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Foreword

This is the second issue of our Bulletin, completing the first year of the existence
of the International Membrane Computing Society.

We hear often the “wise statement” that it is easy to start, not to easy to go
on... There are big chances that our project, IMCS and its Bulletin, is one further
evidence which disproves this statement.

We also know that “even the journey of one thousand miles begins with one
step” (Lao Tzu). In what concerns the Bulletin, this is already the second step...

This second issue of the Bulletin is significantly larger, but it has a similar
structure as the first issue, the June 2016 one. A tool for connecting the MC com-
munity, a channel through which a broad range of information become available
to the many groups working in this research area, from Europe to China, from
Canada to New Zealand.

In my opinion, one of the items included deserves a special mentioning: the
list of PhD theses completely or only partially dealing with topics in MC. There
are more that 85 titles, and this is really a large number. Encouraging is also the
evolution in time of the number of theses, which proves the robustness of MC, due
especially to the increased number of applications, in a wider range of areas.

It is important to stress that the contents of the IMCS Bulletin is conceived
as a working material, the Bulletin is a “blackboard” where each member of the
MC community (and any future member, too) can write a message to the other
members of the community, with this “blackboard” also visible to the entire com-
munity and also outside the community: each issue gradually grows and remains
available at http://membranecomputing.net/IMCSBulletin), also being printed.
(If somebody wants to have a printed copy, s/he has to contact the IMCS secretary
— see information about the structure of IMCS, including email addresses, in the
subsequent pages.)

The “instructions to contributors” are minimal. Any material which any MC
researcher considers of interest for the community, helping in achieving the goals
of IMCS, is very much welcome and can be submitted at any time to the bulletin
editor (myself for a while) or to any member of the Bulletin Committee. In what
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concerns the style and format, the previous issues of the Bulletin are available as a
model. (If an author needs more precise instructions, please contact me. Standard
Latex files are sufficient, LNCS style is the best.)
The copyright of all materials remains with their authors.
*

The realization of this issue of the Bulletin of IMCS owns very much (i) to all
contributors, (ii) to the webmaster, Andrei Florea, andrei9iro@gmail.com, and
to the MC research group in Politechnica University in Bucharest, led by prof.
Catalin Buiu, where the bulletin is hosted, and (iii) to prof. Gexiang Zhang, the
President of IMCS, to his group, and to the Xihua University in Chengdu, China,
where the bulletin is printed.

Gheorghe Paun
December 10, 2016
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Letter from The President

Dear IMCS members,
Merry Christmas and Happy New Year to you all!

The first issue of our Bulletin has achieved a great success since it was published
on the website in June. Tens of hard copies have also been distributed to each re-
search group in the P system community during the 17" International Conference
on Membrane Computing (CMC 2016), which was held in Milano, Italy, and The
5" Asian Conference on Membrane Computing (ACMC 2016), which was held at
the Universiti Kebangsaan Malaysia (The National University of Malaysia), Bangi,
Selangor, Malaysia. The two conferences were rather successful, organized this year
under the auspices and with the support of International Membrane Computing
Society (IMCS).

First of all, I would like to share the great news that our Honorary Presi-
dent, prof. Gheorghe Paun, received the Order of the Star of Romania (Romania’s
highest civil Order) on December 1, 2016, which was awarded by the President
of Romania in recognition of his life achievements in science. Let us congratulate
him on his ground breaking scientific contributions. He also received the title of
Honorary Professor of Xihua University, Chengdu, China, in November.

One of our aims is to strengthen the collaborations within the P system com-
munity. We are trying our best to accomplish this. Here I just list three examples.
ACMC 2016 received an increased number of submissions, 39, this year. Prof.
Gheorghe Paun visited China in October and November. During his visit, he de-
livered a series of lectures on Automata and Formal Languages, consisting of six
parts: Chomsky hierarchy, Regulated rewriting, Grammar systems, Lindenmayer
(L) systems, Marcus contextual grammars and Splicing (Head, H) systems. More
than twenty teachers and students attended the lectures. Another example is that
Sergey Verlan and myself started to jointly supervise a PhD student from this
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September. This student can obtain two PhD degrees, from Southwest Jiaotong
University and University Paris—-EST, respectively.

Finally, an encouragement is addressed to all members to submit applications
for the three annual IMCS Prizes: (1) The PhD Thesis of the Year, (2) The The-
oretical Result of the Year, (3) The Application of the Year.

This issue will appear soon. I would like to take this opportunity to express my
deep gratitude to the Chair, prof. Gheorghe Paun, and his committee members,
for their efficient and hard work.

Gexiang Zhang
Chengu, China
December 20, 2016
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The Board of IMCS
The Executive Board:

President: Gexiang Zhang, China, gexiangzhang@gmail.com

Vice President: Alberto Leporati, Italy, alberto.leporati@unimib.it
Treasurer: Tao Wang, China, wangtao20050@163. com

Secretary: Tao Song, China, taosong@hust.edu.cn, songtao0608Chotmail.com
Bulletin Committee Chair: Gheorghe Paun, Romania, gpaun@us.es

Website Committee Chair: Xiangxiang Zeng, China, xzeng@xmu.edu. cn

PR Committee Chair: Marian Gheorghe, U.K. m.gheorghe@bradford.ac.uk
Publication Committee Chair: Linqiang Pan, China, 1gpanhust@gmail . com
Conferences Committee Chair: Claudio Zandron, Italy, zandron@disco.unimib.it
Awards Committee Chair: Mario Pérez-Jiménez, Spain, marper@us.es

The Advisory Board:

Erszébet Csuhaj-Varji, Hungary — Chair, csuhaj@inf.elte.hu
Yu (Kevin) Cao, U.S.A.

Svetlana Cojocaru, Rep. Moldova
Marian Gheorghe, U.K.

Xiyu Liu, China

Vincenzo Manca, Italy

Giancarlo Mauri, Italy

Radu Nicolescu, New Zealand
Taishin T. Nishida, Japan

Mario Pérez-Jiménez, Spain

K.G. Subramanian, India

Jun Wang, China

Xingyi Zhang, China

Honorary President:

Gheorghe Paun, Romania

Honorary Members:

’ Solomon Marcus ‘7 Romania

Arto Salomaa, Finland

Grzegorz Rozenberg, The Netherlands
Kamala Krithivasan, India

Oscar H. Ibarra, U.S.A.

Takashi Yokomori, Japan

Tom Head, U.S.A.

Jiirgen Dassow, Germany

Lila Kari, Canada

Cristian S. Calude, New Zealand
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Bulletin Committee

Gheorghe Paun, Romania — Chair, gpaun@us.es

Henry N. Adorna, Philippines, hnadorna@dcs.upd.edu.ph
Catalin Buiu, Romania, catalin.buiu@acse.pub.ro, cbuiu27@gmail.com
Matteo Cavaliere, U., mcavali2@staffmail.ed.ac.uk

Gabriel Ciobanu, Romania, gabriel@iit.tuiasi.ro

Michael J. Dinneen, New Zealand, mjd@cs.auckland.ac.nz
Svetlana Cojocaru, Rep. Moldova, svetlana.cojocaru@math.md
Rudi Freund, Austria, rudi@emcc.at

Marian Gheorghe, U.K., m.gheorghe@bradford.ac.uk

Ping Guo, China, guoping@cqu.edu.cn, guoping cqu@163.com
Thomas Hinze, Germany, thomas.hinze@b-tu.de

Florentin Ipate, Romania, florentin.ipate@gmail.com
Tseren-Onolt Ishdorj, Mongolia, itseren@gmail. com

Alberto Leporati, Italy, alberto.leporati@unimib.it
Vincenzo Manca, Italy, vincenzo.manca®univr.it

Taishin T. Nishida, Japan, nishida@pu-toyama.ac. jp

Agustin Riscos-Ntfiez, Spain, ariscosn@us.es

José Maria Sempere, Spain, jsempere@dsic.upv.es

Petr Sosik, Czech Rep., petr.sosik@fpf.slu.cz

K.G. Subramanian, India, kgsmani1948@gmail.com

Gyorgy Vaszil, Hungary, vaszil.gyorgy@inf .unideb.hu

Sergey Verlan, France, verlan@u-pec.fr, verlan@univ-parisi2.fr
Claudio Zandron, Italy, zandron@disco.unimib.it

Xingyi Zhang, China, xyzhanghust@gmail.com

Zhiqiang Zhang, China, zhiqiangzhang@hust.edu.cn

Website Committee

Xiangxiang Zeng, Xiamen, China — Chair, xzeng@xmu. edu. cn
Catalin Buiu, Bucharest, Romania, cbuiu27@gmail.com

Luis Valencia Cabrera, Seville, Spain, 1valencia@us.es
Hong Peng, Xihua, China, ph.xhu@hotmail.com

Xingyi Zhang, Anhui, China, xyzhanghust@gmail.com
Gaoshan Deng, Xiamen, China

Andrei Florea, Bucharest, Romania, andrei91ro@gmail. com
Luis Felipe Macias-Ramos, Seville, Spain, 1fmaciasr@us.es
David Orellana-Martin, Seville, Spain, dorelmar@gmail . com
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PR Committee

Marian Gheorghe, Bradford, U.K. — Chair, M.Gheorghe@bradford.ac.uk

Petros Kefalas, Sheffield, U.K. (International Faculty, Greece),
kefalas@city.academic.gr

Savas Konur, Bradford, U.K., S.Konur@bradford.ac.uk

Maciej Koutny, Newcastle, U.K., maciej.koutny@newcastle.ac.uk

Jianhua Xiao, Nankai, China, jhxiao@nankai.edu.cn

Publication Committee

Lingiang Pan, Wuhan, China — Chair, 1gpanhust@gmail.com
Marian Gheorghe, Bradford, U.K., m.gheorghe@bradford.ac.uk
Alberto Leporati, Milan, Italy, alberto.leporati@unimib.it
Gheorghe Paun, Bucharest, Romania, gpaun@us.es

Mario Pérez-Jiménez, Seville, Spain, marper@us.es

Gexiang Zhang, Chengdu, China, zhgxdylan@126.com

The main tasks of the Publication Committee are (1) to explore the possibility
to initiate a series of MC monographs/collective volumes, (2) to establish a MC
international journal, (3) to advise the organizers of CMC, ACMC, BWMC, MC
workshops in what concerns the special issues of journals, (4) to help translating
MC books in Chinese.

The Publication Committee can become the Editorial Board of the MC series
of books, but, of course, the journal should have a much larger Editorial Board.

Conferences Committee

Claudio Zandron, Milan, Italy — Chair, zandron@disco.unimib.it
Henry Adorna, Quezon City, Philippines

Artiom Alhazov, Chisgindu, Rep. of Moldova

Bogdan Aman, Iagi, Romania

Matteo Cavaliere, Edinburgh, Scotland

Erzsébet Csuhaj-Varji, Budapest, Hungary

Rudolf Freund, Wien, Austria

Marian Gheorghe, Bradford, U.K. — Honorary Member
Thomas Hinze, Cottbus, Germany

Florentin Ipate, Bucharest, Romania

Shankara N. Krishna, Bombay, India

Alberto Leporati, Milan, Italy

Taishin Y. Nishida, Toyama, Japan
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Lingiang Pan, Wuhan, China — responsible of ACMC
Gheorghe Paun, Bucharest, Romania — Honorary Member
Mario J. Pérez-Jiménez, Sevilla, Spain

Agustin Riscos-Ntfiez, Sevilla, Spain

Petr Sosik, Opava, Czech Republic

K.G. Subramanian, Chennai, India

Gyorgy Vaszil, Debrecen, Hungary

Sergey Verlan, Paris, France

Gexiang Zhang, Chengdu, China

Awards Committee:

Mario Pérez-Jiménez, Seville, Spain — Chair, marper@us.es
Marian Gheorghe, Bradford, U.K., m.gheorghe@bradford.ac.uk
Giancarlo Mauri, Milan, Italy, mauri@disco.unimib.it
Gheorghe Paun, Bucharest, Romania, gpaun@us.es

Lingiang Pan, Wuhan, China, 1gpanhust@gmail. com

Rules of functioning:

1. Prizes to be awarded annually: (1) The PhD Thesis of the Year, (2) The
Theoretical Result of the Year, (3) The Application of the Year.

2. Each prize consists of diplomas for each co-author, one copy of the Hamangia
thinker! and one voucher for a discount in the registration fee for the first of
BWMC, CMC or ACMC to take place after the prize was voted; the discount
will be fixed by the organizing committee of the meeting; in case of several
authors, they will choose the one of them to benefit of the voucher.

3. Any registered member of IMCS can be nominated and can receive any of
the three prizes. In cases (2) and (3), the prizes are awarded to the authors
of a paper or of an application, with at least one of authors being a member
of IMCS. The members of the Awards Committee cannot receive any prize,
neither they can be coauthors of papers or applications which receive one of
prizes (2) and (3).

4. If the Awards Committee considers necessary, each year at most one of the
prizes can be awarded ex aequo, to two winners.

5. Any registered member of IMCS can propose a candidate for any prize, by
sending to any member of the Awards Committee the relevant information
(and any additional information requested by the Awards Committee). Im-
plicitly, the Awards Committee can itself make nominations.

! A Neolithic age clay sculpture, about 4000 years BC, found in Romania — see the
image at the next page.
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6. The nominations for the year Y should reach the Awards Chair before 20 of
January of the year Y-+1. The Awards Committee members decide the winners
by the middle of February, and the prizes are awarded at the first edition of
BWMC, CMC or ACMC where the winners participate in.

7. The members of the Awards Committee and the rules of functioning can be
changed every year, after March 1, at the proposal of the Chair person or of
any member of the IMCS Board, subject to a vote in the IMCS Board.

The IMCS prizes are mainly meant to reward the excellency in MC research,
equally focusing on theory and applications, and to encourage young researchers.

The prizes are not subject to competitions, they do not identify the best PhD
thesis or paper or application, they just point that a certain work/result is of a
high value. This does not imply that other works/results are not so. We cannot
rank scientific results like in sport, in a mathematical sense.

We only want to call attention to certain works — thus also calling attention to
MC and to IMCS.

The prestige of a prize will be given by the prestige of the winners, also on
their evolution in time, during their careers.

To reach these goals, we have to be conservative, exigent, transparent in our
nominations and, especially, in selection.

Nominations for the prizes for 2016 are waited for until January 20, 2017, and
can be sent at any time, electronically, to any member of the Awards Committee
(preferably with a CC to all members).




Constitution of the International Membrane
Computing Society — IMCS

Article 1: Name

(1.1.)  The name of the Society shall be International Membrane Computing
Society, abbreviated IMCS.

(1.2.) The logo of IMCS is the one in the figure below. It should appear in all
relevant places, such as IMCS web page, posters, calls, on the cover of the
Bulletin of IMCS, etc.

International

Membrane Computing

\ Society J

Article 2: Objects

(2.1.) The society shall be a nonprofit academic organization, having as its goal
to promote the development of membrane computing (MC), internationally,
at all levels (theory, applications, software, implementations, connection with
related areas, etc.).
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(2.2.) A special attention will be paid to the communication/cooperation inside
MC community, to connections with other professional scientific organizations
with similar aims, and to promoting MC to young researchers.

(2.3.) IMCS will publish proceedings, journals or other materials, printed or
electronically, as it sees fit.

(2.4.) IMCS will organize yearly MC meetings, such as the Conference on Mem-
brane Computing (CMC), the Asian Conference on Membrane Com-
puting (ACMC), the Brainstorming Week on Membrane Computing
(BWMC), as well as further workshops/meetings, as it sees fit.

Article 3: Membership

(3.1.) There are four categories of members: Honorary Members, Regular
Members, Student Members, and Institution Members.

(3.2.) The Honorary Members are elected by the IMCS Board (email voting, major-
ity rule). Regular membership is open to all persons interested, on completing
a membership form.

(3.3.) Student Members can be undergraduate, master, and PhD students, and
they are eligible for various facilities IMCS is planning for students.

(3.4.) Institutions which want to join IMCS and support it can become Institution
Members. Any support/sponsorship from an institution will be acknowledged
in an appropriate way in IMCS publications.

(3.5.) Any member, of any kind, is supposed to know and accept the Constitution
of IMCS.

Article 4: Structure

(4.1.) The structure of IMCS and its governance are as specified in the next figure.
The figure also specifies the ten Honorary Members with whom the Society
starts (February 2016).

(4.2.) Gheorghe Paun, the founder of MC, is appointed Honorary President of
IMCS.

(4.3.) The work of IMCS is organized and conducted by the Board of IMCS,
consisting of the Executive Board and the Advisory Board. The Advisory
Board should have between 10 and 20 members, hence in total the IMCS Board
should contain between 20 and 30 members,

(4.4.) The Executive Board consists of four individual positions: President,
Vice President, Treasurer, and Secretary, and six Committees: Bul-
letin, Website, PR, Publication, Conferences, and Awards Commit-
tee. Each of these six Committees has a chair person. The Advisory Board
also has a chair person.

(4.5.) The four individual positions from the Executive Board, the six chair persons
of the Committees, the members of the Advisory Board, and the chair of the
Advisory Board are elected by the IMCS Board (email voting, majority rule).
Each chair of a Committee appoints a number of Committee members as he/she
sees fit.
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(4.6.) All the elected positions are elected for one year. After one year, a change of
an elected person can be proposed by the President or the Vice President of the
IMCS Board, by the person itself (resignation), or by two thirds of members
of the IMCS Board, and it is voted in the IMCS Board (email voting, majority
rule). If there is no change proposal, then the person who occupies any position
in the IMCS Board continues in the same position, for one further year.

/ IMCS Board \
Executive Board \ Advisory Board

~

Honorary Members:
Solomon Marcus

Arto Salomaa
Grzegorz Rozenberg

Kamala Krithivasan
Oscar H. Ibarra
Takashi Yokomori
Tom Head
Jiirgen Dassow
Lila Kari
Cristian S. Calude

President

Vice President

Treasurer

Secretary

Institution Members Bulletin Committee

Website Committee

PR Committee

\. 10-20 members /

Student Members Publication Committee

Conferences Committee

YV Y Y Y Y YA Y

Individual
Regular Members

Awards Committee

K&/&/\J\J\JUW\JU&/

=

K 20-30 membely/

Article 5: Duties and competencies

(5.1.) The IMCS Board President represents the Society in relation with any
external entity, organizes/coordinates the activity of the IMCS Board, initiates
voting in the IMCS Board, chairs any panel/meeting of the Society.

(5.2.) The Vice President helps the President in all his/her activity, represents
the President when he/she is not available (e.g., in chairing panels/meetings).
Every year, the President and the Vice President present a common report
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about IMCS activity, first circulating it by email in the IMCS Board and, after
possible corrections, posting it in the IMCS web page.

(5.3.) The Treasurer takes care of the income and expenses of IMCS, and each
year presents a report in this respect to IMCS Board. This report is analyzed
and voted in the IMCS Board (email voting, majority rule).

(5.4.) The Secretary is responsible to keep a track record of the IMCS: member-
ships, reports, voting results, etc.

(5.5.) The Bulletin Committee takes care of editing the Bulletin of IMCS, first
accumulating information/materials in an electronic format and then printed,
if needed /requested, with a periodicity to be decided by the IMCS Board.

(5.6.) The Website Committee takes care of the IMCS web page, whose structure
should be decided by the IMCS Board.

(5.7.) The PR Committee is responsible with developing relationships with other
similar organizations and promoting IMCS on various scientific forums, adver-
tising its activity on specialised networks and at international events.

(5.8.) The Publication Committee supervises the publication of proceedings, spe-
cial issues of journals, collective volumes edited under the auspices of IMCS.
Two particular goals of this Committee are to initiate a specialized journal,
International Membrane Computing Journal, and a specialized series of mono-
graphs.

