they can be simulated by P
systems with a suitable fairness function.

1 Introduction

Membrane computing is a research field originally founded by Ghe-
orghe Păun in 1998, see [6]. Membrane systems (also known as P
systems) are a model of computing based on the abstract notion of a
membrane and the rules associated to it which control the evolution
of the objects inside. In many variants of P systems, the objects are
plain symbols from a finite alphabet, but P systems operating on more
complex objects (e.g., strings, arrays) have been considered, too, e.g.,
see [3].

A comprehensive overview of different flavors of membrane systems
and their expressive power is given in the handbook, see [7]. For a
state of the art snapshot of the domain, we refer the reader to the P
systems website [10] as well as to the bulletin series of the International
Membrane Computing Society [9].

In this paper we introduce a novel kind of P systems in which the
application of rules in each step is controlled by a function on the ap-
plicable multisets of rules, possibly also depending on the current con-
figuration; we call this function the fairness function. In the standard
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variant, the fairness function will be used to choose those applicable
multisets for which the fairness function yields the minimal value.

After recalling some preliminary notions and definitions in the next
section, in Section 3 we will define our new model of fair P systems and
give some examples to exhibit the power of this general concept. In
Section 4, for three well-known models of P systems we will show how
they can be simulated by P systems with a suitable fairness function.
Future research topics finally are touched in Section 5.

2 Preliminaries

In this paper, the set of positive natural numbers {1, 2, . . . } is denoted
by N+, the set of natural numbers also containing 0, i.e., {0, 1, 2, . . . },
is denoted by N. The set of integers denoted by Z.

An alphabet V is a finite set. A (non-empty) string s over an al-
phabet V is defined as a finite ordered sequence of elements of V .

A multiset over V is any function w : V → N; w(a) is the multiplicity
of a in w. A multiset w is often represented by one of the strings
containing exactly w(a) copies of each symbol a ∈ V ; the set of all
these strings representing the multiset w will be denoted by str(w).
The set of all multisets over the alphabet V is denoted by V ◦. By
abusing string notation, the empty multiset is denoted by λ.

The families of sets of Parikh vectors as well as of sets of natural
numbers (multiset languages over one-symbol alphabets) obtained from
a language family F are denoted by PsF and NF , respectively. The
family of recursively enumerable string languages is denoted by RE.

For further introduction to the theory of formal languages and com-
putability, we refer the reader to [7, 8].

2.1 (Hierarchical) P Systems

A hierarchical P system (P system, for short) is a construct

Π = (O, T, µ, w1, . . . , wn, R1, . . . Rn, hi, ho),
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where O is the alphabet of objects, T ⊆ O is the alphabet of ter-
minal objects, µ is the membrane structure injectively labeled by the
numbers from {1, . . . , n} and usually given by a sequence of correctly
nested brackets, wi are the multisets giving the initial contents of each
membrane i (1 ≤ i ≤ n), Ri is the finite set of rules associated with
membrane i (1 ≤ i ≤ n), and hi and ho are the labels of the input and
the output membranes, respectively (1 ≤ hi ≤ n, 1 ≤ ho ≤ n).

In the present work, we will mostly consider the generative case,
in which Π will be used as a multiset language-generating device. We
therefore will systematically omit specifying the input membrane hi.

Quite often the rules associated with membranes are multiset
rewriting rules (or special cases of such rules). Multiset rewriting rules
have the form u → v, with u ∈ Oo \ {λ} and v ∈ Oo. If |u| = 1, the
rule u → v is called non-cooperative; otherwise it is called cooperative.
Rules may additionally be allowed to send symbols to the neighboring
membranes. In this case, for rules in Ri, v ∈ O × Tari, where Tari
contains the targets out (corresponding to sending the symbol to the
parent membrane), here (indicating that the symbol should be kept in
membrane i), and inj (indicating that the symbol should be sent into
the child membrane j of membrane i).

In P systems, rules are often applied in the maximally parallel way:
in any derivation step, a non-extendable multiset of rules has to be
applied. The rules are not allowed to consume the same instance of
a symbol twice, which creates competition for objects and may lead
to the P system choosing non-deterministically between the maximal
collections of rules applicable in one step.

A computation of a P system is traditionally considered to be a
sequence of configurations it successively can pass through, stopping
at the halting configuration. A halting configuration is a configuration
in which no rule can be applied any more, in any membrane. The result
of a computation of a P system Π as defined above is the contents of
the output membrane ho projected over the terminal alphabet T .