(5.9.) The Conference Committee works as a steering committee for the two
MC yearly conferences, CMC and ACMC, looking for venues, suggesting (in
cooperation with the organizing committees) program committees and invited
speakers, possible sponsors and publications.

(5.10.) The Awards Committee collects nominations and decides the winners of
three yearly IMCS Prizes: (1) The PhD Thesis of the Year, (2) The
Theoretical Result of the Year, (3) The Application of the Year. The
Awards Committee has its Rules of functioning, which are voted by the IMCS
Board (email voting, majority rule).

Article 6: Voting

(6.1.) Each member of the IMCS Board (between 20 and 30 members) has one
vote.

(6.2.) A voting, on any subject, can be initiated by the President, the Vice
President, or by two thirds of the IMCS Board members.

(6.3.) The message proposing a vote should specify the issue to be decided in such
a way that the alternatives YES and NO are clear. The message should be
sent to all members of the IMCS Board, the voting messages of the members
should also be sent to all members (full transparency). The voting should last
30 days. If a member is not replying in the first 15 days, the initiator of the
vote should contact him/her once again. If a member is not replying even to
the second message, then his/her vote is considered abstaining.

(6.4.) ”"Majority rule” means that at least half of the IMCS Board have voted
(YES, NO, or abstaining) and the decision is made according to the number of
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YES and NO votes which is higher. In case of a draw, the vote of the President
is decisive — unless if the President does not decide to repeat the vote, maybe
changing the object of the vote.

(6.5.) All ambiguities and uncovered cases should be clarified by discussions in the
IMCS Board and, if decided so, proposed as amendments to the Constitution.

Article 7: Panels

(7.1.) On the occasions of IMCS annual meetings, like BWMC, CMC, and ACMC,
panels should be organized, chaired by the President, the Vice President or,
in their absence, by another member of the IMCS Board designated by the
President, to discuss current issues of the Society.

Article 8: Finance

(8.1.) Income: possible membership fees, as decided by IMCS Board, donations,
sponsorhips, conference registration fees, participation to research projects.
(8.2.) Expenses: IMCS prizes, students support, Bulletin of IMCS hardcopy, main-
taining web pages, sponsoring MC conferences — all these and anything else,

under the control of the IMCS Board.

Article 9: Amendments

(9.1.) Amendments to IMCS Constitution can be proposed by any member of the
IMCS Board, at any time. Any amendment should be discussed and voted in
the IMCS Board (email voting, majority rule) and then, if accepted, published
in the IMCS web page, thus being available to all members of IMCS.

Article 10: Dissolution

(10.1.) The dissolution of IMCS should be done in two steps: first, a vote in the
IMCS Board is organized (email voting, two thirds majority), and, if the disso-
lution proposal passes, a general vote is organized, where all regular members
participate (email voting, two thirds majority; in order the vote to be valid, at
least half of the members should vote).

(10.2.) If the Society decides to get dissolved, all remaining assets shall be donated
to a similar organization, at the choice of the IMCS Board.

Article 11. Provisory statement

The present Constitution will get provisionally valid by being voted (by email,
majority rule), in March 2016, in the IMCS Board, as this Board was constituted
by consensus during BWMC 2016 and soon after that. Then, it will be published
in the IMCS web page and, as soon as possible, in 2016, it will be voted by all
individual members of IMCS (email voting, majority rule). The vote will last one
month and to voting will participate all individual members of IMCS, students or
regular, registered until the last day of the previous month.






News from MC Research Groups

The Research Group on Modeling, Simulation
and Verification of Biological Systems at the
University of Pisa

1 Contacts

Dipartimento di Informatica
Universita di Pisa

Largo B. Pontecorvo, 3
56127 Pisa, Italy

Group webpage: http://www.di.unipi.it/msvbio/

2 Reserch activities

The activity of the research group on modeling, simulation and verification of bi-
ological systems started in 2004, with the aim of developing formal notations and
analysis techniques for biochemical systems. The class of notations we developed
includes term rewriting systems, process calculi and automata-based formalisms.
As analysis techniques we studied and applied stochastic simulation, model check-
ing and abstract interpretation.

Subsequently, we considered other classes of biological systems and phenomena,
such as cellular pathways (in the context of systems biology), cancer development,
and also systems of interest for population biology, ecology and evolution.

Moreover, we conducted research on bio-inspired models of computation (in
particular Membrane Systems and Reaction Systems). In particular, we worked
on compositional semantics and formal analysis techniques for such bio-inspired
models, and on variants of membrane systems for the modeling of populations and
ecosystems.

In parallel, we aimed at defining static analyses able to predict all possible evo-
lutions of biological systems modeled in biologically inspired calculi. Such analyses
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address relevant properties such as temporal and causal properties and probabilis-
tic termination in stochastic calculi.

Reserch topics

In order of affinity with Membrane Computing:

Theory of membrane systems [8, 9, 10, 18]

Formal semantics of membrane systems [11, 12]

Spatial P systems [7, 6]

Membrane systems for population and ecosystems modelling [2, 1, 3]
Reaction Systems [4, 5, 19]

Modelling formalisms for biochemical systems [13]

Computational models of cancer [22]

Cellular pathway components identification [20, 21]

Analyses of temporal and causal properties for biologically inspired calculi
16, 15, 14]

e Analysis of probabilistic termination in stochastic calculi [17].

Conferences

The group regularly contributes to the organization of the International Sympo-
sium “From Data to Models and Back (DataMod)”, formerly known as MoK-
MaSD. DataMod aims at bringing together researchers interested in the combined
application of computational modeling methods with data-driven techniques from
the areas of knowledge management, data mining and machine learning. Modeling
methodologies of interest include automata, agents, Petri nets, process algebras
and rewriting systems. Application domains include social systems, ecology, biol-
ogy, medicine, smart cities, governance, education, software engineering, and any
other field that deals with complex systems and large amounts of data.

DataMod (as it was for MoKMaSD) welcomes contributions in which nota-
tions and methodologies from membrane computing are exploited for the modeling
and analysis of systems in any application domain. Contributions in which such
methodologies are applied in synergy with with data-driven techniques would be
of particular interest.

The web page of the symposium is: http://pages.di.unipi.it/datamod/

3 Components

e Roberto Barbuti (full professor)
http://pages.di.unipi.it/barbuti/

e Francesca Levi (associate professor)
http://pages.di.unipi.it/levi/
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Roberta Gori (assistant professor)
http://pages.di.unipi.it/gori/
Paolo Milazzo (assistant professor)
http://pages.di.unipi.it/milazzo/
Giovanni Pardini (postdoc)
http://pages.di.unipi.it/pardini/
Pasquale Bove (phd student)

Giovanna Broccia (phd student)

Selected publications

1.

10.

11.

12.

13.

14.

R. Barbuti, A. Bompadre, P. Bove, P. Milazzo, and G. Pardini. Attributed prob-
abilistic p systems and their application to the modelling of social interactions in
primates. In International Conference on Software Engineering and Formal Meth-
ods, pages 176-191. Springer, 2015.

R. Barbuti, P. Bove, P. Milazzo, and G. Pardini. Minimal probabilistic p systems for
modelling ecological systems. Theoretical Computer Science, 608:36-56, 2015.

R. Barbuti, A. Cerone, A. Maggiolo-Schettini, P. Milazzo, and S. Setiawan. Modelling
population dynamics using grid systems. In International Conference on Software
Engineering and Formal Methods, pages 172—189. Springer, 2012.

R. Barbuti, R. Gori, F. Levi, and P. Milazzo. Investigating dynamic causalities in
reaction systems. Theoretical Computer Science, 623:114-145, 2016.

R. Barbuti, R. Gori, F. Levi, and P. Milazzo. Specialized predictor for reaction
systems with context properties. Fundamenta Informaticae, 147:1-19, 2016.

R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, and G. Pardini. Simulation of spatial
p system models. Theoretical Computer Science, 529:11-45, 2014.

R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, G. Pardini, and L. Tesei. Spatial p
systems. Natural Computing, 10(1):3-16, 2011.

R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, G. Pardini, and S. Tini. Systolic
automata and p systems. In Computing with New Resources, pages 17-31. Springer,
2014.

R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, and L. Tesei. Timed p automata.
Fundamenta Informaticae, 94(1):1-19, 2009.

R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, and S. Tini. Ap systems flat form
preserving step-by-step behaviour. Fundamenta Informaticae, 87(1):1, 2008.

R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, and S. Tini. Compositional semantics
and behavioral equivalences for p systems. Theoretical Computer Science, 395(1):77—
100, 2008.

R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, and S. Tini. An overview on opera-
tional semantics in membrane computing. International Journal of Foundations of
Computer Science, 22(01):119-131, 2011.

R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, and A. Troina. The calculus of loop-
ing sequences for modeling biological membranes. In International Workshop on
Membrane Computing, pages 54—76. Springer, 2007.

C. Bodei, L. Brodo, R. Gori, D. Hermith, and F. Levi. A global occurrence counting
analysis for brane calculi. In Logic-Based Program Synthesis and Transformation -
25th International Symposium, LOPSTR 2015, Siena, Italy, July 13-15, 2015. Re-
vised Selected Papers, pages 179-200, 2015.
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. C. Bodei, R. Gori, and F. Levi. Causal static analysis for brane calculi. Theor.
Comput. Sci., 587:73-103, 2015.

R. Gori and F. Levi. Abstract interpretation based verification of temporal properties
for bioambients. Inf. Comput., 208(8):869-921, 2010.

R. Gori and F. Levi. An analysis for proving probabilistic termination of biological
systems. Theor. Comput. Sci., 471:27-73, 2013.

P. Milazzo. Membrane computing: from biology to computation and back. Isonomia,
2014.

G. Pardini, R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, and S. Tini. A composi-
tional semantics of reaction systems with restriction. In Conference on Computability
in Europe, pages 330—-339. Springer, 2013.

G. Pardini, P. Milazzo, and A. Maggiolo-Schettini. Identification of components in
biochemical pathways: extensive application to sbml models. Natural Computing,
13(3):351-365, 2014.

G. Pardini, P. Milazzo, and A. Maggiolo-Schettini. Component identification in
biochemical pathways. Theoretical Computer Science, 587:104-124, 2015.

S. Sameen, R. Barbuti, P. Milazzo, A. Cerone, M. Del Re, and R. Danesi. Mathemat-
ical modeling of drug resistance due to kras mutation in colorectal cancer. Journal
of theoretical biology, 389:263-273, 2016.



Research Group on Bio-inspired Computing at
Huazhong University of Science and Technology
in China

Contact:

Lingiang Pan

School of Automation

Huazhong University of Science and Technology
Wuhan 430074, Hubei, China
lgpan@mail.hust.edu.cn

1 Team Introduction

The Research Group on Bio-inspired Computing at School of Automa-
tion (http://english.auto.hust.edu.cn), Huazhong University of Science
and Technology (http://english.hust.edu.cn), led by professor Lingiang
Pan, focuses on bio-inspired computing such as membrane computing
and DNA computing, and related nanotechnology for implementing bio-
inspired computing. The group consists of professor Lingiang Pan, as-
sociate professors Xiaolong Shi (shixiaolong@hust.edu.cn), Zhihua Chen
(chenzhihua@mail .hust.edu.cn), and Zheng Zhang (leaf@mail.hust.edu.cn),
lecturer Xueming Liu (xm1iu19880gmail.com). Researchers are always welcome
to join our group as post doctors, visiting researchers, or even faculty members.

Now, there are two post doctors in the group: Bosheng Song
(boshengsong@hust.edu.cn) working on membrane computing, and Fei Xu
(fei_xu@hust.edu.cn) working on DNA nanotechnology.

The group has five PhD students:

1. Zhiqiang Zhang (zhigiangzhang@hust.edu.cn) working on the computation
power of numerical P systems.

2. Cheng He (chenghe@hust.edu.cn) working on multi-objective evolutionary
computation.

3. Tingfang Wu (tfwu@hust.edu.cn) working on spiking neural P systems.

4. Yingxin Hu (yingxinhu@hust.edu.cn) working on DNA nanotechnology.
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10.

11.

12.

L. Pan

. Zhiyu Wang (m201372231@hust.edu.cn) working on DNA nanotechnology.

There are twelve people who got PhD from the group:

. Xiangxiang Zeng (xzeng@xmu.edu.cn) working in Xiamen University; the ti-

tle of PhD thesis: Research on computational property of spiking neural P
systems.

. Xingyi Zhang (xyzhanghust@gmail.com) working in Anhui University; the ti-

tle of PhD thesis: Research on the computational power of spiking neural P
systems.

. Yun Jiang (purpleye83@hotmail.com) working in Chongging Technology and

Business University; the title of PhD thesis: Research on the computational
power of P systems with network structure.

. Yunyun Niu (niuyunyunl003@163.com) working in China University of Geo-

sciences; the title of PhD thesis: Research on models and algorithms of mem-
brane computing for solving computational intractable problems.

. Tao Song (songtao0608@hotmail.com) working in China University of

Petroleum; the title of PhD thesis: Research on computational properties and
applications of spiking neural P systems.

. Juanjuan He (hejuanjuan@wust.edu.cn) working in Wuhan University of Sci-

ence and Technology; the title of PhD thesis: Research on membrane-inspired
algorithms and applications.

. Yansen Su (suyansen1985@163.com) working in Anhui University; the title of

PhD thesis: Research the difference of subtypes of non-small cell lung cancer
based on molecular level.

. Keqin Jiang (jiangkq@aqtc.edu.cn) working in Anging Normal University; the

title of PhD thesis: Research on sequential spiking neural P systems based on
spike number.

. Chun Lu (luchun_et@163.com) working in Central China Normal University;

the title of PhD thesis: Research on computational properties of membrane
systems with proteins.

Yuan Kong (kongyuan@scau.edu.cn) working in South China Agricultural Uni-
versity; the title of PhD thesis: Research on the computational power of spiking
neural P systems with differential biological backgrounds.

Bosheng Song (boshengsong@hust.edu.cn) working in Huazhong University of
Science and Technology; the title of PhD thesis: Research on computational
property of timed membrane systems.

Xueming Liu (xm_liu@hust.edu.cn) working in Huazhong University of Sci-
ence and Technology; the title of PhD thesis: Research on the robustness and
controllability of complex networks.

2 Research interests

Our research interest covers membrane computing, DNA computing, and related
nanotechnology. Their short descriptions are as follows:
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Membrane computing. Inspired from the structure and the functioning of
living cells, some variants of P systems have been proposed, their computation
power and applications for modeling biological systems have been investigated.
Spiking neural P systems are of a particular interest for us.

DNA computing an related nanotechnology. The group studies the struc-
ture and functional properties of DNA molecules, designs self-assembly model
and carries out the experimental study of molecular self-assembly. DNA struc-
tures as programmable building blocks are used to create self-assembling molec-
ular materials acting as drug delivery vehicle for cancer therapy. DNA nanos-
tructures are designed to implement parallel computational models and algo-
rithms.

3 Selected papers in the last 5 years

The following is a list of selected papers on membrane computing, DNA computing
and related nanotechnology published by the group members in the last 5 years.

1.

2.

10.

L. Pan, J. Wang, H.J. Hoogeboom, Spiking neural P systems with astrocytes,
Neural Computation, 24(3) (2012), 805-825.

X. Zeng, T. Song, X. Zhang, L. Pan, Performing four basic arithmetic oper-
ations with spiking neural P systems, IEEFE Transactions on Nanobioscience,
11(4) (2012), 366-374.

K. Jiang, T. Song, W. Chen, L. Pan, Homogeneous spiking neural P systems
working in sequential mode induced by maximum spike number, International
Journal of Computer Mathematics, 90(4) (2013), 831-844.

T. Song, L. Pan, Gh. Paun, Asynchronous spiking neural P systems with local
synchronization, Information Sciences, 219 (2013), 197-207.

L. Valencia-Cabrera, M. Garcia-Quismondo, M.J. Pérez-Jiménez, Y. Su, H.
Yu, L. Pan, Modeling logic gene networks by means of probabilistic dynamic
P systems. International Journal of Unconventional Computing, 9(5-6) (2013),
445-464.

X. Shi, W. Lu, Z. Wang, L. Pan, G. Cui, J. Xu, T.H. LaBean, Programmable
DNA tile self-assembly using a hierarchical sub-tile strategy, Nanotechnology,
25(7) (2014), 075602.

T. Song, L.F. Macias-Ramos, L. Pan, M.J. Pérez-Jiménez, Time-free solution
to sat problem using P systems with active membranes, Theoretical Computer
Science, 529 (2014), 61-68.

T. Song, L. Pan, Gh. Paun, Spiking neural P systems with rules on synapses,
Theoretical Computer Science, 529 (2014), 82-95.

X. Zeng, X. Zhang, T. Song, L. Pan, Spiking neural P systems with thresholds,
Neural Computation, 26 (2014), 1340-1361.

J. Yang, C. Dong, Y. Dong, S. Liu, L. Pan, C. Zhang, Logic nanoparticle
beacon triggered by the binding-induced effect of multiple inputs, ACS Applied
Materials & Interfaces, 6(16) (2014), 14486-14492.
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20.

L. Pan

. X. Zhang, L. Pan, A. Paun, On the universality of axon P systems, I[EEFE
Transactions on Neural Networks and Learning Systems, 26(11) (2015), 2816—
2829.

X. Shi, C. Chen, X. Li, T. Song, Z. Chen, Z. Zhang, Y. Wang, Size-controllable
DNA nanoribbons assembled from three types of reusable brick single-strand
DNA tiles, Soft Matter, 11(43) (2015), 8484-8492.

L. F. Macias-Ramos, B. Song, L. Valencia-Cabrera, L. Pan, M.J. Pérez-
jiménez, Membrane fission: A computational complexity perspective, Com-
plexity, 21(6) (2016), 321-334.

L. Pan, Gh. Paun, B. Song, Flat maximal parallelism in P systems with pro-
moters, Theoretical Computer Science, 623 (2016), 83-91.

T. Wu, Z. Zhang, Gh. Paun, L. Pan, Cell-like spiking neural P systems, The-
oretical Computer Science, 623 (2016), 180-189.

B. Song, L. Pan, M. J. Pérez-Jiménez, Tissue P systems with protein on cells,
Fundamenta Informaticae, 144 (2016), 77-107.

Z. Zhang, T. Wu, A. Paun, L. Pan, Numerical P systems with migrating vari-
ables, Theoretical Computer Science, 641 (2016), 85-108.

B. Song, L. Pan, M. J. Pérez-Jiménez, Cell-like P systems with channel states
and symport/antiport rules, IEEE Transactions on NanoBioscience, 15(6)
(2016), 555-566.

X. Shi, X. Wu, T. Song, X. Li, Construction of DNA nanotubes with con-
trollable diameters and patterns using hierarchical DNA sub-tiles, Nanoscale,
8(31) (2016), 14785-14792.

B. Song, C. Zhang, L. Pan, Tissue-like P systems with evolutional sym-
port/antiport rules, Information Sciences, 378 (2017), 177-193.



RGMCA: Research Group on Membrane
Computing and Applications at Xihua University,
Chengdu

Hong Peng, Jun Wang

Xihua University

Chengdu 610031,P.R.China
ph.xhu@hotmail.com

wj .xhu@hotmail.com

1 Team Introduction

The research group on membrane computing and applications (RGMCA) at Xi-
hua University is composed of professors, research engineers, technical staff and
students from the School of Electrical and Information Engineering and the School
of Computer and Software Engineering, Xihua University, Chengdu, Sichuan
Province, China. They bring together computer science, engineering, mathematics
and other disciplines to develop new P systems models and applications of them.

We also collaborate with the research group of natural computing (RGNC),
University of Seville, Seville, Spain (Mario J. Pérez-Jiménez, Agustin Riscos-
Nuiiez), the research group of nature-inspired computation and smart grid Lab.,
the Southwest Jiaotong University, Chengdu, China (Gexiang Zhang).

Some main members are introduced as follows.

Prof. Hong Peng (ph.xhu@hotmail.com) received his Ph.D. degree in Signal
and Information Processing from the University of Electronic Science and Tech-
nology of China (UESTC), Chengdu. He is currently a professor in the School of
Computer and Software Engineering, Xihua University, China, since 2005. His re-
search interests include membrane computing, machine learning, cloud computing
and big data analysis, pattern recognition and image processing, signal processing.

Prof. Jun Wang (wj .xhu@hotmail. com) received her Ph.D. degree in Electrical
Engineering from the Southwest Jiaotong University, Chengdu, China. Since 2003,
she is currently a professor with the School of Electrical and Information Engi-
neering, Xihua University. Her research interests include membrane computing,
electrical automation, and intelligent control.

Dr. Tao Wang (7366786620qq. com) received her Master Degree at Xihua Uni-
versity in 2011. Then, she continued to study in the Southwest Jiaotong University
in 2016 and received her PhD degree.
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Her research work includes fuzzy spiking neural P systems and fault diagnosis
of power systems.

Dr. Xiaoxiao Song (88119843@qq.com) graduated and received his PhD from
Chongqing University. He is interested in optimization algorithm research, mem-
brane computing and its application in industry control system.

Dr. Zhang Sun (383623076@qq.com) graduated and received his Ms Degree
from Xihua University. Currently, he continues the research in order to complete
his PhD. His specialty is hardware design and realization of membrane computing
models through FPGA.

Dr. Bing Gou (bingo573500126. com) graduated received his PhD in 2016 from
the Southwest Jiaotong University. In this year, he joined our team and tries to
focus on membrane computing model and its application to fault diagnosis of
electrical motors control.

Ke Cheng is an M.S. degree student (2511198132@qq.com, Chengdu)

Ming Jun is an M.S. degree student (mingjun.jun@qq.com, Chengdu)

Wenping Yu is an M.S. degree student (2315430785@qq . com, Chengdu)

Guangchun Chen is an M.S. degree student (2303153523@qq. com, Chengdu)

Juan Hu is an M.S. degree student (2421383883@qq . com, Chengdu)

2 Research Interests and Results

(1) Fuzzy spiking neural P systems and their applications in fault diag-
nosis: Fuzzy spiking neural P systems (FSN P systems, in short) are extensions
of SN P systems which incorporate fuzzy logic techniques into the framework
of SN P systems. The motivation was to make SN P systems a computing
framework to model or express fuzzy production rules and to perform fuzzy
reasoning. Two kinds of neurons are considered in FSN P systems: proposi-
tion neurons and rule neurons. Proposition neurons are used to express fuzzy
propositions, while rule neurons are used to describe fuzzy production rules
in a knowledge base. Moreover, fuzzy logic is integrated into both proposition
and rule neurons.

In recent years, fuzzy logics have been introduced to develop five kinds of
FSN P systems: fuzzy spiking neural P systems with linguistic terms (IFSN
P systems) [1], fuzzy reasoning spiking neural P systems (FRSN P systems)
[2], weighted fuzzy spiking neural P systems (WFSN P systems) [3], adaptive
fuzzy spiking neural P systems (AFSN P systems) [4] and fuzzy reasoning
spiking neural P systems with trapezoidal fuzzy numbers (tFRSN P systems)
[5].

FRSN P systems were firstly used to deal with fault diagnosis problem, where
an instance of fault diagnosis of transformers was modeled and analyzed by
FRSN P systems [2]. After that the fault diagnosis of power systems has been
investigated, in [6, 7, 8], respectively.

(2) Membrane computing-inspired data clustering: Membrane clustering
algorithms are a class of clustering algorithms which are inspired form the
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mechanism of membrane computing models. The main idea is that a data
clustering problem can be regarded as an optimization problem. So, the clus-
tering problem can be solved by the use of P systems.

H. Peng, J. Wang and their collaborators have discussed a membrane computing-
inspired clustering algorithm [9], in which a differential evolution mechanism
is introduced as evolution rules to evolve a set of cluster centers. Then P sys-
tems were used to discuss different clustering problems, such as data clustering
[10, 11, 12, 13, 14], fuzzy clustering [15, 16] and automatic clustering problems
[17, 18]. In addition, P systems were used to induce a decision tree algorithm
[19].

Application of membrane computing in image processing/signal pro-
cessing: In recent years our team used membrane computing model to solve
a variety of image processing/signal processing problems. Five papers on the
topic of application of membrane computing model in image and signal pro-
cessing have been also published by H. Peng, J. Wang and their collaborators
(region-based image segmentation [20, 21], clustering-based image segmenta-
tion [22], image thresholding [23, 24, 25, 26], image fusion [27], watermarking
[28], and digital filter design [29, 30]).

Application of membrane computing in micro-grid: Improved particle
swarm optimization, genetic algorithms and artificial fish swarm algorithms
based on membrane computing are applied on the operation of distributed
power, especially in economic operation of micro-grid and control strategy
of micro-grid environmental protection optimization [31, 32, 33, 34, 35]. Ref.
[36, 37, 38, 39, 40] applied different improved P systems in different control
systems.

3 Publications and Teaching

Our team members have published 40 papers (see references) and received five
Chinese patents. There are now more than 8 graduate students working for their
Master degree.
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Summary. We describe the structure and main activities of the Spanish Thematic Net-

work on Biomolecular and Biocellular Computing (Redbiocom).

1 The network and its research teams

The Spanish Thematic Network on Biomolecular and Biocellular Computing, Red-
biocom (http://www.redbiocom.es) was established in the year 2008, and, since
then, it has been supported by different Spanish governments through different
research supporting programs. It was first coordinated by Prof. Dr. Mario Pérez-
Jiménez (Univ. of Sevilla), and, currently, it is coordinated by Dr. José M. Sempere
(Univ. Politécnica de Valencia).

Initially, the network was composed by the following Spanish research groups:

The Research Group of the Universidad Auténoma de Madrid (UAM)
The Research Group on Computational Biology and Bioinformatics of the Uni-
versitat de les Illes Balears (UIB)

The Research Group of the Universitat de Lleida (ULL)

The Natural Computing Research Group of the Universidad de Sevilla (US)
The Research Group on Natural Computing of the Universidad Politécnica de
Madrid (UPM-I)

The Research Group of the Artificial Intelligence Laboratory of the Universidad
Politécnica de Madrid (UPM-II)

The Research Group on Computational Models and Formal Languages of the
Universidad Politécnica de Valencia (UPV)

Nowadays, the network has been slightly changed by removing the UAM team

and by splitting the UPM-I group into two different groups. In the following, we
overview the main activities of the current research groups.
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The Research Group on Computational Biology and Bioinformatics at
the Universitat de les Illes Balears (UIB)

Group Coordinator: Francesc Rossellé (email: frossello@mac.com)
The research group works in computational biology and bioinformatics. The
main topics in which the group is currently working can be enumerated as follows:

1. Structural Bioinformatics

2. Philogenetic Trees and Networks
3. Biomolecular Networks Modeling
4. Biomolecular Processes Modeling

In the last two topics the research group has used and explored membrane com-
puting and computational chemistry as computational tools. The Research Group
organized the Brainstorming Workshop on Uncertainty in Membrane Computing
in 2004 in Palma de Mallorca.

The Research Group at the Universitat de Lleida (ULL)

Group Coordinator: M. Angels Colomer (email: colomer@matematica.udl.cat)
The main research topics of the group are the following:

1. Ecosystems modeling through Population Dynamic P-systems.
2. Discrete Markov chains research through computational DNA and P systems.
3. Stochastic Modeling of rural problems.

The Research Group on Natural Computing at the Universidad de
Sevilla (US)

Group Coordinator: Agustin Riscos-Ntinez (email: ariscosn@us.es)

The Research Group on Natural Computing at the Universidad de Sevilla
(RGNC) explores the interconnections between Computer Science, Engineering,
Mathematics and Biology.

The main research lines of the group are the following:

1. The development of specification languages for complex dynamic systems,
specially in multicompartment systems for biological systems (from bacterial
colonies to ecosystems).

2. The development of algorithms by formal semantics to simulate and integrate
different space-time scales that appear in biological systems.

3. The implementation with high-performance computing of the previous algo-
rithms in a framework of software development.

4. The design of models for systems and synthetic biology in the framework of
cellular computing.



The Spanish Thematic Network on Biomolecular and Biocellular Computing 39

5. The research on the theoretical aspects of non-conventional computing, spe-
cially with respect to its computational power and efficiency. The main achieve-
ments is the formulation of new characterizations of the conjecture P # NP.

6. Applications to various engineering areas, including engineering optimization,
power system fault diagnosis, or the study of other complex systems involving
data modeling and process interactions.

The RGNC is one of the most referred groups in Membrane Computing. They
have organized the Brainstorming Week on Membrane Computing since the year
2004. Two of the members of the group serve in the Program Committee and
the Steering Committee of the International Conference on Membrane Computing
(CMCQC). Additionally, Prof. Dr. Mario Pérez-Jiménez (formerly, the RGNC coor-
dinator) is the Awards Committee Chair of the IMCS, and Agustin Riscos-Ntnez
is member of the IMCS Bulletin Committee. In 2014, the RGNC obtained the
NVIDIA CUDA Research Center mention for the Universidad de Sevilla, and it
was renewed in 2015.

The Research Group on Natural Computing at the Universidad
Politécnica de Madrid (UPM-I)

Group Coordinator: Juan Castellanos (email: jcastellanos@fi.upm.es)
The research group on Natural Computing at UPM, focuses its research activ-
ities in the following areas:

1. Genetic Algorithms and Evolutionary Computing.
2. Artificial Neural Networks.

3. Molecular Computing (DNA based computing).
4. Cellular Computing and Membrane Computing.

The research group belongs to the European Molecular Computing Consor-
tium (EMCC) and they organize the Natural Information Technologies conference
(NIT) that is usually celebrated every year in Madrid. Some members of the group
are members of the editorial committee of the International Journal Information,
Theories and Applications (IJITA).

The Research Group on Mathematical Models and Biocomputing
Algorithms at the Universidad Politécnica de Madrid (UPM-II)

Group Coordinator: Fernando Arroyo (email: farroyo@eui.upm.es)

This research group was created in 2014, and its members were formerly mem-
bers of the UPM-I group. The main research topics of the group are the same as
the ones of the UPM-I group, together with a strong interest in Formal Languages
and Networks of Bio-inspired Processors.
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Research Group of the Artificial Intelligence Laboratory at the
Universidad Politécnica de Madrid (UPM-III)

Group Coordinator: Alfonso Rodriguez-Patén (email: arpaton@fi.upm.es)

The main research activities of this group are focused in biomolecular com-
puting (DNA based computing) and bacterial computing. Additionally, the group
works in membrane computing (P systems), specially in Spiking Neural P systems,
and in Systems Biology.

The Research Group on Computation Models and Formal Languages
at the Universidad Politécnica de Valencia (UPV)

Group Coordinador: José M. Sempere (email: jsempere@dsic.upv.es)

The research group at UPV works in theoretical aspects of Biomolecular and
Membrane Computing (P systems), classical Automata Theory and Formal Lan-
guages, Grammatical Inference, and other non-conventional models of computa-
tion (such as Networks of Bio-inspired Processors). Some of the theoretical results
have been applied to solve practical problems in biosequence processing, such as
functional and structural protein prediction, and simulation of biological processes
such as the recently developed ARES system to simulate the antibiotic resistance
evolution that has been fully designed under the P systems paradigm.

The members of the research group have organized some international events
such as the ECAI 2004 Workshop on Symbolic Networks, the 10th International
Colloquium on Grammatical Inference (ICGI 2010) and, more recently, the 16th
Conference on Membrane Computing (CMC16) in 2015. One of its member, José
M. Sempere is a member of the Steering Committee of the International Conference
on Membrane Computing (CMC) and member of the IMCS Bulletin Committee.

2 Network activities

The main activities of the network are oriented to promote the research acti-
vities of its research groups. In addition, it is a valuable instrument to establish
collaborations between the groups to propose coordinated research projects in
the national research programs and/or international projects with other foreign
research groups.

One of the main events that the network has organized is the International
School on Biomolecular and Biocellular Computing (http://www.redbiocom.
es/ISBBC.html). The first edition of ISBBC was held in Osuna (Sevilla) in 2011,
while the second edition was organized in Madrid in 2013 co-located with the NIT
2013 Conference. Currently, the arrangements for the third edition have started
and it will be held in June 2017, in Valencia. The school is a three days event for
graduated and doctoral students where they can attend talks given by the most
prominent researchers of the network together with international invited speakers.
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The talks are organized in the areas of Membrane Computing, Systems and Syn-
thetic Biology, Networks of Bio-inspired Processors and Bioinformatics. All the
students can apply for grants that cover all the expenses related to attending the
school.

Another goal of the network is to serve as a gateway for external collabora-
tions between foreign research groups and the network groups. In this sense, any
collaborative project that can involve more than one of the research groups of the
network can be addressed to the network.

Any question, proposal or additional information regarding the network can be
addressed to José M. Sempere (jsempere@dsic.upv.es).






Formal Methods Laboratory (FML) in Iasi

Romanian Academy, Institute of Computer Science
Blvd. Carol I no.8, 700505 Iasi, Romania

The Formal Methods Laboratory (http://www.iit.tuiasi.ro/~fml/) is part of the
Institute of Computer Science, Romanian Academy (Iagi branch). Currently, the
team consists of 3 members:

e Gabriel Ciobanu, gabriel@info.uaic.ro
e Bogdan Aman, bogdan.aman@iit.academiaromana-is.ro
e Alexandru Andrei, andrei.alexandru@iit.academiaromana-is.ro.

There are several other collaborators:

e Ross Horne - former member of the team, currently at Nanyang Technological
University, Singapore

Danut Rusu - Associated Professor at A.I. Cuza University of Iasi

Cristian Vaideanu - Assistant Professor at A.I. Cuza University of lasi

Eneia Todoran - Professor, Technical University of Cluj-Napoca, Romania
Maciej Koutny - Professor, School of Computing Science, Newcastle University,
UK.

Gabriel Ciobanu is a PhD supervisor in Romania from 2001, involved also as
evaluator of several PhD theses in Singapore, Germany, France and ITtaly. Gabriel
was a mentor for several former students: Mihai Rotaru (Reuters), Bogdan Tanasa
(San Diego), Dorin Paraschiv (Oracle), Daniel Dumitriu (Mainz), Dorin Huzum,
Gabriel Moruz (Frankfurt), Sinicd Alboaie, Sabin Buraga, Cristian Prisacariu
(Oslo), Laura Cornacel, Calin Juravle (Google Londra), Andreas Resios (Utrecht),
Armand Rotaru (UCL Londra), Oana Agrigoroaiei (Stuttgart), Cosmin Bonchisg
(UVT Timisoara) and Cornel Izbaga (Munchen), as well as Rahul Desai, Akash
Kumar, K.N. Sridhar, Janardan Mishra and Guo Wenyuan at National University
of Singapore.

Research Interests

Since 2002, the group has focused on fundamental research in computer science
and mathematics. The research has resulted in theoretical methods, algorithms and
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mathematical models. Many papers have been successfully presented at national
and international conferences.
The group currently has a major focus on many areas in computer science:

Membrane Computing (Natural Computing)
Process Calculi and Distributed Systems
Logics and Type Systems

Sets and Multisets

The group has made significant contributions to the area of Membrane Com-
puting, being involved in many publications: books, journal papers, book chap-
ters, conference communications, etc. Many members were actively participating
in the main conferences related to natural computing, continuously along the years.
Since 2005 the FML has been involved in research projects focusing on Membrane
Computing as the main topic. The group has organized 5 of the 6 editions of
the Workshop on Membrane Computing and Biologically Inspired Process Calculi
(MeCBIC). The second MeCBIC was held in Iagi in 2008, the third one took place
in Bologna (CONCUR 2009), the forth one in Jena (Germany), then in Paris and
finally in Newcastle (CONCUR, 2012). The proceedings of the MeCBIC workshops
have been published as ENTCS volumes 171 and 227 (2006, 2008), EPTCS vol-
umes 11 and 40 (2009, 2010), in arXiv.org (http://arxiv.org/abs/1108.3558) in
2011, and as Theoretical Computer Science volume 431 in 2012.

Selected Publications (Chronologically)

1. Andrei Alexandru, Gabriel Ciobanu: Finitely Supported Mathematics. An Introduc-
tion. Springer 2016, ISBN 978-3-319-42281-7
2. Bogdan Aman, Péter Battyanyi, Gabriel Ciobanu, Gyorgy Vaszil: Simulating P sys-
tems with membrane dissolution in a chemical calculus. Natural Computing 15(4):
521-532 (2016)
3. Bogdan Aman, Gabriel Ciobanu: Efficiently solving the bin packing problem through
bio-inspired mobility. Acta Informatica (2016)
4. Bogdan Aman, Gabriel Ciobanu: Modelling and verification of weighted spiking neu-
ral systems. Theor. Comput. Sci. 623: 92-102 (2016)
5. Bogdan Aman, Gabriel Ciobanu: Behavioural observations of cell movements with
timing aspects. Nano Comm. Netw. 6(3): 96-102 (2015)
6. Bogdan Aman, Gabriel Ciobanu: Verification of membrane systems with delays via
Petri nets with delays. Theor. Comput. Sci. 598: 87-101 (2015)
7. Andrei Alexandru, Gabriel Ciobanu: Generalized multisets: from ZF to FSM. Com-
puting and Informatics 34(5): 1133-1150 (2015)
8. Oana Agrigoroaiei, Gabriel Ciobanu: Rewriting Systems Over Indexed Multisets.
Comput. J. 57(1): 165-179 (2014)
9. Gabriel Ciobanu, Dragos Sburlan: Monitoring changes in dynamic multiset systems.
Fundam. Inform. 134(1-2): 67-82 (2014)
10. Gabriel Ciobanu, G. Michele Pinna, Dragog Sburlan: Power of causal dependencies
in rule-based systems. Journal of Automata, Languages and Combinatorics 19(1-4):
45-56 (2014)
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Gabriel Ciobanu, Dragos Sburlan: Scenario Based P Systems. IJUC 9(5-6): 351-366
(2013)

Bogdan Aman, Gabriel Ciobanu: Properties of enhanced mobile membranes via
coloured Petri nets. Inf. Process. Lett. 112(6): 243-248 (2012)

Gabriel Ciobanu, Maciej Koutny: Modelling and Analysis of Biological Systems, spe-
cial issue Theor. Comput. Sci. 431 (2012)

Bogdan Aman, Gabriel Ciobanu: Mobility in Process Calculi and Natural Computing.
Natural Computing Series, Springer 2011, ISBN 978-3-642-24866-5, pp. 1-194
Bogdan Aman, Gabriel Ciobanu: Solving a weak NP-complete problem in polynomial
time by using mutual mobile membrane systems. Acta Inf. 48(7-8): 409-415 (2011)
Gabriel Ciobanu, Shankara Narayanan Krishna: Enhanced mobile membranes: com-
putability results. Theory Comput. Syst. 48(3): 715-729 (2011)

Bogdan Aman, Gabriel Ciobanu: Mutual mobile membranes with objects on surface.
Natural Computing 10(2): 777-793 (2011)

Oana Agrigoroaiei, Gabriel Ciobanu: Reversing computation in membrane systems.
J. Log. Algebr. Program. 79(3-5): 278-288 (2010)

Oana Agrigoroaiei, Gabriel Ciobanu: Rule-based and object-based event structures
for membrane systems.J. Log. Algebr. Program. 79(6): 295-303 (2010)

Bogdan Aman, Gabriel Ciobanu: Computational Aspects of Mobile Membranes,
Brane Calculi and Mobile Ambients. Scholarpedia 5(7): 9420 (2010)

Gabriel Ciobanu, Viorel Mihai Gontineac: Encodings of multisets. Int. J. Found.
Comput. Sci. 20(3): 381-393 (2009)

Gabriel Ciobanu, Andreas Resios: Complexity of evolution in maximum cooperative
P systems. Natural Computing 8(4): 807-816 (2009)

Bogdan Aman, Gabriel Ciobanu: Simple, Enhanced and Mutual Mobile Membranes.
Trans. Computational Systems Biology 11: 26-44 (2009)

Gabriel Ciobanu, Bogdan Aman: On the relationship between membranes and am-
bients. Biosystems 91(3): 515-530 (2008)

Bogdan Aman, Gabriel Ciobanu: Turing completeness using three mobile membranes.
Lecture Notes in Computer Science 5715: 42-55 (2009)

Cosmin Bonchis, Cornel Izbasa, Gabriel Ciobanu: Information theory over multisets.
Computing and Informatics 27(3+): 441-451 (2008)

Gabriel Ciobanu, Andreas Resios: Computational complexity of simple P systems.
Fundam. Inform. 87(1): 49-59 (2008)

Oana Andrei, Gabriel Ciobanu, Dorel Lucanu: A rewriting logic framework for oper-
ational semantics of membrane systems. Theor. Comput. Sci. 373(3): 163-181 (2007)
Gabriel Ciobanu, Lingiang Pan, Gheorghe Paun, Mario J. Pérez-Jiménez: P systems
with minimal parallelism. Theor. Comput. Sci. 378(1): 117-130 (2007)

Daniela Zaharie, Gabriel Ciobanu: Distributed evolutionary algorithms inspired by
membranes in solving continuous optimization problems. Lecture Notes in Computer
Science 4361: 536-553 (2006)

Gabriel Ciobanu, Mario J. Pérez-Jiménez, Gheorghe Piun (Eds.): Applications of
Membrane Computing. Natural Computing Series, Springer 2006, ISBN 978-3-540-
25017-3

Gabriel Ciobanu, Gheorghe Paun, Mario J. Pérez-Jiménez: On the branching com-
plexity of P systems. Fundam. Inform. 73(1-2): 27-36 (2006)

Cosmin Bonchig, Gabriel Ciobanu, Cornel Izbaga: Encodings and arithmetic oper-
ations in membrane computing. Lecture Notes in Computer Science 3959: 621-630
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The concept of kernel P systems has been introduced in [5] and its definition revised
in [6]. The research covers a broad spectrum of topics, from theory to verifications,
applications and simulations. Apart from the papers listed below there is a PhD
thesis, by Ciprian Dragomir, in preparation to be submitted.
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cating P Systems and Simple Kernel P Systems, Proc. 9" International Conference
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293, 2013.