Example 1. For readability, we will often prefer a graphical represen-
tation of P systems; moreover, we will use labels to identify the rules.
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For example, the P system Π1 = ({a, b}, {b}, [1 ]1, a, R1, 1) with the
rule set R1 = {1 : a→ aa, 2 : a→ b} may be depicted as in Figure 1.

1 : a→ aa

2 : a→ b

a
1

Figure 1. The example P system Π1

Due to maximal parallelism, at every step Π1 may double some of
the symbols a, while rewriting some other instances into b.

Note that, even though Π1 might express the intention of generating
the set of numbers of the powers of two, it will actually generate the
whole of N+ (due to the halting condition). Indeed, for any n ∈ N+,
an can be generated in n steps by choosing to apply, in the first n − 1
steps, 1 : a→ aa to exactly one instance of a and a→ b to all the other
instances, and by applying 2 : a→ b to every a in the last step (in fact,
for n > 1, in each step except the last one, in which 2 : a→ b is applied
twice, both rules are applied exactly once, as exactly two symbols a are
present, whereas all other symbols are copies of b). 2

While maximal parallelism and halting by inapplicability have
been standard ingredients from the beginning, various other deriva-
tion modes and halting conditions have been considered for P systems,
e.g., see [7].

2.2 Flattening

The folklore flattening construction (see [7] for several examples as well
as [4] for a general construction) is quite often directly applicable to
many variants of P systems. Hence, also for the systems considered in
this paper we will not explicitly mention how results are obtained by
flattening.
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3 P Systems with a Fairness Function

In this section we consider variants of P systems using a so-called fair-
ness function for choosing a multiset of rules out of the set of all mul-
tisets of rules applicable to a configuration.

3.1 The General Idea of a Fairness Function in P Sys-
tems

Take any (standard) variant of P systems and any (standard) deriva-
tion mode. The application of a multiset of rules in addition can be
guided by a function computed based on specific features of the un-
derlying configuration and of the multisets of rules applicable to this
configuration. The choice of the multiset of rules to be applied then de-
pends on the function values computed for all the applicable multisets
of rules.

Therefore, in general we extend the model of a hierarchical P system
to the model of a hierarchical P system with fairness function (fair P
system for short)

Π = (O, T, µ, w1, . . . , wn, R1, . . . Rn, hi, ho, f),

where f is the fairness function defined for any configuration C of Π, the
corresponding set Applδ(Π, C) of multisets of rules from Π applicable
to C in the given derivation mode δ, and any multiset of rules R ∈
Applδ(Π, C). We then use the values f(C,Applδ(Π, C), R) for all R ∈
Applδ(Π, C) to choose a multisetR′ ∈ Applδ(Π, C) of rules to be applied
to the underlying configuration C. A standard option for choosing R′

is to require it to yield the minimal value for the fairness function,
i.e., we require f(C,Applδ(Π, C), R′) ≤ f(C,Applδ(Π, C)), R) for all
R ∈ Applδ(Π, C). As usually the derivation mode δ will be obvious
from the context, we often shall omit it.

The fairness function may be independent from the underlying con-
figuration, i.e., we may write f(Appl(Π, C), R) only; in the simplest
case, f is even independent from Appl(Π, C), hence, in this case we
only write f(R).
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Fair or Unfair

One may argue that it is fair to use rules in such a way that each
rule should be applied if possible and, moreover, all rules should be
applied in a somehow balanced way. Hence, a fairness function for
applicable multisets should compute the best value for those multisets
of rules fulfilling these guidelines.

On the other hand, we may choose the multiset of rules to be applied
in such a way that it is the unfairest one. In this sense, let us consider
the following unfair example.

Example 2. Consider the P system Π1 = ({a, b}, {b}, [1 ]1, a, R1, 1)
with the rule set R1 = {1 : a → aa, 2 : a → b} as considered in
Example 1 together with the fairness function f2 defined as follows: if
a rule is applied n times then it contributes to the function value of the
fairness function f2 for the multiset of rules with 2−n. The total value
for f2(R) for a multiset of rules R containing k copies of rule 1 : a→ aa
and m copies of rule 2 : a → b then is the sum 2−k + 2−m. The
resulting fair P system Π2 = ({a, b}, {b}, [1 ]1, a, R1, 1, f2) is depicted
in Figure 2; we observe that it can also be written as (Π1, f2).