R. Lefticaru, L. F. Macfas-Ramos, I. M. Niculescu, L. Mierla, Towards Agent-
Based Simulation of Kernel P Systems using FLAME and FLAME GPU, Proc.
Workshop on Membrane Computing, Manchester, 11 — 15 July, 2016 (M. Ghe-
orghe, S. Konur, eds.), Technical Report of the University of Bradford, 58 — 61,
2016.

R. Lefticaru, L. F. Macias-Ramos, I. M. Niculescu, L. Mierla, Agent-Based Sim-
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19(1-4), 239 — 250, 2014.
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The following theses were totally or only partially dedicated to membrane
computing. The list is mainly compiled from the bibliography given at
http://ppage.psystems.eu, with some updates provided by Spain, Italy
and, especially, China groups. There also are several theses in preparation at this
moment. For sure, the list is not complete. We hope to make it as complete as
possible in a future version.
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ragona University, Tarragona, Spain, 2006.
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B. Aman: Spatial Dynamic Structures and Mobility in Computation, Romanian
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F. Arroyo-Montoro: Structures and Biolanguage to Simulate Membrane Com-
puting, Madrid University, Madrid, Spain, 2004.

A. Arteta: New Techniques for Implementing Membrane Systems, Technical
University of Madrid, Madrid, Spain, 2010.

F. Bernardini: Membrane Systems for Molecular Computing and Biological
Modelling, University of Sheffield, Sheffield, UK, 2005.

D. Besozzi: Computational and Modelling Power of P Systems, University of
Milan-Bicocca, Milano, Italy, 2003.

L. Bianco: Membrane Models of Biological Systems, Verona University, Verona,
Italy, 2007.

C. Bonchis: Arithmetics and Information Theory in Membrane Computing,
West University, Timigoara, Romania, 2009.

R. Brijder: Models of Natural Computation: Gene Assembly and Membrane
Systems, Leiden University, Leiden, The Netherlands, 2008.
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sidad de Sevilla, Seville, Spain, 2016

M. Madhu: Studies of P Systems as a Model of Cellular Computing, Indian
Institute of Technology, Madras, India, 2003.
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versita di Verona, Verona, Italy, 2012.

M.A. Martinez-del-Amor: Accelerating Membrane Systems Simulators Using
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Spain, 2013.
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Nets, Thapar University, Patiala, Indian, 2012.
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M. Oswald: P Automata, Vienna University of Technology, Wien, Austria,
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Means of Metabolic P Systems, Verona University, Verona, Italy, 2011.
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A.B. Pavel: Development of Robot Controllers Using Membrane Computing,
Politechnica University, Bucharest, Romania, 2015.

X. Peng: Research on Computational Power and Applications of Spiking Neural
P Systems, Central South University, Changsha, China, 2013.

I. Pérez-Hurtado de Mendoza: Desarrollo y Aplicaciones de un Entorno de
Programacion para Computacion Celular: P-Lingua, Universidad de Sevilla,
Seville, Spain, 2010.

D. Pescini: Modelling, Analysis and Stochastic Simulations of Biological Sys-
tems, University of Milano-Bicocca, Milano, Italy, 2007.

B. Popa: Membrane Systems with Limited Parallelism, Louisiana Technical
University, Ruston, USA, 2006.
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Bicocca University, Italy, 2012.

A. Ramanujan: Control Languages in P Systems, Indian Institute of Technol-
ogy Madras, Chennai, Indian, 2014.

A. Riscos-Nunez: Programacion Celular: Resolucion Eficiente de Problemas
Numéricos NP-completos, Universidad de Sevilla, Seville, Spain, 2004.

F. Romero-Campero: P Systems: A Computational Modelling Framework for
Systems Biology, Universidad de Sevilla, Seville, Spain, 2008.

A. Romero-Jimtiez: Complejidad y Universalidad en Modelos de ComputaciOn
Celular, Universidad de Sevilla, Seville, Spain, 2002.

F. Sancho-Caparrini: Verificacion de Programas en Modelos de Computacion
no Convencionales, Universidad de Sevilla, Seville, Spain, 2002.

D. Sburlan: Promoting and Inhibiting Contexts in Membrane Computing, Uni-
versidad de Sevilla, Seville, Spain, 2006.

T. Song: Research on Computational Properties and Applications of Spiking
Neural P Systems, Huazhong University of Science and Technology, Wuhan,
China, 2013.

B. Song: Research on Computational Property of Timed Membrane Systems,
Huazhong University of Science and Technology, Wuhan, China, 2015.

I. Stamatopoulou: A Formal Framework for the Modelling of Multi-Agent
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Y. Sun: Process Modeling and Operation Optimization Methods for Coal Water
Slurry Gasification Unit, East China University of Science and Technology,
2012.

C. Stefan: Parallel and Distributed Communication Systems: A Formal Ap-
proach, University of Pitesti, Romania, 2012.

A. Turcanu: Modelling, Testing and Verification of Biology Inspired Systems,
University of Pitesti, Pitesti, Romania, 2013.
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. L. Valencia-Cabrera: An Environment for Virtual Experimentation with Com-
putational Models Based on P Systems, Universidad de Sevilla, Seville, Spain,
2015.

C.-1. Vasile: Distributed Control for Multi-Robot Systems, Politechnica Univer-
sity, Bucharest, Romania, 2015.

C. Vasilica Ferent: Methodologies for Specification and Validation of Software
Systems, 777, 2011.

J. Wang: Spiking Neural P Systems, Leiden University, Leiden, The Nether-
lands, 2011.

J. Wang: Computational Power of Spiking Neural Membrane Systems Inspired
by Neural Systems, Huazhong University of Science and Technology, Wuhan,
China, 2013.

H. Wu: P Systems as Formal Models for Distributed Algorithms, The Univer-
sity of Auckland, Auckland, New Zealand, 2014.

J. Xiao: The Research on Bio-Inspired Encoding Algorithms for DNA Com-
puting, Huazhong Univ. of Science and Technology, Wuhan, China, 2008.

G. Xiong: Research on Methods for Fault Diagnosis of Power Grids Based
on Computational Intelligence, Huazhong Univ. of Science and Technology,
China, 2014.

W. Xiong: Research on Traffic Assignment Model Considering Emission Ef-
fects and Solution Algorithm, Wuhan University of Technology, Wuhan, China,
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J. Xue: Two Classes of Biological Computing and Applications in Data Mining,
Shandong Normal University, Ji'nan, China, 2015.

S. Yang: Research on P systems Based Optimization Algorithms and Applica-
tions, Zhejiang University, Hangzhou, China, 2012.

C. Zandron: A Model for Molecular Computing: Membrane Systems, University
of Milano-Bicocca, Milano, Italy, 2001.

X. Zeng: Research on Computational Property of Spiking Neural P Systems,
Huazhong University of Science and Technology, Wuhan, China, 2011.

X. Zhang: Research on the Computational Power of Spiking Neural P Systems,
Huazhong University of Science and Technology, Wuhan, China, 2009.

J. Zhao: Research on Bio-inspired Optimization Algorithms Based on Mem-
brane Computing and Applications, Zhejiang University, Hangzhou, China,
2010.

It might be instructive to also have a view of the evolution of the number of

PhD theses presented in each year (the increasing tendency of the last years is
obvious — for sure, a consequence of the interest for MC in China):
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16th International Conference, CMC 2015
Valencia, Spain, August 17-21, 2015
Revised Selected Papers

LNCS 9504, Springer-Verlag, Berlin, 2015

Grzegorz Rozenberg, Arto Salomaa, José M. Sempere, Claudio Zandon, editors

Preface

The present volume contains the invited contributions and a selection of pa-
pers presented at the 16*" International Conference on Membrane Computing
(CMC16), that was held in Valencia, Spain, 17-21 August, 2015 (website address:
http://users.dsic.upv.es/workshops/cmc16/), as well as three selected pa-
pers from the Asian Conference on Membrane Computing (ACMC) 2015, held in
Anhui University, Hefei, Anhui, China, 12-15 November, 2015 (website address:
http://2015.asiancmc.org/).

The CMC series started with three workshops organized in Curtea de Arges,
Romania, in 2000, 2001 and 2002. The workshops were then held in Tarragona,
Spain (2003), Milan, Italy (2004), Vienna, Austria (2005), Leiden, The Netherlands
(2006), Thessaloniki, Greece (2007), and Edinburgh, UK (2008).

The 10" edition was organized again in Curtea de Arges, in August 2009, where
it was decided to continue the series as the Conference on Membrane Computing
(CMCQ). The following editions were held in Jena, Germany (2010), Fontainebleau,
France (2011), Budapest, Hungary (2012), Chigindu, Moldova (2013), and Praha,
Czech Republic (2014).

A regional version of CMC, the Asian Conference on Membrane Computing,
ACMC, started in 2012 in Wuhan (China), and continued in Chengdu, China
(2013) and Coimbatore, India (2014).

CMC16 has been organized, under the auspices of the European Molecular
Computing Consortium (EMCC), by the Research Group on Computation Mod-
els and Formal Languages of the Universitat Politecnica de Valencia and it was
supported by the Escuela Técnica de Ingenieria Informética (ETSINF, UPV).

CMC16 consisted of three different parts: the first day was organized as a Tu-
torial Day, with lectures by Gheorghe Paun, Rudolf Freund, Claudio Zandron,
Gyorgy Vaszil, and Agustin Riscos-Nunez. From Tuesday to Thursday the con-
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ference continued with standard sessions; invited lectures were given by Ion Petre
(Abo Akademi University, Finland), Andrés Moya (Universitat de Valéncia, Spain)
and Vincenzo Manca (University of Verona, Italy). The last day of the conference
was devoted to presentation of extended abstracts and interaction between par-
ticipants. Based on the votes of the CMC16 participants, the Best Paper Award
of this edition was given to Rudolf Freund and Petr Sosik for their paper “On the
Power of Catalytic P Systems with One Catalyst”.

The editors express their gratitude to the Program Committee, the invited
speakers, the authors of the papers, the reviewers, and all the participants for
their contributions to the success of CMC16.

November 2015 Grzegorz Rozenberg
Arto Salomaa

José M. Sempere

Claudio Zandron
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Membranes Agents — Book Summary

Ludék Cienciala

Research Institute of the IT4Innovations Centre of Excellence,
Faculty of Philosophy and Science, Silesian University in Opava, Czech Republic
ludek.cienciala@fpf.slu.cz

1 Summary

The book Membrdnovi agenti — o variantdch P kolonid (Membrane Agents — About
Variants of P Colonies) by doc. RNDr. Ludék Cienciala, Ph.D., was published in
2015 by Silesian University in Opava.

In this book the author focused on one of the modern areas in theoretical
computer science, computational models inspired by the biochemistry of cells,
called membrane or P systems.

The membrane systems were introduced by Gheorghe Paun in 1998 as a dis-
tributed parallel computing model inspired by the biochemistry of cells. This model
consists of membranes hierarchically embedded in the outermost skin membrane.
Each membrane delimits a region which can contain objects; these objects can be
seen as symbols from a given alphabet. There is a set of rules associated with every
region, and the objects can evolve or be transported to their parent or children
regions according to these rules.

P colonies were introduced in 2004 as an abstract computing device evolved
from membrane systems; they are composed of independent single membrane
agents, reactively acting and evolving in a shared environment.

Different variants of P colonies have been derived from the original model since
that time. The book contains not only a brief introduction to membrane systems
but also a compendium of different types of P colonies together with a comparison
of results obtained in research devoted to these systems.

2 Contents
1 Zakladni definice — Basic Definitions

2 Membranové systémy — Membrane Systems
2.1 Membranové struktury — Membrane Structures
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2.2 P systémy — P Systems

3 P kolonie — P Colonies
3.1 Uvod — Introduction
3.2 Definice — Definition
3.3 P kolonie s jednim objektem uvniti agenta — P Colonies with One Object
Inside Agents
3.4 P kolonie se dvéma objekty uvniti agenta — P Colonies with Two Objects
Inside Agents

4 Membranové agenty v proménlivém prostifedi — Membrane Agents
in Evolving Environment
4.1 Uvod — Introduction
4.2 Eko-P kolonie — Eco-P Colonies
4.3 Chovéni agentu — Agents Behaviour
4.4 Vlastnosti eko-P kolonii — Properties of Eco-P Colonies

5 P kolonie Fizena paskou — P Colonies Controlled by a Tape

6 2D P kolonie — 2D P Colonies
6.1 Uvod — Introduction
6.2 Piiklady — Examples
6.3 Implementace 2D P kolonie — simulator — Inplementation of 2D P Colonies —
Simulator

7 Porovnani uvedenych variant P kolonii — Comparison of the P
Colonies Variants

8 Aplikace membranovych systému a P kolonii — Application of Mem-
brane Systems and P Colonies
References



Advances in Unconventional Computing.
Volume 1: Theory,

Volume 2: Prototypes, Models and Algorithms.
Springer, 2016

Andrew Adamatzky, editor

Director of the Unconventional Computing Centre
UWE, Bristol BS16 1QY UK
andrew.adamatzkyQuwe.ac.uk, adamatzky@gmail.com

Unconventional computing is a science in flux. What is unconventional today will
be conventional tomorrow. Designs being standard in the past are seen now as a
novelty. Unconventional computing is a niche for interdisciplinary science, a cross-
breed of computer science, physics, mathematics, chemistry, electronic engineering,
biology, materials science and nanotechnology. The aims are to uncover and exploit
principles and mechanisms of information processing in, and functional properties
of, physical, chemical and living systems to develop efficient algorithms, design
optimal architectures and manufacture working prototypes of future and emergent
computing devices.

I invited worlds leading scientists and academicians to describe their vision
of unconventional computing and to highlight the most promising directions of
future research in the field. Their response was overwhelmingly enthusiastic: over
50 chapters were submitted spanning almost all the fields of natural and engineer-
ing sciences. Unable to fit over one and half thousands pages into one volume,
I grouped the chapters as “theoretical” and “practical”. By “theoretical” I mean
constructs and algorithms which have no immediate application domain and do not
solve any concrete problems, yet they make a solid mathematical or philosophical
foundation to unconventional computing. “Practical” includes experimental labo-
ratory implementations and algorithms solving actual problems. Such a division is
biased by my personal vision of the field and should not be taken as an absolute
truth.

The first volume brings us mind-bending revelations from gurus in computing
and mathematics. The topics covered are computability, (non-)universality and
complexity of computation; physics of computation, analog and quantum comput-
ing; reversible and asynchronous devices; cellular automata and other mathemat-
ical machines; P-systems and cellular computing; spatial computation; chemical
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and reservoir computing. As a dessert we have two vibrant memoirs by founding
fathers of the field.

The second volume is a tasty blend of experimental laboratory results, mod-
elling and applied computing. Emergent molecular computing is presented by enzy-
matic logical gates and circuits, and DNA nano-devices. Reaction-diffusion chem-
ical computing is exemplified by logical circuits in BelousovZhabotinsky medium
and geometrical computation in precipitating chemical reactions. Logical circuits
realised with solitons and impulses in polymer chains show advances in collision-
based computing. Photo-chemical and memristive devices give us a glimpse into
the hot topics of novel hardware. Practical computing is represented by algorithms
of collective and immune-computing and nature-inspired optimisation. Living com-
puting devices are implemented in real and simulated cells, regenerating organisms,
plant roots and slime moulds. Musical biocomputing and living architectures make
the ending of our unconventional journey non-standard.

The chapters are self-contained. No background knowledge is required to enjoy
the book. Each chapter is a treatise of marvellous ideas.
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Summary. Cooperation is doubtless a critical ingredient of a computing model. This
paper provides an overview on results showing how forbidding cooperation, or allowing
it only a minimum degree, influences the computing power.

In particular, we restrict ourselves to two types of cell-like membrane systems. On
one hand, we analyze the efficiency of polarizationless P systems with active membranes
without dissolution rules when minimal cooperation is permitted in object evolution rules.
On the other hand, cell-like P systems with symport/antiport rules of minimal length
are also addressed.

Specifically, assuming that P is not equal to NP, several frontiers of the efficiency
are obtained in these two frameworks.

1 Introduction

The dynamics of cell-like membrane systems is captured by means of rewriting
rules that allow the evolution of objects. Any object, alone or together with one
more object can be transformed into other objects, can pass through one membrane
and can dissolve/divide/separate the membrane where it currently resides [8]. Non-
cooperative systems only contain rules abstracting proteins that transport only one
solute across the membrane (for example, the glucose transporter in red blood cell
membranes).

P systems with active membranes [9] is an interesting particular case of non-
cooperative system. In the first version of these systems, electrical charges from
the set {+, —,0} are associated with membranes. Besides, a rule associated with a
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membrane labelled by h is applicable to a configuration if the object corresponding
to its left-hand side is in membrane h of that configuration, and the membrane
has a polarization prefixed in the rule. Thus, in some sense, there exists a kind of
cooperation/collaboration in order to trigger the rule.

A particular case of cooperative systems are the cell-like P systems with sym-
port/antiport rules [7] where there exist rules with the length at least two. In these
systems, communication is implemented by means of symport/antiport rules ab-
stracting trans-membrane transport of couples of chemical substances, in the same
or in opposite directions.

As it is stated by the so-called Milano theorem [17], no computationally hard
problems can be solved in polynomial time without using rules allowing the gen-
eration of an exponential number of membranes/cells in polynomial time, unless
P = NP holds. So, in order to achieve efficiency (the ability to provide polynomial-
time solution to computationally hard problems), division rules abstracting the cell
division process and separation rules abstracting the membrane fission process are
also included.

It is worth pointing out that dissolution rules and division rules for non-
elementary membranes are not necessary/relevant to get the computational effi-
ciency in (non-cooperative) P systems with active membranes. Nevertheless, if
electrical charges are forbidden, then dissolution rules start to play a relevant role
in these systems from a computational complexity point of view. The reason is
that only problems in class P can be efficiently solved by means of families of
such systems without dissolution rules, even in the case that division rules for
non-elementary membranes are allowed [3]. The situation is similar for cell-like P
systems with symport/antiport rules where only a single object is involved in any
rule (so, only symport rules with length 1 are permitted).

The main goal of this work is to present recent results concerning the compu-
tational efficiency of both polarizationless P systems with active membranes and
cell-like P systems with symport/antiport rules when minimal cooperation is con-
sidered. The term “minimal cooperation” is used in the following sense: in the first
case, the left-hand side of each rule has at most a couple of objects; in the second
case, at most two objects are involved in each communication (symport/antiport)
rule.

2 The computational frameworks

2.1 Polarizationless P systems with active membranes

A polarizationless P system with active membranes (I, H, i, M1, ..., Mg, R, iout)
of degree ¢, can be viewed as a set of ¢ membranes, labelled by elements of
H, arranged in a hierarchical structure p given by a rooted tree, such that: (a)
My, ..., M, represent the finite multisets of objects initially placed in the ¢ mem-
branes of the system; (b) R is a finite set of rules over I' associated with the
labels; (¢) 4oyt € H U {env} indicates the output region. The leaves of u are called
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elementary membranes; any other membrane is said to be non-elementary. The
semantics of polarizationless P systems with active membranes is defined as usual
P systems with active membranes (see [4, 9] for details).

A new kind of models can be considered when separation rules, inspired by
the membrane fission process, are used instead of division rules as a mechanism
to produce an exponential number of membranes in linear time. These rules are
associated with a (prefixed) partition {Ip, 1} of the working alphabet I" and a
(prefixed) partition {Hy, H1} of the set of labels H.

o Separation for elementary membranes: [alp — [Io]n [I1]n for h € H\ {iout},
a € I' and h is not the label of the root of .

o Separation for non-elementary membranes: [ |nol Iniln = [T0[ holn [T1] ha]hs
where h € H \ {iou:} is not the label of the root of u, hg € Hy and hy € Hj.

A separation rule [a]p, — [ Io |n [ I1 |n is applicable to a configuration C; at
an instant t, if there exists a membrane labelled by h in C; such that it is an
elementary membrane in C; and contains object a. When applying such a rule,
the membrane is separated into two membranes with the same label; at the same
time, object a is consumed and the multiset of objects contained in membrane h
gets distributed: the objects from Iy are placed in one membrane, those from I}
are placed in another.

A separation rule [[|no[lri]n = [ L0 [Jholn [ I1 [, ]n is applicable to a
configuration C; at an instant ¢, if there exists a membrane labelled by A in C;
such that it contains a membrane labelled by hy and another membrane labelled
by hi. When applying such a separation rule to a membrane labelled by h in C;,
that membrane is separated into two membranes with the same label, in such a
way that the contents (objects and inner membranes) are distributed as follows:
The first membrane receives the objects from I, and all inner membranes whose
label belongs to Hy; while the second membrane receives the objects from I, and
all inner membranes whose label belongs to H;.

Minimal cooperation in object evolution rules

Next, minimal cooperation in objects evolution rules is introduced in the frame-
work of polarizationless P systems with active membranes. The term “minimal co-
operation” is used in the following sense: the left-hand side of such rules consists
of two symbols.

Definition 1. In the context of polarizationless P systems with active membranes,
the following kinds of minimal cooperation in object evolution rules are considered.

e Primary minimal cooperation (pmc): object evolution rules are of the form
[u— v]p, where h € H, u,v are multisets over I', and 1 < |ul, |v| < 2, but at
least one object evolution rule verifies |u| = 2.
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e Bounded minimal cooperation (bmc): object evolution rules are of the form
[u— v]p, where h € H, u,v are multisets over I', and 1 < |v| < |u| < 2, but
at least one object evolution rule verifies |u| = 2.

e Minimal cooperation and minimal production (mcmp): object evolution rules
are of the form [a — b]n, [ab — ¢]p, for h € H and a,b,c € I, but at least
one object evolution rule is of the second type.

We denote by DAM®(a, 8,7,8) (respectively, SAM®(a, 3,7, 6)) the class of all
polarizationless P systems with active membranes and with division rules (respec-
tively, separation rules), where the meaning of parameters «, 3, v and ¢ is the
following:

e If @ = pmc (resp. @ = bmc or @« = memp) then primary minimal coopera-
tion (resp. bounded minimal cooperation or minimal cooperation and minimal
production) in object evolution rules are permitted. If @« = +e then any non-
cooperative object evolution rule is permitted.

e If 3 = +¢ (resp. B = —c) then communication rules are permitted (resp.
forbidden).
If v = +d (resp. v = —d) then dissolution rules are permitted (resp. forbidden).
If § = +n (resp. § = —n) then division/separation rules for elementary and

non—elementary membranes are permitted (resp. only division/separation rules
for elementary membranes are permitted).

In this context, counting membrane systems instead of recognizer membrane sys-
tems can be considered [10]. The output of these systems will be natural numbers.

2.2 Cell-like P systems with symport/antiport rules

Cell-like P systems with symport/antiport rules were introduced in [7] aiming to
abstract the biological phenomenon of trans-membrane transport of couples of
chemical substances, in the same or in opposite directions.

A P system with symport/antiport rules of degree ¢

1= (FaghuaMla"'anaRlv"'aRqaiout)

can be viewed as a set of ¢ membranes, labelled by 1,...,q, arranged in a hierar-
chical structure p given by a rooted tree whose root is called the skin membrane,
such that: (a) My,..., M, represent the finite multisets of objects initially placed
in the ¢ membranes of the system; (b) £ is the set of objects initially located in the
environment of the system, all of them available in an arbitrary number of copies;
(¢) R1,- -+, Ry are finite sets of communication rules over I' (R; is associated with
the membrane i of p); and (d) i, represents a distinguished region which will
encode the output of the system. We use the term region ¢ (0 < i < ¢) to refer
to membrane i in the case 1 < i < g and to refer to the environment in the case
i = 0. The length of rule (u,out) or (u,in) (resp. (u,out;v,in)) is defined as |u]
(resp. |u|+ |v|). Division rules and separation rules are introduced in these models
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in a similar way that in polarizationless P systems with active membranes, both
in syntax and semantics.

For each natural number k > 1, we denote by CDC(k) (respectively, CSC(k))
the class of P systems with symport/antiport rules and division rules (respectively,
separation rules) such that the length of the communication rules is at most k.
When division or separation for non-elementary membranes is permitted then we
denote CD,,.C(k) and CS,.C(k), respectively. If the alphabet of the environment
is the empty set then we write Cﬁ(k), C/S\C(k‘), respectively.

3 Proof techniques

The results described at the next Section have been obtained by using three dif-
ferent proof techniques:

e Dependency graph: a directed graph (dependency graph) G associated with a
P system IT is considered in such a way that there exists an accepting compu-
tation of IT if and only if there exists a path between two distinguished nodes
in the dependency graph associated with it.

e Algorithmic technique: a deterministic algorithm A working in polynomial time
that receives as input a P system IT and an input multiset m of IT is considered
in such a manner that algorithm A reproduces the behaviour of a single
computation of IT + m.

o Simulation technique: a P system IT’ simulating (in an efficient way) a given
P system I is constructed, in such a way that there exists an efficient and
injective correspondence between accepting computation of II’ and accepting
computation of IT.

4 Recent results

The role of minimal cooperation is studied from the computational complexity
point of view. In the case of polarizationless P systems with active membranes,
objects evolution rules whose left-hand side consists of a couple of objects are
considered. In the case of cell-like P systems with symport/antiport rules, mini-
mal cooperation is expressed by the property of the length of communication rules
to be equal to two.

4.1 Polarizationless P systems with active membranes

By using the dependency graph technique it has been shown that families of non-
cooperative polarizationless P systems with active membranes which make no use
of dissolution rules, can only solve tractable problems in an efficient way [3, 14].

Theorem 1. P = PMCDAMO(J”S}J”C,*d,*"n) = PMCS.AMO(+E,+C,7d,+n)'
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However, when dissolution rules are allowed in that framework, the situation is
quite different. If division rules for non-elementary membranes are permitted then
PSPACE-complete problems can be solved in polynomial time [1].

Theorem 2. PSPACE C PMCp gr(0(4e 4¢,+d,+n)-

Nevertheless, it is an open question what happens if division rules only for
elementary membranes are permitted in polarizationless P systems with active
membranes and with dissolution rules.

Open question: PMCp gr0(te,4e,+d,—n) = P 7 (Pdun’s conjecture).

The computational efficiency of polarizationless P systems with active mem-
branes and membrane division can be reached by considering bounded minimal
cooperation, even in the case that dissolution rules and division rules for non-
elementary membranes are forbidden [15].

Theorem 3. SAT € PMCp 4 \0(bme,+¢,—d,—n)-

However, if separation rules are used instead of division rules in polarizationless
P systems with active membranes which make use of bounded minimal cooperation
then, by using the algorithmic technique, the limitation on the efficiency of these
systems has been shown [13].

Theorem 4. PMCS.AMO(bmc,+c,7d,+n) =P.

Families of polarizationless P systems with active membranes and membrane
separation which use primary minimal cooperation in object evolution rules can
solve NP-complete problems in polynomial time, even in the case that dissolution
rules and division rules for non-elementary membranes are forbidden [14].

Theorem 5. SAT € PMC s om0 (pme,+c,—d,—n) -

The result of Theorem 3 has been improved in the sense that minimal coope-
ration in object evolution rules producing only a single object suffices to reach the
efficiency of polarizationless P systems with active membranes [16].

Theorem 6. SAT € PMCp A0 (memp,+¢,—d,—n) -

By considering the corresponding “counting version” of membrane systems
from DAMO(mcmp, +¢, —d,—n), the previous result has been extended to the
counting problem #SAT [10], which is a well known #P-complete problem [6].

Bearing in mind that minimal cooperation with minimal production in object
evolution rules is a particular case of bounded minimal cooperation, we deduce
the following result:

Theorem 7. PMCgs 40 (memp,+c,—d,+n) = P-
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4.2 Cell-like P systems with symport/antiport rules

From the complexity point of view, non-cooperative cell-like P systems with sym-
port/antiport rules and polarizationless P systems with active membranes and
without dissolution rules have some similarities. In particular, the dependency
graph technique used to prove Theorem 1 can be adapted to show that such non-
cooperative systems are not efficient unless P = NP holds.

Theorem 8. P = PMCCD,IEC(I) = PMCCSHEC(1)~

However, if minimal cooperation in communication rules is considered, then
computational efficiency can be reached when membrane division rules are used
[12].

Theorem 9. HAM — CYCLE € PMCecpc(2)-

Concerning membrane separation rules, if the length of communication rules
is at most two then, by using the algorithmic technique, it can be shown that
separation rules are not enough to provide polynomial-time solutions to compu-
tationally hard problems, assuming that P # NNP. Nevertheless, P systems with
symport/antiport rules with length at most three and with membrane separation
are computationally efficient [5].

Theorem 10. P = PMC¢se(2) and SAT € PMCeses)-

In [11] a polynomial-time solution for the QSAT problem, which is a well known
PSPACE-complete problem [2], has been given by means of a family of cell-like
P systems with communication rules with length at most three which make use of
division rules for non-elementary membranes.

Theorem 11. QSAT € PMCecp, c(3)-

Next, the role of environment associated with P systems with symport/antiport
rules is studied from the complexity point of view. Let us recall that in these
systems environment provides an arbitrary large amount of objects at the initial
configuration.

First, it has been shown that the role of the environment is not relevant in
P systems with symport/antiport rules and membrane division by using simulation
technique.

Theorem 12. For each k > 1 we have PMCC/D\C(k) = PMCcpci)-

Second, it has been shown that P systems with symport /antiport rules, without
environment and with membrane separation can only solve problems in class P in
polynomial time [5] by using algorithmic technique.

Theorem 13. For each k > 1 we have P = PMCC/S\C(k).

Hence, in this kind of P systems the role of environment is important:

P = PMCggp ;) and SAT € PMCesc(s).
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5 Conclusions

In this work, we present an overview of the results related to the computational ef-
ficiency of (minimal) cooperation. Informally speaking, one could say that it is not
surprising that in most cases models using cooperation prove to be more powerful
than their non-cooperative counterparts, by setting an analogy with the existing
gap between context-free and context-sensitive rules in Chomsky hierarchy. This
paper investigates the impact of (minimal) cooperation in the framework of cell-
like membrane systems. That is, the goal is to restrict the cooperation to its limit,
while minimizing the rest of ingredients of the model, in such a way that border-
lines of efficiency (expressed in terms of the degree of cooperation) are unveiled.
More precisely, the paper focuses on two case studies: allowing some “minimal”
degree of cooperation in object evolution rules for polarizationless P systems with
active membranes, and reducing symport/antiport rules to “minimal” length for
cell-like P systems.

There are many other P system models worth studying, which could proba-
bly benefit from the results gathered here by following analogous techniques but
performing the corresponding adjustments.

Recently, the computational efficiency of polarizationless P systems with ac-
tive membranes and division rules which incorporates minimal cooperation with
minimal production in commaunication rules (instead of in object evolution rules)
has been studied. The results obtained are similar to the case of minimal coopera-
tion in object evolution rules but with an important restriction: division rules for
elementary and non-elementary membranes have been used. Moreover, it has been
shown that efficiency can be reached by using minimal cooperation with minimal
production only in send-in rules (or only in send-out rules).

Two main questions remain to be investigated:

e In order to reach the efficiency, can the use of division rules for non-elementary
membranes be avoided?

e What about the efficiency of polarizationless P systems with active membranes
and separation rules which incorporates minimal cooperation with minimal
production in communication rules?

We conclude by presenting some additional open questions.

e Is there a family of systems from DAMC(memp, +c, —d,+n) (or from
SAMO(mcmp, +c¢,—d, +n)) providing a polynomial-time solution to the QSAT
problem?

QSAT € PMCCD,LEC@) ?
QSAT € PMCcs c(3) ?

ne
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Summary. Polymorphic P systems are a variant of P systems — a multiset-rewriting-
based model of computing inspired from the structure and the functioning of the living
cell. In polymorphic P systems, rules are not statically defined, but instead are dynam-
ically inferred from the contents of specially designated pairs of membranes. Besides
enabling dynamic modifications of the form of the available rules, polymorphism allows
for embedding rules into the sides of other rules. In the present article, we compile the
results and the conclusions published on polymorphic P systems since 2011 (when they
were introduced) and give an extensive list of 11 open questions.

1 Introduction

Membrane computing is a research field originally founded by Gheorghe Paun
in 1998 [15]. Membrane computing focuses on membrane systems (also known
as P systems) which is a model of computing based on the abstract notion of a
membrane. Formally, a membrane is treated as a container delimiting a region; a
region may contain objects which are acted upon by the rewriting rules associated
with the membrane. Quite often, the objects are plain symbols coming from a
finite alphabet, but P systems operating on more complex objects (e.g., strings)
sometimes are considered, too. A comprehensive overview of different flavours of
membrane systems and their expressive power is given in the 2010 handbook [17].
For a state of the art snapshot of the domain, we refer the reader to the P systems
website [20], as well as to the bulletin of the International Membrane Computing
Society [19].
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As indicated by its name, membrane computing draws inspiration from the
structure and functioning of the living cell [16]. Indeed, one can see the cell as
a hierarchical arrangement of containers (rooted at the cellular wall) performing
biochemical processing. A great variety of abstract representations of substance
flow within the membranes as well as across them has been proposed: communica-
tion rules, symport/antiport rules, dissolution rules, etc. [17]. On the other hand,
P systems have a distinctive computer science touch: objects evolve in discrete,
synchronous steps determined by a global clock, the rules defining the behaviour
are typically (multiset) rewriting rules. Although computer science and cell bi-
ology are arguably distinct domains, they do have one feature in common: the
description of the “program” can be modified by the organism itself. In cells, this
paradigm (sometimes referred to as “program is data”) is represented by mecha-
nisms such as reverse transcription [8], while in computer science this is embodied
by the fact that the program is stored in the memory alongside the data it manip-
ulates. It is therefore only natural that there have been quite a number of attempts
to represent the “program is data” paradigm in membrane computing. Examples
of such possible presentations include generalised P systems [9], rule creation [5],
activators [1], inhibiting/deinhibiting rules [7], symport/antiport of rules [6], etc.
One notable characteristic of the majority of these cited approaches is that, even
though the set of rules associated with a given membrane may evolve, the rules
appearing in this set may only be chosen from a finite, statically fixed, collection.

Polymorphic P systems are an implementation of the “program is data”
paradigm for membrane systems which does not limit the set of available rules
by a finite cardinality and which allows direct tampering with the form of the
rules. In polymorphic P systems, rules are not statically defined, but are instead
dynamically inferred from the contents of specially designated pairs of membranes.
One member of such a pair defines the multiset representing the left-hand side of
the rule; the other member defines the right-hand side.

Dynamic definition of rules via pairs of membranes has numerous interesting
consequences:

e natural rule dynamics: since rules are defined by the contents of membranes,
sending an object across a membrane and changing a rule are exactly the same
operation;

e nested rules: the definition does not restrict the membranes defining the sides
of a rule to occupying some particular slots of the membrane hierarchy; in
particular, we are allowed to place rules inside the membranes defining other
rules;

e inexpensive simulation: there is almost no additional overhead to naively sim-
ulating polymorphic P systems on a conventional computer: instead of only
moving symbols from membranes to membranes, the simulator should be made
capable of also moving symbols into and out of the collections representing the
sides of rules.
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Polymorphic P systems can thus modify their own “program” in a quite natu-
ral way: by moving around symbols. Furthermore, nesting rules quickly gives rise
to highly non-trivial behaviour. This, on the one hand, means that polymorphism
may be used to solve complex problems (like recognising the factorial language)
with relative ease. On the other hand, polymorphic rules may be in quite com-
plex interdependence, which often makes reasoning about their behaviour a quite
difficult task.

Polymorphic P systems were originally introduced in the 2011 paper [4]; the
subsequent work [11] analyses the power of the minimal variant of polymorphic P
systems, in which most of the usual ingredients (cooperative rules, communication
rules, etc.) are not allowed. The paper [3] considers general states in P systems;
this framework generalises, among other things, the idea of polymorphism.

Unfortunately, apart from the three cited works, polymorphic P systems have
received relatively little attention. The goal of the present article is to give an
overview of the existing (scanty) results on polymorphic P systems and to list the
numerous research directions that are still open.