1 : a→ aa

2 : a→ b

a; f2
1

Figure 2. The P system Π2

In this fair P system (or in this case we might also call it maximally
unfair) with one membrane working in the maximally parallel way, we
again start with the axiom a and use the two rules 1 : a → aa and
2 : a → b. If we apply only one of these rules to all m objects a, then
the function value is 2−m and is minimal compared to the function
values computed for a mixed multiset of rules using both rules at least
once.
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Starting with the axiom a we use the rule 1 : a→ aa in the maximal
way k times thus obtaining 2k symbols a. Then in the last step, for all
a we use the rule 2 : a → b thus obtaining 2k symbols b. We cannot
mix the two rules in one of the derivation steps as only the clean use of
exactly one of them yields the minimal value for the fairness function.

We observe that the effect is similar to that of controlling the ap-
plication of rules by the well-known control mechanism called label se-
lection, e.g., see [5], where either the rule with label 1 or the rule with
label 2 has to be chosen. We will return to this model in Section 4.3.
2

The following weird example shows that the fairness function should
be chosen from a suitable class of (at least recursive) functions, as
otherwise the whole computing power comes from the fairness function:

Example 3. Take the fair P system Π3 with one membrane working
in the maximally parallel way, starting with the axiom a and using the
three rules 1 : a→ aa, 2 : a→ a, and 3 : a→ b, see Figure 3.

1 : a→ aa

2 : a→ a

3 : a→ b

a; fM
1

Figure 3. The P system Π3

Moreover, let M ⊂ N+, i.e., an arbitrary set of positive natural
numbers. The fairness function fM on multisets of rules over these
three rules and a configuration containing m symbols a is defined as
follows: For any multiset of rules R containing copies of the rules
1 : a→ aa, 2 : a→ a, and 3 : a→ b,

• f(R) = 0 if R only contains m copies of rule 3 and m ∈M ,
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• f(R) = 0 if R only contains exactly one copy of rule 1 and the
rest are copies of rule 2,

• f(R) = 1 for any other applicable multiset of rules.

Again the choice is made by applying only multisets of rules which
yield the minimal value f(R) = 0. If we use rule 1 : a→ aa once and
rule 2 : a → a for the rest, this increases the number of symbols a in
the skin membrane by one. Thus, in m− 1 steps we get m symbols a.
If m is in M, we now may use rule 3 : a → b for all symbols a, thus
obtaining m symbols b, and the system halts. In that way, the system
generates exactly {bm | m ∈M}.

To make this example a little bit less weird, we may only allow
computable sets M. Still, the whole computing power is in the fairness
function fM alone, with fM only depending on the multiset of rules. 2

We now again return to Example 2 and illustrate how the same re-
sult can be obtained by using another fairness function in the standard
unfair mode using the multsets of rules with minimal fairness value;
on the other hand, we will also show what happens if we try to be fair
and use the rules in a balanced way.

Example 4. Consider the P system Π1 = ({a, b}, {b}, [1 ]1, a, R1, 1)
with the rule set R1 = {1 : a → aa, 2 : a → b} as considered in
Example 1 together with the fairness function f4(R) for any multiset R
of rules defined as follows: consider f4(R) = |str(R)|, i.e., f4(R) is the
number of different strings representing the multiset R. The resulting
fair P system Π4 = (Π1, f4) = ({a, b}, {b}, [1 ]1, a, R1, 1, f4) is depicted
in Figure 4.

With the standard selection of multisets of rules to be applied by
choosing those with the minimal value of the fairness function, we
obtain the same result for the set of multisets generated by Π4, i.e.,
{a2n | n ∈ N}, because only the pure multisets of rules R containing
only copies of rule 1 or only copies of rule 2 yield f(R) = 1, whereas
any mixed multiset of rules containing both rules at least once yields a
bigger value.
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1 : a→ aa

2 : a→ b

a; f4
1

Figure 4. The P system Π4

On the other hand, if we try to be fair and use both rules in a
balanced way, i.e., by choosing those multisets of rules yielding the
maximum values of f4, then the generated set is the singleton {b},
which can be generated in one step from the axiom a by using rule
2 : a → b. Any other derivation starting with using rule 1 : a → aa
will not yield any result due to running into an infinite computation
without any chance to halt: as soon as aa has been generated, only
once the rule 1 : a → aa and once the rule 2 : a → b can be used
as only this combination of rules yields f4(〈1, 2〉) = |{12, 21}| = 2 >
1 = f4(〈1, 1〉) = f4(〈2, 2〉) (we here use the brackets 〈, 〉 to describe a
multiset). 2

The problem with halting observed in the example above when
using only non-cooperative rules seems to be an inherent one when
using a fair (balanced) selection of multisets of rules. These variants
may deserve further investigations in the future, but in this paper we
will restrict ourselves to the standard (maximally unfair) selection of
multisets of rules to be applied as in the previous examples.