This article is structured as follows. Section 2 recalls some basic notions from
the theory of formal languages and defines conventional P systems as well as
polymorphic P systems. The immediately following Section 3 recalls how poly-
morphism and target indications can be used to achieve fast growth rates and to
generate complex languages. The following Section 4 recalls several more specific
terms which capture some details of polymorphism more precisely. These terms are
used in Section 5 to describe the power of non-cooperative polymorphism without
target indications. Section 6 briefly recalls the concept of state in P systems as
introduced in [3] and shows how states generalise polymorphism. Finally, Section 7
gives an overview of some of the possible directions of research on polymorphic P
systems listing 11 major open questions.

2 Preliminaries

An alphabet V is a finite set, and a multiset over V is any function w : V — N;
w(a) is the multiplicity of a in w. A multiset w is often represented by one of the
strings containing exactly w(a) copies of each symbol a € V. The support supp(w)
of the multiset w is the set of elements appearing in w a non-zero number of times:
supp(w) = {a € V | w(a) > 0}. The set of all multisets over the alphabet V is
denoted by V°. The empty multiset is denoted by 0 (supp(0) = 0). The projection
(restriction) of w over a subalphabet V' C V' is the multiset w|y defined as follows:

w(a), aeV’;
w|V/(a)_{O acV~\V.

We denote the family of recursively enumerable sets of non-negative integers
by NRE.
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For further introduction to the theory of formal languages and computability,
we refer the reader to [15, 17].

2.1 P Systems: The Basic Model
A P system is a construct
II = (O7T)/J’7w17 cee ,U}n,Rl, .. 'Rn7h’ia h0)7

where O is the alphabet of objects, T' C O is the alphabet of terminal objects,
w is the membrane structure injectively labelled by the numbers from {1,...,n}
and usually given by a sequence of correctly nested brackets, w; are the multisets
giving the initial contents of each membrane ¢ (1 < i < n), R; is the finite set of
rules associated with membrane ¢ (1 <4 <n), and h; and h, are the labels of the
input and the output membranes, respectively (1 < h; <n, 1 < h, < n).

The depth of the membrane structure u is the height of this structure seen as
a tree. Thus, a membrane system which only has one membrane is of depth 1; a
membrane system with two nested membranes is of depth 2, etc.

Quite often the rules associated with membranes are multiset rewriting rules (or
special cases of such rules). Multiset rewriting rules have the form v — v, with u €
0°\{0} and v € O°.If |u| = 1, the rule u — v is called non-cooperative; otherwise it
is called cooperative. In communication P systems, rules are additionally allowed
to send symbols to the neighbouring membranes. In this case, for rules in R;,
v € O x Tar;, where Tar; contains the symbols out (corresponding to sending the
symbol to the parent membrane), here (indicating that the symbol should be kept
in membrane 4), and iny, (indicating that the symbol should be sent into the child
membrane h of membrane 7).

In P systems, rules are often applied in a maximally parallel way: in one deriva-
tion step, only a non-extendable multiset of rules can be applied. The rules are
not allowed to consume the same instance of a symbol twice, which creates com-
petition for objects and may lead to the P system choosing non-determinstically
between the maximal collections of rules applicable in one step.

A computation of a P system is traditionally considered to be a sequence of
configurations it can successively pass through, stopping at the halting configura-
tion. A halting configuration is a configuration in which no rule can be applied
any more, in any membrane. The result of a computation of a P system IT as de-
fined above is the contents of the output membrane h, projected over the terminal
alphabet T.

While maximal parallelism and halting by inapplicability are staple ingredients,
various other derivation modes and halting conditions have been considered for P
systems [17].

2.2 Polymorphic P Systems

A polymorphic P system is the following construct:
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I = (OvTa My Ws, <w1L7w1R>a R <wnLa wnR>a hi, hO) )

where O is a finite alphabet of objects, T is the subalphabet of terminal objects,
1 is a tree structure consisting of 2n + 1 membranes, wy is the multiset giving the
contents of the skin membrane, (w;r, w;g) are pairs of multisets giving the contents
of membranes ¢L and iR (1 < i < n), and h; and h, are the labels of the input
and the output membranes, respectively, with h; € H and h, € H U {0}, where 0
denotes the environment. We require that, for every 1 < i < n, the membranes iL
and iR have the same containing (parent) membrane. The depth of (the membrane
structure of) IT is defined as for conventional P systems: it is the height of u seen
as a tree.

The rules of IT are not statically given in its description and are instead dy-
namically inferred for each configuration based on the contents of the pairs of
membranes ¢L and iR. Thus, if in a configuration of the system these membranes
contain the multisets u and v, respectively, then, in the next step, their parent
membrane h will evolve as if it had the multiset rewriting rule © — v associated
with it. If, however, in some configuration, ¢ L is empty, we consider the rule defined
by the pair (iL,iR) to be disabled, i.e. no rule will be inferred from the contents
of L and iR.

Polymorphic P systems evolve by applying the dynamically inferred rules in a
maximally parallel way. A computation of a polymorphic P system IT is a finite
sequence of configurations IT may successively visit, ending in the halting configu-
ration in which no rules can be applied any more in any membrane. Like for other
classes of P systems, the output of IT is the contents of the output membrane h,
projected onto the terminal alphabet T'.

It follows from the definition of polymorphic P systems that the total set of
rules which may be applied during a derivation of such a system II is unbounded.
Indeed, II may ensure unbounded growth of the contents of a right-hand-side
membrane ¢R. Remark however that the total number of rules available in an
evolution step is statically bounded by the number of membranes.

Not too many additional ingredients have been considered for polymorphic P
systems up to now. The only one actually discussed in [4] is target indications.
Target indications for polymorphic P systems were defined by adding the following
mapping to the definition of a system:

w:{iR|1<i<n}— {iny| h € H}U{here,out}.

This mapping assigns a target indication to every right-hand-side membrane. The
target indication is interpreted as in the case of conventional P systems.

Note that, by this definition, ¢ is allowed to assign any target indication iny,
to any right-hand-side membrane, which would effectively allow ignoring the hi-
erarchical membrane structure for communication purposes. Nevertheless, in all
the examples considered in the present article (and in the other works published
to date), targets are always given with respect to the membrane structure of the
system.
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In the present article we follow the tradition of not explicitly drawing mem-
branes defining invariable rules in graphical illustrations [4, 11]. Thus, if the con-
tents w;;, and w;g never change, we graphically represent the defined rule by the
usual notation w;;, — w;R.

3 The Power of Polymorphism

In this section we showcase the power of polymorphic P systems by giving concrete
constructions achieving complex behaviour while retaining low levels of descrip-
tional complexity. We use the term growth rate to refer to the formula describing
the size of the multiset contained in a membrane of a P system (or the union of
the contents of all membranes) as a function of time (number of steps).

3.1 Polymorphism without Target Indications

We start by showing how superexponential growth (in time) can easily be achieved
using polymorphism alone without any additional ingredients.

Ezample 1 (superexponential growth [11]). Consider the following polymorphic P
system:
I, = ({a},{a}, u,a,{a,a),(a,aa),s), where
p=1] ]1L[ [ ]QL[ ]23]13]5'
II; has superexponential growth rate. A graphical illustration of I7; is given in
Figure 1.

2:a— aa
(o) a
1L 1R

S

Fig. 1. The polymorphic P system II/; with superexponential growth

In the initial configuration, the membranes 1L and 1R define the rule ¢ — a in
the skin membrane s. Rule 2 in membrane 1R is formally represented by the pair
of membranes (2L, 2R), but graphically depicted as a — aa, because the contents
of 1R and 1R never change.

In the first derivation step, rule 1 (a — a) is applied in the skin, leaving the
contents of the membrane intact, and rule 2 (@ — aa) is applied in membrane 1R,
doubling the number of a’s; therefore, after the first step, rule 1 will be of the form
a — aa. In the second step of the derivation, rule 1 will transform the multiset
a in the skin into aa, and rule 2 will double the contents of the right-hand-side
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membrane 1R once again, thus transforming rule 1 into a — a*. Consequently, in
the third derivation step, rule 1 will quadruple the number of a’s in the skin.

In general, after k derivation steps, the contents of the right-hand-side mem-
brane 1R will be 2¥, and rule 1 will have the form a — a2". The number of a’s
in the skin will be given by the product 1-2-4-...- 251 or, equivalently, by the
following formula:

90 9l.92 .  .ok=l _ ol+2+..th-1 _ otz
The rate of growth of the contents of the skin membrane therefore is superexpo-
nential.

Besides showing off impressive growth rates, the previous example also helps
to fix an upper bound on how fast a polymorphic P system can grow.

Proposition 1. [11, Theorem 4],[4, page 7] The growth rate of the contents of any
membrane of a polymorphic P system II of depth d (without target indications) is
bounded by the polynomial IcP™ | where:

o [ is the total number of objects in the initial configuration of II,
e ¢ is the maximal size of a right-hand side of an invariable rule of II,
e p(n) is a polynomial of degree at most d — 1.

Indeed, a polymorphic P system IT achieves superexponential growth by nest-
ing right-hand-side membranes. Each level of nesting contributes a factor to the
exponent of the formula expressing the growth rate. Since the depth of the mem-
brane structure is statically bounded, the degree of the polynomial in the exponent
is bounded as well, and its form is determined by the initial contents of the mem-
branes.

Even though the P system II; of Example 1 does achieve superexponential
growth rates, it never halts and the language it generates is therefore empty. More
effort is needed to actually generate the set of the powers of two. A first idea
would be embedding the pair of rules a — a and a — A into 1L, thereby making
it possible to disable the multiplying rule 1 at an arbitrary moment. This will
effectively stop multiplication, but 1R will keep evolving, since rule 2 is always
applicable. If, additionally, we decide to arbitrarily disable rule 2, it may become
disabled before rule 1 (before the contents of 1L is erased), which will lead to
several multiplications of the contents of the skin by a constant factor.

The construction from the following example illustrates how to properly stop
the multiplications. The main idea for achieving rule inapplicability consists in
rewriting all instances of a into a different symbol.

Ezample 2 (powers of two [11]). Consider the following polymorphic P system:

H2 = ({a" b}7 {b}’ :u’7 a’) <a’7 a’>’ <a’7 a'a'>’ <a’7 a’>’ <a’7 a’>’ <a’7 b>’ S)’ Where

po= 0L ap LU se LD Van U Larl Tsel JsrlsrTor) iR ] s
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( N
( 7

© =
2L 2R
(@) “

1L J1R

a
- s

n(n—1)
Fig. 2. The P system II> generating the number language {2 2 ‘

neN,n>3}

The number language generated by Ils is N(Il2) = {2% ‘ neN,n> 3}. A
graphical representation of I is given in Figure 2.

Membranes s, 1L, 1R, 2L, and 2R of II; have the same initial contents as
the corresponding membranes of IT;. The role of the additional infrastructure in
membrane 2R of II5 is to ensure proper halting.

11, operates in two phases. During the first phase, rule 4 is always applied in
membrane 3R, keeping rule 3 in the form a — a, which does not change the right-
hand-side membrane 2R. In the first phase II5 therefore does the same thing as
IT;. The second phase of a computation of I, starts with the application of rule 5
in 3R, which changes rule 3 into a — b. This, in the next step, changes rule 2 into
a — bb. In the following step, all the a’s of 1R are rewritten into b’s, which finally
leads to rewriting all the a’s in the skin into b’s. The second phase takes four steps
and rewrites all a’s into b’s, while keeping the multiplications going. This explains
the constraint n > 3 in the definition of the number language N(II3) generated

by IIy: N(IIy) = {2g ‘ neNn> 3}.

3.2 Polymorphism with Target Indications

Adding target indications to polymorphic P systems allows a more fine-grained
control of the evolution. For example, it is relatively easy to generate the factorial
number language using only four rules without nested right-hand-side membranes.

Ezxample 3 (factorial [4]). Consider the following polymorphic P system with tar-
get indications:

IIs = ({a,b,c,d}, {b}, u, abd, {(a,a), (b,bd), (b, c), (d, a), ¢, s), where

=110 gl Vapl Tarl Tanl Tsgl Janl Turls
¢(LR) = p(2R) = here, ¢(3R) =iniL, @(4R) = inig.

IT5 generates the number language N (I13) = {n! | n € N}. A graphical representa-
tion of I13 is given in Figure 3. For rules 3 and 4 whose right-hand-side membranes
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3R and 4R are attributed targets different from here, we use the standard P sys-
tem notation for targets as a shortcut; for example (c,iniy,) stands for “produce
a ¢ and send it into membrane 1L”.

e N
(@), (@i

2:b—bd
3:b— (c,inaL)
4:d— (a,inir)

abd

N\ S

Fig. 3. The polymorphic P system I3 generating the factorial number language

II5 calculates the factorial in a very straightforward fashion: by successive
multiplications. The whole process is controlled by the symbol b which chooses
between rules 2 and 3. If rule 2 is applied, b is sustained and an instance of d is
produced, which, in the next step, adds an a to the right-hand side of rule 1 (by
applying rule 4). Thus, while b chooses rule 2, the right-hand side of rule 1 grows
by one a symbol a step, which leads to the multiplication of the contents of the
skin by successive natural numbers, starting from 1 in the first step.

115 halts by applying rule 3, which erases the control symbol b and renders rule
1 inapplicable by adding an extra dummy c to 1L.

Remark that the complexity of computing n! is linear in n. More precisely, I13
needs n steps to generate n! (n > 1). Indeed, rule 1 is applied in every step effecting
multiplications by successive natural numbers, and, when rule 1 is inapplicable,
we are sure that b has been erased by rule 3 and d by rule 4, which renders all
rules inapplicable.

Note that, while this example takes over the example shown at the top of page
9 of [4], there is a minor difference: in Example 3 we add an instance of d to the
skin from the very beginning. This avoids an extra “warm-up” step in which the
first instance of d is produced by rule 2.

Finally, we would like to point out that II3 uses “half” of the appearance
checking functionality provided by cooperativity: rule 1 becomes non-cooperative
only in the halting configuration and is never applied. As we will later see, rule 1
of I3 is a weakly non-cooperative rule.

Besides generation of the factorial language, the article [4] also shows how
to generate the double exponential language {22" ‘ n € N} in linear time using
polymorphism coupled with target indications. This language of 2"-th powers of 2
is obtained by iterated squaring of the number of symbols present in the skin of
the system.
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Ezample 4 (double exponential [4]). Consider the following polymorphic P system
with target indications:

H4 = ({a7 b) a’/) b/) C}? {a'}’ :u’7 b2’ <a’7 )\>’ <a’7 a’>’ <a’7 C>)
(b, A), (b,a’t'), (a’, a), (V',b), @, 5), where

p=1 [0l larl Tsphip Tl ]upl Larlin
(sl lsr [erl Tor [rpl g 1o
) here, he{iR|1<i<6},
olh {mm, h=TR.

This P system generates the number language N (I1,) = {22n ‘ n e N}. A graphi-
cal presentation of I1, is given in Figure 4.

2:a—a 5:b—=a't
3:a—c¢ 4:b— A 6:a —>a
7:0 — (b,i
a 1L A 1R (b,in1r)
b2

S

Fig. 4. The polymorphic P system 14 generating the language {22n ‘ n e N}

A computation of Il is structured into three-step phases. A phase starts with
an application of rule 5, which splits each b into a b’ and an a’. In the second step
of a phase, rules 6 and 7 are applied. Rule 6 rewrites every o’ into an a; rule 7
removes primes from b’ and moves all of the resulting instances of b into 1R. In
the third step of a phase, rule 1 may become applicable, rewriting each a in the
skin into as many instances of b as there were initially at the start of the phase.

The first two steps of a phase ensure that there are as many instances of b in
1R as there are instances of a in the skin. An application of rule 1 therefore squares
the number of symbols in the skin. In total, if the skin contains the multiset b* at
the beginning of a phase, it will contain the multiset b** at the end of the phase.

To allow II4 to chain multiple such phases, rule 4 discards all b’s immediately
after rule 1 is applied at the end of a phase. Remark that the only time when
the skin contains a’s and when rule 1 is applicable is when 1R also contains some
instances of b; rule 1 is thus never applied to erase instances of a.

Finally, rules 2 and 3 in 1L control the liveliness of I1,. While the system applies
rule 2 keeping an a in 1L, the other rules may keep on squaring the contents of
the skin. When II, chooses to apply rule 3, rule 1 is rendered forever inapplicable,
because ¢ never appears in the skin. Rules 5, 6, and 7 may split b’s into b and
a, sending some b’s into 1R, but the skin does not contain rules for processing a
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any more. Rule 4 will drop the last packet of b’s sent in by rule 7 and will stop
evolving as well, thus leading to the total halting of I1,.

The claim that I, produces 22" instances of a in a time linear in n follows
from the fact that it takes I only three steps to square the number represented
by the symbols in the skin.

Notice that, independently of the moment at which rule 3 is applied to disable
rule 1, the first two steps of a phase will always take place. In the third step,
however, only rule 4 in 1R will be applied, discarding the last instances of b in the
system. We can thus give a more accurate value for the time complexity of the
work of ITy: this system takes 3(n 4 1) steps to calculate 22".

Comparing the constructions from the previous two subsections leads to an
interesting conclusion: Proposition 1 sets an upper bound on the power of poly-
morphism without target indications which is surpassed by II; using target indica-
tions. Thus, adding target indications to polymorphic P systems strictly increases
their expressive power. This result is formally summarised in Corollary 2 stated
in Section 5.

The original article [4] introducing polymorphic P systems gives further ex-
amples of constructions with intricate behaviour, like generating the language
{n!-n* | n,k € N} [4, Example 2], deterministically computing the function
n — 22" [4, Example 5], deciding the factorial language [4, Example 6], etc. We
refer the reader to the cited article for details.

4 Some Formal Aspects of Polymorphism

Now that we have seen several examples showing off the power of polymorphism, we
will recall some definitions from [11, Subsection 2.2] which will allow us to describe
the expressivity of polymorphic P systems using a more fine-grained language.

Definition 1 (strong non-cooperativity [11]). Rule i (defined by the pair of
membranes (iL,iR)) of a polymorphic P system II is said to be strongly non-
cooperative if, in any evolution, iL contains at most one symbol.

Definition 2 (weak non-cooperativity [11]). Rule i (defined by the pair of
membranes (iL,iR)) of a polymorphic P system II is said to be weakly non-
cooperative if, whenever it is applied, its left-hand-side membrane iL contains
ezxactly one symbol.

Weak non-cooperativity therefore allows a rule to have more than one sym-
bol in the left-hand side and only requires that this rule to be not applicable
in such situations. For example, all rules of Examples 1, 2, and 4 are strongly
non-cooperative, while rule 1 of Example 3 is weakly non-cooperative, because its
left-hand side is of the form ac in the halting derivation and because it is never
applied after ¢ is added to 1L.
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Definition 3 (left and right polymorphism [11]). A rule i of a polymorphic
P system II is called left-polymorphic if only its left-hand side may change. Rule
1 18 called right-polymorphic if only its right-hand side may change. If all rules
of I are left-polymorphic (respectively, right-polymorphic), then II is called left-
polymorphic (respectively, right-polymorphic).

The effective implication of the definition of left-polymorphic (respectively,
right-polymorphic) P systems is that no right-hand-side (respectively, left-hand-
side) membrane is allowed to contain any non-trivial rules. This condition is neces-
sary, but not sufficient in case additional ingredients like target indications are con-
sidered. Thus, P systems IT; and I from Examples 1 and 2 are right-polymorphic,
while P systems ITs and I1; from Examples 3 and 4 are neither left- nor right-
polymorphic.

Finally, we recall the notations for classes of polymorphic P systems and for
families of languages generated by them. The output of a P system is a multiset
over the terminal alphabet, which can be treated as a vector; the vector language
generated by a P system IT is denoted by Ps(IT). If we only consider the total
size of the output multiset, we are discussing the number language generated by
I, denoted by N (IT).