4 First Results

In this section, we show three general results. The first one describes
how priorities can be simulated by a suitable fairness function in P
systems of any kind working in the sequential mode. The second one
exhibits how P systems with energy control, see [1], can be simulated
by suitable fair P systems for any arbitrary derivation mode. Finally
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we show how P systems with rule label control, see [5], can be simulated
by suitable fair P systems for any arbitrary derivation mode.

4.1 Simulating Priorities in the Sequential Derivation
Mode

In the sequential derivation mode, exactly one rule is applied in every
derivation step of the P system Π. Given a configuration C and the set
of applicable rules Appl(Π, C) not taking into account a given priority
relation < on the rules, we define the fairness function to yield 0 for
each rule in Appl(Π, C) for which no rule in Appl(Π, C) with higher
priority exists, and 1 otherwise. Thus, only a rule with highest priority
can be applied. More formally, this result now is proved for any kind
of P systems working in the sequential derivation mode:

Theorem 1. Let (Π, <) be a P system of any kind with the priority
relation < on its rules and working in the sequential derivation mode.
Then there exists a fair P system (Π, f) with fairness function f sim-
ulating the computations in (Π, <) selecting the multisets of rules with
minimal values.

Proof. First we observe that the main ingredient Π is exactly the same
in both (Π, <) and (Π, f), i.e., we only replace the priority relation <
by the fairness function f . As already outlined above, for any configu-
ration C of Π we now define f for any rule r as follows (we point out
that here the fairness function not only depends on {r}, but also on
Appl(Π, C)):

• f(Appl(Π, C), {r}) = 0 if and only if there exists no rule r′ ∈
Appl(Π, C) such that r < r′, and

• f(Appl(Π, C), {r}) = 1 if and only if there exists a rule r′ ∈
Appl(Π, C) such that r < r′.

If we now define the task of f as choosing only those rules with minimal
value, i.e., a rule r can be applied to configuration C if and only if
f(Appl(Π, C), {r}) = 0, then we obtain the desired result. 2
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4.2 Simulating Energy Control

Recently we have considered P systems where a specific amount of
energy is assigned to each rule, see [1]. There, only those multisets
of rules are applied which use the minimal amount of energy. In a
similar way the amount of energy coming up with a multiset of rules
can be seen as the value of the fairness function. The minimal amount
of energy then exactly corresponds with the minimal fairness.

In this paper, from the two variants of energy-controlled P systems
we only consider the one where the energy is directly assigned to the
rules. This variant of P systems is called a rule energy-controlled P
system. The multisets or sets of rules to be applied to a given con-
figuration must fulfill the condition of yielding the minimal amount of
energy.

Formally, in a rule energy-controlled P system the rules are of the
form (p, v) where p is a rule of a specific type like cooperative or non-
cooperative and v is an integer energy value. The total energy value of
a mutiset of rules can be defined in different ways, but in the following
we will assume it to simply be the sum of energy values of the rules in
the multiset and denote this function computing the energy value of a
multiset of rules in this way by σ.

Theorem 2. Let (Π, σ) be a rule energy-controlled P system working
in any derivation mode, using any kind of rules and using the sum
function σ for computing the energy value of a multiset of rules. Then
there exists a fair P system (Π′, f) with fairness function f simulating
the computations in (Π, σ) with f selecting the multisets of rules with
minimal values.

Proof. By definition, in the rule energy-controlled P system (Π, σ) a
multiset of rules can be applied to given configuration only if the ap-
plication of σ yields the minimal value in Z. The fair P system (Π′, f)
with fairness function f now is constructed from (Π, σ) by replacing
any rule with energy (p, v) by the rule p itself, but on the other hand
defining the fairness function f for a multiset of rules to take v as the
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value assigned to the rule p having been obtained from (p, v). By sum-
ming up these values for the whole multiset and selecting only those
multisets of rules applicable to a given configuration in the given deriva-
tion mode which have minimal values, f fulfills the same task in (Π′, f)
as σ does in (Π, σ). Hence, in any derivation mode, (Π′, f) simulates
exactly step by step the derivations in (Π, σ), obviously yielding the
same computation results. 2

4.3 Simulating Label Selection

In P systems with label selection only rules belonging to one of the
predefined subsets of rules can be applied to a given configuration,
see [5].

For all the variants of P systems defined in Section 2, we may
consider to label all the rules in the sets R1, . . . , Rm in a one-to-one
manner by labels from a set H and to take a set W containing subsets
of H. Then a P system with label selection is a construct

Πls = (O, T, µ, w1, . . . , wn, R1, . . . Rn, hi, ho, H,W ),

where Π = (O, T, µ, w1, . . . , wn, R1, . . . Rn, hi, ho) is a P system as in
Section 2, H is a set of labels for the rules in the sets R1, . . . , Rm, and
W ⊆ 2H . In any transition step in Πls we first select a set of labels
U ∈ W and then apply a non-empty multiset R of rules applicable in
the given derivation mode restricted to rules with labels in U .

The following proof exhibits how the fairness function can also be
used to capture the underlying derivation mode.

Theorem 3. Let (Π, H,W ) be a P system with label selection using any
kind of rules in any kind of derivation mode. Then there exists a fair P
system (Π′, f) with fairness function f simulating the computations in
(Π, H,W ) with f selecting the multisets of rules with minimal values.

Proof. By definition, in the P system (Π, H,W ) with label selection a
multiset of rules can be applied to given configuration only if all the
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rules have labels in a selected set of labels U ∈ W . We now consider
the set of all multisets of rules applicable to a configuration C, denoted
by Applasyn(Π, C), as it corresponds to the asynchronous derivation
mode (abbreviated asyn); from those we select all R which obey to the
label selection criterion, i.e., there exists a U ∈W such that the labels
of all rules in R belong to U , and then only take those which also fulfill
the criteria of the given derivation mode restricted to rules with labels
from U .

Hence we define (Π′, f) by taking Π′ = Π and, for any derivation
mode δ, fδ for any multiset of rules R ∈ Applasyn(Π, C) as follows:

• fδ(C,Applasyn(Π, C), R) = 0 if there exists a U ∈ W such
that the labels of all rules in R belong to U , and, moreover,
R ∈ Applδ(ΠU , C), where ΠU is the restricted version of Π only
containing rules with labels in U , as well as

• fδ(C,Applasyn(Π, C), R) = 1 otherwise.

According to our standard selection criterion, we choose only those
multisets of rules where the fairness function yields the minimal value
0, i.e., those R such that there exists a U ∈ W such that the labels of
all rules in R belong to U and R is applicable according to the under-
lying derivation mode with rules restricted to those having a label in
U , which exactly mimicks the way of choosing R in (Π, H,W ). There-
fore, in any derivation mode δ, (Π′, fδ) simulates exactly step by step
the derivations in (Π, H,W ), obviously yielding the same computation
results. 2

5 Conclusions and Future Research

In this article, we introduced and partially studied P systems with the
application of rules in each step being controlled by a function on the
applicable multisets of rules.

We have given several examples exhibiting the power of using suit-
able fairness functions. Moreover, we have shown how priorities can
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be simulated by a suitable fairness function in P systems of any kind
working in the sequential mode as well as how P systems with energy
control or label selection can be simulated by fair P systems with a
suitable fairness function for any derivation mode.

Yet with all these examples and results we have just given a glimpse
on what could be investigated in the future for P systems in connection
with fairness functions:

• consider other variants of hierarchical P systems working in dif-
ferent derivation modes, e.g., also taking into consideration the
set derivation modes;

• extend the notion of fair to tissue P systems, i.e., P systems on
an arbitrary graph structure;

• extend the notion of fair to P systems with active membranes,
there probably also controlling the division of membranes;

• investigate the effect of selecting the multiset of rules to be ap-
plied to a given configuration by other criteria than just taking
those yielding the minimal values for the fairness function;

• consider other variants of fairness functions, either less powerful
or taking into account other features of Appl(Π, C) and/or the
multiset of rules R;

• investigate the effect of selecting the multiset to be applied to a
given configuration by requiring it to contain a balanced (really
fair) amount of copies of each applicable rule;

• show similar simulation results with suitable fairness functions as
in Section 4 for other control mechanisms used in the area of P
systems;

• . . .
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