To denote the family of polymorphic P systems with at most k¥ membranes,
with rule disabling (by emptying left-hand-side membranes), and with strongly
non-cooperative rules, we will use the notation

O Py, (polym44(ncoos)).

If no bound is specified on the number of membranes, k is replaced by * or is
omitted. If left- or right- polymorphism is allowed only, polym is replaced by
Ipolym or rpolym, respectively. If rule disabling is not allowed, +d is replaced by
—d. If weakly non-cooperative rules are allowed, ncooy is replaced by ncoo,,. If we
consider polymorphic P systems of depth limited by a constant d, we add it as a
superscript to OP, as follows:

OP¢ (polym y4(ncooy)).

Finally, if we consider polymorphic P systems with target indications, we add the
symbol tar to the notation:

OPy(polym4q(ncoos, tar)).

5 The Computing Power of the Minimal Variant

In this section, we will briefly recall the results of the analysis from [11] which
focuses on the polymorphic P systems with (strongly and weakly) non-cooperative
rules without any additional ingredients. We explicitly remark that, while the
results in [11] are formulated for the generation of number languages, many of the
arguments actually prove the corresponding (stronger) results for the generation
of vector languages.



Polymorphic P Systems: A Survey 91
5.1 Strong and Weak Cooperativity

One of the first results shown in [11] concerns the opposition between strong and
weak non-cooperativity. It turns out that, when no additional ingredients are al-
lowed, relying on weak non-cooperativity does not increase the computing power
of polymorphic P systems.

Theorem 1 (strong and weak non-cooperativity [11, Theorem 2]).
PsOP,(polym4q(ncooy)) = PsOP,(polymq(ncoos)).

The proof relies on the fact that, whatever the kind of non-cooperativity, the
trajectories of different symbols cannot depend on one another. This implies that
the time intervals separating two configurations in which a left-hand-side mem-
brane contains exactly one symbol form a regular set, and therefore the effect of
whatever happens in such a membrane can be faithfully simulated by a finite state
control implemented on single instances of symbols.

This result is rather interesting since weak non-cooperativity is a dynamic
condition quite difficult to check. It also allows the following strong statement
about the left-hand-side membranes of any weakly non-cooperative polymorphic
P system.

Corollary 1 (shallow left-hand sides [11, Corollary 1]). Given a polymorphic
P system IT € OP.(polymq(ncoo)), it is possible to construct another polymor-
phic P system II' such that N(II') = N(II) and all left-hand-side membranes of
I’ contain invariable rules.

Moreover, Theorem 1 allows a relatively easy proof of the fact that disallowing
explicit disabling of rules by erasing their left-hand sides does not contribute to
the expressive power.

Proposition 2 (rule disabling [11, Proposition 1]).
PsOP,(polym_g4(ncooy)) = PsOP,(polym_q(ncooy)).

The proof is based on the fact that disabling a rule by erasing its left-hand side
is equivalent to just replacing the left-hand side by a dummy symbol which never
appears in the containing membrane.

Given that strong and weak non-cooperativity conditions are equivalent when
no additional ingredients are allowed, and that disabling of rules can be simulated
without emptying left-hand-side membranes, we will simply write polym instead
of polym 4 or polym_g4, and ncoo instead of ncoo,, or ncoos.

5.2 Target Indications

Adding target indications brings a lot of power to polymorphic P system. The
following corollary formally states the conclusion formulated after Example 4.
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Corollary 2 (targets increase power).
{2 | n € N} € NOP; (polyma(ncoow, tar)) \ NOP,(polym.a(ncooy)).

Proof. This statement follows from the limit on the growth rate for polymorphic
P systems without target indications established in Proposition 1 and from the
existence of IT, (Example 4) which has an even faster growth rate.

Interestingly, it looks like adding target indications actually makes a difference
between strong and weak non-cooperativity, as it seems to be difficult to achieve
the synchronisation needed to generate the factorial language without relying on
weak non-cooperativity.

Congecture 1 (synchronisation by weak non-cooperativity [4, page 8]).
{n!'| n € N} ¢ NOP.(polym4(ncoos,tar)).

(Recall that Example 3 gives a weakly non-cooperative polymorphic P system
with target indications which generates the factorial language.)

5.3 Left, Right, and General Polymorphism

We have seen up to now that polymorphic P systems can achieve impressive growth
rates by dynamically varying the right-hand sides of their rules. It turns out that,
even if we prohibit right-hand sides from changing, (left-) polymorphic P systems
are still more powerful than the conventional communication P systems.

Proposition 3 (power of left polymorphism [11, Proposition 2]).
{2 | n € N} € NOP,(Ipolym(ncoo)).

Figure 5 shows how to generate the language of the powers of two using left-
polymorphic rules. Successive doubling of the contents of the skin is effected by
rule 1 which is maintained operational by applications of rule 2 in 1L. The system
halts by applying rule 3.

12 (%hn

a

S

Fig. 5. A left-polymorphic P system generating {2" | n € N}

On the other hand, a very similar number language can be generated by right-
polymorphic P systems using the same approach as shown in Example 2: rewriting
all the symbols in right-hand-side membranes to “output symbols”, thereby ren-
dering the multiplication rule (and all other rules) inapplicable.



Polymorphic P Systems: A Survey 93

Proposition 4 (power of right polymorphism [11, Proposition 4]).
{2" | n € N,n > 2} € NOP, (rpolym(ncoo)).

A right-polymorphic P system generating this number language is shown in
Figure 6.

N s

Fig. 6. A right-polymorphic P system generating {2" | n € N,n > 2}

Finally, non-cooperative polymorphic P systems without ingredients are not
computationally complete, as they cannot generate the factorial number language.

Theorem 2 (no factorial [4, Theorem 3]).
{n!'| n € N} & NOP,(polym(ncoo)).

The proof essentially states that, without any additional ingredients, synchro-
nising different membranes is impossible, which means that there is no way of
preventing the situation in which the “multiplication” rules stop varying and in
which the contents of the output membrane is multiplied by the same factor an
arbitrary number of times.

5.4 An Infinite Hierarchy

The result concluding the analysis carried out in [11] of polymorphic P systems
with non-cooperative rules and no ingredients concerns the relationship between
the computational power of such systems and the depth of their membrane struc-
tures.

Theorem 3 (bounded power [11, Theorem 4]).
{2(d22) ‘ neNn> d} ¢ NOPZ(polym(ncoo)), d > 1.

(We remark that Theorem 4 in [11] actually states this result for the language
{2((17:1) ’ neNn> d}. Using d — 1 instead of d — 2 is a typo.)
The proof essentially points out that the absence of interference between non-

cooperative rules does not allow generating complex languages other than by grow-
ing very fast, which means, given the bound on the growth rate established in
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Proposition 1, that the expressive power of such polymorphic P systems is bounded
by their depth.

On the other hand, the language {2(d32) ‘ neNn> d} can actually be gen-

erated by a polymorphic P system of depth d 4+ 1. P system IT, (Example 2) is
an example for d + 1 = 5. This implies that deeper membrane structures confer
strictly more expressive power.

Corollary 3 (infinite hierarchy [11, Corollary 3]).
NOPZ(polym(ncoo)) C NOPIHL (polym(ncoo)), d > 1.

The latter statement brings up the existence of an infinite hierarchy in the class
of polymorphic P systems with respect to their computing power.

6 P Systems with States: Polymorphism on Steroids

Even though P systems are commonly considered as stateless computing devices,
many characterisations of their computational power are built around simulations
of some stateful models of computing, such as register machines [12, 17]. This
effectively delimits a subcategory of ingredients of the simulating P systems which
represent the state of the simulated device. Various ways of representing states
have been employed, including membrane polarisations, finite state control of rule
applications, toxic objects, rule colours, etc.; Section 2 of [3] gives a comprehensive
overview.

In this article, we recall the concept of P systems with states as introduced
in [3]. This concept, while not exclusively generalising polymorphism, gives an
interesting perspective on dynamically changing rules.

An n-cell (tissue) P system with states is the following construct [3]:

II = (naOaOT7Q557fIaanq’i7F7Ci)a

where n is the number of cells, O is the set of possible objects in the cells of IT,
Or C O is the set of terminal objects, @ is a (possibly infinite) set of states, § is the
function computing the new state and the new configuration from the current ones,
fr is the input function, fo is the output function, g; is the initial state, ' C Q is
the set of final states, and C; € O™ is the core of the initial configuration.

This definition is a very general take on P systems. Essentially, the defined
construct operates on a collection of objects (which can be anything), guided by
a state control. To represent conventional P systems, O should be the set of all
multisets over a finite alphabet V: O = V°. To represent P systems with string
objects, O should be the set of all strings over a finite alphabet: O = V*.

The state control embedded in the definition of P systems with states is rather
general as well, since the set of states @ is allowed to overlap the set of objects or
to be infinite. Still, for the majority of applications, it seems reasonable to restrict
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Q to be a computable set. The state transition function should be computable as
well, but, in general, it may be of any complexity.

P systems with states are equipped with the “encoding” function f; and the
“decoding” function fo. No restriction is imposed on the complexity of these
functions; in most cases, however, it seems reasonable to require them to be “con-
siderably less complex” than the state transition function § to avoid the trivial
situations in which the bulk of the computation happens in the encoding or the
decoding phase.

Finally, the core is a generalisation of the initial contents of the membranes
of a P system. It provides the additional “salt” to the input function f;, which
therefore constructs the initial configuration by combining the input (if there is
some) with the core.

P systems with states vastly generalise many models of P systems, including
models which do not directly use the term “state” in their definition. In particular,
the definition of the state transition function is sufficiently general to easily capture
the notion of polymorphism, as can be seen in the following example.

Example 5. Consider the following P system with states:
HG = (17 {a}*7 {a}*7 {Z7 h’}a 57 fIa an ia {h}7 (a2))'

It has one cell, its objects are finite strings of the form a*, and all of these
objects are terminal. Ilg has two states: the working state i and the halt-
ing state h. The state transition function is defined to either apply the “rule”
a — geurrent length of the string i, 5 1aximally parallel fashion, or to switch non-
deterministically to the halting state. Using the notations from [3], this can be
written in the following way:

6(i, (™) ={ (i, {(a = a™,mazpar)}), (h,0) }.

115 operates almost exactly like IT4 from Example 4, by iterated squaring. Due
to the versality of the state transition function, IT only needs one step to carry
out one multiplication.

To make Ils actually generate a number language, we will define f; to be
the constant function fr = (i, (a?)), initialising the derivation of Il in state
i with the initial word a?, and we will define fo as the function extracting
the multiplicity of a: fo(h,(a™)) = m. With these definitions, the number
language generated by Ilg is exactly the number language generated by Il4:
L(Ilg) = N(I1y) = {2*" | n e N}.

Quite unsurprisingly, the expressivity of P systems with states is a strict su-
perset of the expressivity of polymorphic P systems. Yet, the whole point of the
introduction of P systems with states is pointing out new extensions or additional
ingredients to existing, less general models. Examples of such extensions include
using different derivation modes (minimal parallelism?) or halting conditions (par-
tial adult halting?) with polymorphism.
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7 Open Questions

We choose to employ the concluding section of this article to outline some of the
possible research directions around polymorphic P systems. For readability, we
group the research directions into subsections.

7.1 Expressive Power

The expressive power of polymorphic P systems is largely understudied. The orig-
inal article [4] introducing the model barely scratched the surface of the problem,
pointing out the sufficiently obvious computational completeness in the general
case (because polymorphic P systems generalise conventional P systems, which
are computationally complete) and focused on showing off the power of the model
almost exclusively. The later work [11] considered the most basic variant with-
out cooperativity and communication, and showed that bare polymorphism may
induce pretty non-trivial behaviour.

The following list gives some concrete questions concerning the expressivity of
polymorphism, in no particular order.

Question 1 (right polymorphism [11]). Are non-cooperative, right-polymorphic P
systems less powerful than general polymorphic P systems?

While it is relatively easy to give a positive answer to the counterpart of this
question for left-polymorphic P systems — such systems have insufficiently deep
membrane structures to capture general polymorphism, as shown in Corollary 1
and Theorem 3 — right polymorphism is a more difficult subject to handle. Indeed,
Corollary 1 seems to imply that the contribution of the variability of left-hand sides
of membranes is rather unimportant. Given that virtually no synchronisation is
possible between the right- and the left-hand-side membranes defining a rule, it
may well be possible that non-cooperative, right-polymorphic P systems are just
as powerful as P systems in which both rule sides are allowed to vary.

Question 2 (upper bounds [11]). What are the upper bounds on the expressive
power of non-cooperative (left-, right-) polymorphic P systems?

Subsection 5.3 recalls a series of results giving a hint of the computational power
of different kinds of polymorphism, but no actual upper bounds have been set yet.
Proving such upper bounds may be quite helpful in improving our understanding
of polymorphism.

Question 3 (target indications [11]). What is the expressive power of (strongly,
weakly) non-cooperative polymorphic P systems with target indications?

Examples 3 and 4 seem to suggest that the contribution of target indications to
the computing power of polymorphic P systems is considerable. Adding targets
to rules seems to be a change sufficiently fundamental to actually differentiate
between strong and weak non-cooperativity (cf. Conjecture 1).



Polymorphic P Systems: A Survey 97

7.2 Better Target Indications

The original article [4] already considers polymorphic rules with targets indica-
tions. It turns out that pretty coarse indications, sending the whole right-hand
side into a membrane, already allow building interesting behaviour. However, in
a typical communication P system, target indications are assigned to individual
symbols, not to entire right-hand sides. The following question therefore seems
very natural to be asked.

Question 4 (finer targets). What is the most natural way to generalise target in-
dications attached to individual symbols?

This question is not exactly as trivial as it may sound, because assigning target
indications enriches the structure of right-hand sides of rules, making them more
than just multisets. In the coarse definition given in [4] and taken over in the
present work, the extra structure is factored out into the mapping ¢ assigning
target indications to right-hand-side membranes; this allows a uniform treatment
of left- and right-hand sides, as well as of the contents of the skin. Attaching
targets to individual symbols may break this symmetry and should be handled
carefully. For example, if we consider that symbols like (a,in,) may appear in a
right-hand-side membrane, what happens if such a symbol is moved into a left-
hand-side membrane? Furthermore, do we allow nested target indications, like in
((aying),inm)?
The quest for finer target indications hides one more, orthogonal question.

Question 5 (dynamic targets). What is the most natural way to define dynamic
targets?

Having dynamic targets would mean that a polymorphic P system could change the
targets assigned to its right-hand-side membranes or to some particular symbols
contained in such a membrane. This question is interesting not only in the context
of finer-grained target indications: one may consider, for example, the ways in
which a polymorphic P system as defined in this article (i.e., with coarse target
indications given by the mapping ¢) could dynamically modify the targets assigned
to some right-hand-side membranes.

Finally, the classical question on the topology of the membrane structure may
also be considered for polymorphic P systems.

Question 6. What is the most natural way to define polymorphic tissue P systems?

The conventional definition of tissue P systems relies on unrestricted target indi-
cations which allow any rule to place a symbol in any membrane (see [10] for a
comprehensive overview). In this case, the membrane structure is typically omit-
ted, since it has no influence on the evolution of the system. One of the implications
of having such relaxed target indications in polymorphic P systems would proba-
bly be some kind of “flattening” of the membrane structure, since it will no longer
be necessary for a rule to be “physically” located within a left- or a right-hand-side
membrane of a another rule to be able to modify it.
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7.3 Dissolution and Division

Dissolution and division are among the most fascinating aspects of membrane com-
puting. They were introduced to parallel the corresponding processes happening
in the living cell, and have become notorious for the complexity of the behaviour
they induce. This is particularly true for membrane division which has been shown
to allow solving NP-complete problems in polynomial time. Introducing these con-
cepts for polymorphic P systems seems to be a quite challenging task.

Question 7 (dissolution). What is the most natural way of introducing membrane
dissolution for polymorphic P systems?

In polymorphic P systems, membranes are no longer independent entities and go
in pairs defining the dynamic rules. What would be the semantics of dissolving
a member of such a pair? Should the other member be dissolved as well (rule
dissolution)? Should the other member become an ordinary membrane? This di-
rection seems more promising, since dissolving pairs of rule membranes should be
equivalent to simply disabling rules.

Defining membrane division is even more challenging.

Question 8 (division). What is the most natural way of introducing membrane
division for polymorphic P systems?

Just as in the case of dissolution, interdependence within pairs of rule membranes
is what renders defining division difficult. What happens to membrane iL if its
corresponding membrane ¢ R is divided? Perhaps one of the simplest ways of dealing
with this situation would be demoting both L and the offspring of iR to regular
membranes. Yet, considering more complex semantics may be very interesting. For
example, we may consider that, dividing iR will also divide ¢L, in which case one
will probably be able to achieve similar computational complexity feats as with P
systems with active membranes.

7.4 Increasing the Exoticism

Polymorphic P systems are already a relatively exotic member of the family of P
systems, but this should not prevent the enthusiastic from increasing the exoticism
of the model by adding other ingredients. One may consider membrane polarisa-
tions affecting the semantics of rules, target selection forcing only rules with the
same target indications to be picked in a single evolution step [2], or even sending
rules across membranes [13]. Various frameworks generalising many models of P
systems [3, 10] may be of help in finding the extra ingredients and in properly
introducing them alongside polymorphism.
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7.5 Applications

One of the most exciting aspects of polymorphic P systems is that, unlike in the
case of P systems with active membranes [18], naively simulating polymorphism
on conventional computers does not seem to incur additional costs with respect
to simulating conventional multiset rewriting rules. This is because, essentially,
a naive simulator of multiset rewriting would be moving around collections of
symbols; to enable polymorphism, it would just have to support moving symbols
into and out of rule sides.

Nevertheless, this reasoning may quickly become irrelevant for specific op-
timised implementations which expect the rules to be invariable. One notable
example are simulators running on SIMD architectures (e.g., general purpose
GPUs), which may have some particular restrictions on how data is to be moved
around [14].

Question 9 (optimising simulators). Is polymorphism always easy to be simulated
on conventional computers?

On the other hand, applications of polymorphic P systems may be of interest
in topics related to complexity.

Question 10 (polymorphism vs. complexity). Can polymorphism be used for solving
some complex problems faster?

This question is particularly interesting in the context of comparing polymorphic
P systems with P systems with active membranes. The latter model is known
to be able to solve NP-complete problems in polynomial time; would something
similar be possible with polymorphism? We conjecture a negative answer to the
strongest formulation of this question: otherwise, supposing trivial simulation of
polymorphism on conventional computers, we could end up solving NP-complete
problems in polynomial time using the existing technology.

The conjectured inferiority of the computing power of polymorphism with re-
spect to that of active membranes implies a new question which is arguably more
interesting.

Question 11. What are the problems that polymorphic P systems can solve faster
than conventional P systems?

We have seen that polymorphism allows achieving non-trivial speed-ups in gen-
eration of some complex languages. Are there any other examples? If yes, why is
polymorphism more efficient than conventional P systems?

Overall, polymorphic P systems seem to be a field full of interesting questions
and results awaiting exploration. Given the scarcity of publications focusing on this
extension of P systems, we conjecture that not all of the questions left unanswered
require superhuman powers to be handled.



100 A. Alhazov, R. Freund, S. Ivanov
References
1. Artiom Alhazov. A note on P systems with activators. In Gheorghe Paun, Agustin

10.

11.

12.

13.

14.

Riscos-Nufiez, Alvaro Romero-Jiménez, and Fernando Sancho-Caparrini, editors,
Second Brainstorming Week on Membrane Computing, Sevilla, Spain, February 2-7
2004, pages 16—19, 2004.

. Artiom Alhazov and Rudolf Freund. Variants of small universal P systems with

catalysts. Fundamenta Informaticae, 138(1-2):227-250, 2015.

Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, and Marion Oswald. Observations
on P systems with states. In Marian Gheorghe, Ion Petre, Mario J. Pérez-Jiménez,
Grzegorz Rozenberg, and Arto Salomaa, editors, Multidisciplinary Creativity. Hom-
mage to Gheorghe Paun on His 65th Birthday. Spandugino, 2015.

Artiom Alhazov, Sergiu Ivanov, and Yurii Rogozhin. Polymorphic P systems. In
Marian Gheorghe, Thomas Hinze, Gheorghe Paun, Grzegorz Rozenberg, and Arto
Salomaa, editors, Membrane Computing, volume 6501 of Lecture Notes in Computer
Science, pages 81-94. Springer, 2011.

Fernando Arroyo, Angel V. Baranda, Juan Castellanos, and Gheorghe Paun. Mem-
brane computing: The power of (rule) creation. Journal of Universal Computer
Science, 8:369-381, 2002.

Matteo Cavaliere and Daniela Genova. P systems with symport/antiport of rules.
In Gheorghe Paun, Agustin Riscos-Niifiez, Alvaro Romero-Jiménez, and Fernando
Sancho-Caparrini, editors, Second Brainstorming Week on Membrane Computing,
Sevilla, Spain, February 2-7 2004, pages 102-116, 2004.

Matteo Cavaliere, Mihai Ionescu, and Tseren-Onolt Ishdorj. Inhibiting/de-inhibiting
rules in P systems. In Pre-proceedings of the Fifth Workshop on Membrane Comput-
ing (WMCS5), Milano, Italy, June 2004, pages 174-183, 2004.

John M. Coffin, Stephen H. Hughes, and Harold E. Varmus, editors. Owverview of
Reverse Transcription — Retroviruses. Cold Spring Harbor Laboratory Press, 1997.

Rudolf Freund. Generalized P-Systems. In Gabriel Ciobanu and Gheorghe Paun,
editors, Fundamentals of Computation Theory, 12th International Symposium, FCT
’99, Iasi, Romania, August 30-September 3, 1999, Proceedings, volume 1684 of Lec-
ture Notes in Computer Science, pages 281-292. Springer, 1999.

Rudolf Freund and Sergey Verlan. A formal framework for static (tissue) P sys-
tems. In George Eleftherakis, Petros Kefalas, Gheorghe Paun, Grzegorz Rozenberg,
and Arto Salomaa, editors, Membrane Computing, volume 4860 of Lecture Notes in
Computer Science, pages 271-284. Springer, 2007.

Sergiu Ivanov. Polymorphic P systems with non-cooperative rules and no ingredients.
In Marian Gheorghe, Grzegorz Rozenberg, Arto Salomaa, Petr Sosik, and Claudio
Zandron, editors, Membrane Computing - 15th International Conference, CMC 2014,
Prague, Czech Republic, August 20-22, 2014, Revised Selected Papers, volume 8961
of Lecture Notes in Computer Science, pages 258-273. Springer, 2014.

Ivan Korec. Small universal register machines. Theoretical Computer Science,
168(2):267-301, 1996.

Shankara Narayanan Krishna and Gheorghe Paun. P systems with mobile mem-
branes. Natural Computing, 4(3):255-274, 2005.

Miguel A. Martinez-del-Amor, Luis F. Macias-Ramos, Luis Valencia-Cabrera,
Agustin Riscos-Nufiez, and Mario J. Pérez-Jiménez. Accelerated simulation of P
systems on the GPU: A survey. In Lingiang Pan, Gheorghe Paun, Mario J. Pérez-
Jiménez, and Tao Song, editors, Bio-Inspired Computing - Theories and Applications:



15.

16.

17.

18.

19.

20.

Polymorphic P Systems: A Survey 101

9th International Conference, BIC-TA 2014, Wuhan, China, October 16-19, 2014.
Proceedings, pages 308-312. Springer, Berlin, Heidelberg, 2014.

Gheorghe Paun. Computing with membranes. Journal of Computer and System
Sciences, 61:108-143, 2000, and TUCS Report 208, November 1998 (www.tucs.fi).
Gheorghe Paun. Membrane Computing: An Introduction. Natural Computing Series
Natural Computing. Springer, 2002.

Gheorghe Paun, Grzegorz Rozenberg, and Arto Salomaa, eds. The Ozford Handbook
of Membrane Computing. Oxford University Press, Inc., New York, NY, USA, 2010.
Antonio E. Porreca, Alberto Leporati, Giancarlo Mauri, and Claudio Zandron. P sys-
tems with active membranes: Trading time for space. Natural Computing, 10(1):167—
182, 2011.

Bulletin  of the International Membrane Computing Society (IMCS).
http://membranecomputing.net/IMCSBulletin/index.php.

The P Systems Website. http://ppage.psystems.eu/.






Some Notes on Membrane Computing
and Image Processing

Daniel Dfaz-Pernil!, Miguel A. Gutiérrez-Naranjo?, Hong Peng?
1 CATAM Research Group - Dept. of Applied Mathematics I
University of Seville, Spain

sbdani@us.es

Dept. of Computer Science and Artificial Intelligence

University of Seville, Spain

magutier@us.es

School of Computer and Software Engineering

Xihua University, Chengdu, 610039, China

ph.xhu@hotmail.com

Summary. The application of Membrane Computing techniques to the study of digital
images has been a vivid research area in the last years. In this paper, some of the research
lines are presented and many of the main published papers are cited in the bibliography.

1 Introduction

Computer vision [131] is one of the most promising challenges for computer sci-
entists in the next years. This research area is placed in the interplay of many
disciplines, such as artificial intelligence, pattern recognition, signal processing,
neurobiology, psychology or image processing among others. It concerns the auto-
mated processing of images from the real world to extract and interpret informa-
tion on a real time basis.

Roughly speaking, a digital image is a two dimensional surface where each
point is associated to a set of features such as bright or color. It is natural to
consider only a discrete version of the definition, since only a finite amount of
pixels placed in a lattice of integer coordinates is usually considered. The set of
features can also have a finite amount of values (e.g., values in a range {0, ...,255}
for colors). Such discrete amount of data makes digital images appropriate to
be dealt with Membrane Computing techniques, but other features can be also
considered. One of them is that the treatment of the image can be parallelized
and locally solved. Regardless how large is the picture, many of the processes can
be performed in parallel in different local areas of the image. Another interesting
feature is that the local information needed for an image transformation can also be
easily encapsulated in a membrane and represented as a multiset of objects. Such
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features, together with the maximal parallelism, have encouraged many researchers
to explore the links between Membrane Computing and digital image processing.

Formally, a 2D digital image I of size n x m (n,m € N) is a rectangular net of
objects (4, j) called pizels (vozels in 3D images), with 1 <i <mnand 1 <j <m (in
general, any subset of the integer plane Z x Z can be chosen). Let C, the alphabet
of colors of I, be the ordered set of all colors in I. We define the size of C, |C|, as
the number of colors of this alphabet. Moreover, we will assume that each pixel
of I is associated to a color of C. So, we encode the pixel (i,7) with associated
color a € C as the object a;;. Therefore, the image I can be codified as the set
{aij ca€CA1<i<nA1l<j<m}. Another basic concept associated to pixels
is the adjacency. In such case a distance is defined and two pixels are adjacent if
the distance between them is one. Depending on the chosen distance, we can talk
about 4-adjacency or 8-adjacency relation. The different treatments of such map-
pings (digital images) provide a big amount of current applications in biometrics
[1], surveillance [27], medical imaging [3], human fingerprints classification [72],
cartography [82], data compression and data storage [59], automated inspection of
printed circuit boards [148] or optical character recognition (OCR) [134] among
others.

In the literature, one can find many examples of the use of bio-inspired tech-
niques for dealing with problems associated to the treatment of digital images.
One of the classic examples is the use of cellular automata [124, 129]. Other ef-
forts are related to artificial neural networks as in [42, 154] or, more recently, deep
learning [63]. In this paper, we present some of the main research lines bridging
Membrane Computing and digital images. In Section 2, we recall the first attempts
of linking both disciplines, mainly based on array grammars and on a graphical
interpretation of the information encoded in a P system configuration which allows
to associate a picture to it. Section 3 is devoted to one of the main applications of
Membrane Computing to image processing, namely the segmentation of images.
Segmentation is the process of splitting a digital image into sets of pixels in order
to make it simpler and easier to analyze. One of its main uses is the localization
of objects and boundaries. Technically, the process consists on assigning a label to
each pixel, in such way that pixels with the same label form a meaningful region.
Among the applications of segmentation of digital images, we can find the face
recognition [153] or location of objects in satellite images (roads, forests, etc.) [50],
but probably its main application area is medical imaging [8]. Section 4 is devoted
to the skeletonization of images. Skeletonization is one of the approaches for repre-
senting a shape with a small amount of information by converting an image into a
more compact representation and keeping the meaningful features. The conversion
should remove redundant information, but it should also keep the basic structure.
Other of the most promising applications focuses on algebraic-topological aspects
of the images (Section 5) as those related to homology theory or discrete Morse
theory (see, e.g., [24, 116]). The paper ends with an example of application (Section
6) and some final conclusions.
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2 First Steps

One of the first steps towards bridging Membrane Computing and digital images
was considering two dimensional objects. The objects placed in a membrane are
usually O-dimensional or 1-dimensional (in the case of string-objects [46, 107]).
The first step for considering images in Membrane Computing is the use of 2-
dimensional objects, called arrays. Array grammars have been widely studied in
the literature. They can be considered as a straightforward extension of string
grammars to two dimensional pictures. Such pictures are sets of symbols placed
in the points with integer coordinates of the plan (see, e.g. [28, 48, 123, 143]).

In [15], the model of array-rewriting P systems was presented on the basis of the
transition P systems [105]: Rules are of type A — B(tar) where A is the array to be
rewritten, B is the new one and tar € {here, in, out} indicates the emplacement
of the picture where the substitution has been made. Different approaches can
be found in [108, 137]. In a natural way, transition P systems were extended to
other P systems models, as in [20], where tissue P systems with arrays are used
for dealing with the segmentation of images (see Section 3).

For example?, let us consider a P system with three nested membranes
[[[]s]2]1, an alphabet with two symbols a and # (the blank), an initial configu-

ration with membranes 2 and 3 empty and the array Z placed in the membrane

1. Let us consider the sets of rules
B # a,.
Rl_{#a —>#a(m) ,

Rz{a#% aa(out),a

4 T ###%;M(m)}’

R3 =0.

This P system generates all the L-shaped angles with equal arms, each arm
being of length at least three. In the literature, there are many approaches setting
bridges between array grammars and Membrane Computing (see, e.g. [2, 14, 15,
30, 31, 45, 81, 108, 137)).

Other of the first links between P systems and digital images was the generation
of graphical representation of branching structures able to simulate the growing of
higher plants. The growth of plants, considered as a function of time, has attracted
the attention of scientific community for a very long time. Features such as the
bilateral symmetry of leaves, the central symmetry of flowers have been matter
of study for computer scientists, mathematicians and life scientists among others.
In 1968, Aristid Lindenmayer presented a theoretical framework for studying the
development of simple multicellular organisms. The devices introduced in this
framework are known as parallel rewriting systems or L-systems. L-systems were

* Adapted from the Example 1 in [15].
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introduced for modelling multicellular organisms in terms of division, growth and
death of individual cells [84, 85]. Several years later, the range of applications of
L-systems was extended to higher plants and complex branching structures [49].
In [52, 53], a first approach for using P systems to simulate the growth and
development of living plants was presented. This approach mixes L-systems and
P systems, leading in fact to an L-system factorized into several units, which are
them computed in the compartments delimited by the membranes of the P system.
Later, a new approach [118, 119, 121, 122] was presented. It used the model of
P systems with membrane creation [91, 104] where an object can produce a whole
membrane via the application of a rule. This kind of rules allows to control the
development of the membrane structure of a cell-like P system, which has a nat-
ural graphical interpretation as a tree-like graph. The multisets placed inside the
membranes can be graphically interpreted in terms of color, length or thickness of
the corresponding segment in the branching structure, allowing to provide a more
and more realistic appearance. Fig. 1, borrowed from [122], shows the graphical
representation of four configurations of a P system with membrane creation. The
drawn trees reproduce the tree-like structure of the membrane structure of the P
systems and the length and thickness of the branches and the corresponding angles
are fixed by the multiset of objects placed in the membranes in the corresponding

configuration.

Fig. 1. Graphical interpretation of four configurations of a P system simulating the
growing of a plant. Image borrowed from [122].

A close interpretation of the growing of higher plants was made for linking
Membrane Computing and fractals [67]. A fractal [88] is a shape made of parts
similar to the whole in some way. This self-similarity occurs over an infinite range
of scales in pure mathematical structures but over a finite range in many natural
objects such as clouds, coastlines, surface of tumors or snowflakes. An appropriate
use of the membrane creation rules together with the non-determinism intrinsic to
P systems and the interpretation of the multisets of objects could be useful in the
study of the smooth surface of solid tumours, as pointed out in [68].



Notes on MC and Image Processing 107

3 Segmentation

The study of array grammars or the graphical interpretation of a P system con-
figuration were the first attempts to link Membrane Computing techniques to the
study of images, but they cannot be considered as image processing. In this way,
one of the most studied image processing techniques studied in Membrane Com-
puting is segmentation.

Segmentation is the process of assigning a label to every pixel in an image
such that pixels with the same label share certain visual characteristics. The goal
of segmentation is to simplify and/or change the representation of an image into
something that is more meaningful and easier to analyze. Image segmentation is
typically used to locate objects and boundaries (lines, curves, etc.) in images. More
precisely, image segmentation is the process of assigning a label to every pixel in
an image in such a way that those pixels with the same label share certain vi-
sual characteristics. These regions are mutually disjoint, well-defined and have the
same properties. The purpose of segmenting an image is to identify regions that
are then utilized to recognize and understand the image. In the past decades, a
large number of image segmentation algorithms have been developed [18, 86, 96].
These algorithms can be roughly classified into three categories: threshold-based
segmentation methods, edge-based segmentation methods and region-based seg-
mentation methods. Segmentation has shown its utility in bordering tumors and
other pathologies, computer-guided surgery or the study of anatomical structure,
but also in techniques which are not thought to produce images but to produce
positional information such as electroencephalography (EEG), or electrocardiog-
raphy (EKG).

In the literature, there exist different techniques to segment an image. Some of
them are clustering methods [83, 141], histogram-based methods [140], Watershed
transformation methods [139, 147] or graph partitioning methods [149]. Some of
the practical applications of image segmentation are medical imaging [141], the
study of anatomical structure, locate objects in satellite images (roads, forests,
etc.) [132] or face recognition [80] among others.

In the literature, one can find many approaches from Membrane Computing to
the problem of segmenting images. These approaches are summarized in Table 1.

Table 1. The studies of P systems-based segmentation

#|Methods Bibliography
[21, 26, 36, 99, 100, 101]
[102, 113, 142, 152]

2 |Region-based segmentation [25, 74, 103, 146, 145]
[
[

1 | Threshold-based segmentation

9, 19, 22, 33, 37, 144]
9, 10, 33, 36, 98, 133]

3 |Edge-based segmentation

4 [Software and hardware implementation
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3.1 Threshold-based Segmentation Methods

Thresholding is widely used as a popular technique in image segmentation [126].
The goal of thresholding is to separate objects from background image or discrimi-
nate objects from objects that have distinct gray levels. Its underlying assumption
is that an image consists of different regions corresponding to the gray-level ranges.
It has been used widely as a tool to segment the gray images, but only a few works
on color image segmentation have been reported. The main advantage of this
technique lies in its simple computation approach. However, the threshold-based
segmentation method ignores the spatial relationship information.

In recent years, P systems have been used to deal with threshold-based segmen-
tation problems. Diaz-Pernil et al. [36] developed an image segmentation method
on 2D images using P systems, which was applied to medical image segmentation.
Christinal et al. [21] presented an image segmentation method based on tissue-
like P systems, which segmented the images using the 4-neighborhood relation of
pixels in the 2D-image. However, they only addressed the segmentation results of
artificial images rather than real-life images. Reina-Molina et al. [113] proposed a
thresholding method based on tissue-like P systems with multiple auxiliary cells.
Pena-Cantillana et al. [99] presented a tissue-like P systems-based thresholding
segmentation method using 4-adjacency. Christinal et al. [26] have proposed a
variant of P system (tissue-like P system) using the rules to perform a parallel
color segmentation of 2D images based on a threshold method. Wang et al. [142]
proposed an optimal single-level thresholding method based on P systems. Peng et
al. [100] presented a three-level thresholding method based on cell-like P systems
for image segmentation. Zhang et al. [152] developed an infrared object segmen-
tation method with Membrane Computing, which was used to obtain the optimal
parameters quickly. Peng et al. [102] proposed a thresholding method based on
tissue-like P systems and fuzzy entropy. Peng et al. [101] developed an optimal
multi-level thresholding method based on cell-like P system.

3.2 Region-based Segmentation Methods

There are two key approaches regarding the region-based segmentation method:
region growing and splitting-merging. Region growing polymerizes images pixels
or sub-regions that are considered as seeds into larger regions according to some
criteria [16]. The characteristics of pixels and the adjacency of spatial distribution
are fully considered in region growing. However, because of its iterative compu-
tational process, region growing has a high computing cost. In recent years, P
systems have been used to realize several region-based segmentation methods.
Christinal et al. [25] proposed a region-based segmentation method for 2D and
3D images with tissue-like P systems. Yang et al. [146] developed a region-based
segmentation method with Membrane Computing, which effectively segmented
gray images. However, the method cannot be extended to color images. Thus, Peng
et al. [103] presented a region-based method to deal with color image segmentation.
Isawasan et al. [74] proposed a region-based segmentation method based on tissue
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P systems for hexagonal digital images. Yahya et al. [145] proposed a region-based
method based on tissue P systems for 2D image segmentation.

3.3 Edge-based Segmentation Methods

The edge-based segmentation method is extensively utilized for gray-level image
segmentation, which is based on the detection of discontinuity in the gray level.
An edge or boundary is a place where there is a more or less abrupt change in the
gray level. Among the most used edge detection operators are Roberts operator,
Sobel operator, Gauss-Laplace operator and Canny operator. Inspired from the
mechanism of P systems, a number of edge-based segmentation methods have
been addressed in recent years.

Christinal et al. [22] presented an edge-based segmentation method using
tissue-like P systems for 2D and 3D images. Diaz-Pernil et al. [37] proposed an
edge-based segmentation method based on tissue-like P systems to obtain ho-
mology groups. Diaz-Pernil et al. [33] proposed a parallel implementation of a new
algorithm for segmenting images with gradient-based edge detection by using tech-
niques from Membrane Computing. Carnero et al. [9] used tissue-like P systems to
design an edge-based segmentation method. Christinal et al. [19] develop a method
to search partially bounded regions with P systems. Yahya et al. [144] a tissue-like
P system-based edge-based segmentation method for 2D hexagonal images.

3.4 Software and Hardware Implementation

Carnero et al. [10] have proposed a new hardware tool including a Field-
Programmable Gate Array unit (FPGA) to perform segmentation of digital images
for solving edge-based detection and noise removal problem. Their system uses
Membrane Computing as well as a hardware programming (VHDL) language to
propose an ad hoc processor. In another work, Diaz-Pernil et al. [36] have proposed
a new software tool for segmenting 2D digital images on the basis of tissue-like P
system, wherein the object oriented C++ programming language has been used
in the implementation part. However, they did not provide a clear explanation
regarding the technical aspects of developing the proposed tool.

A bio-inspired Membrane Computing software has been proposed by Penia-
Cantillana et al. [98] to solve the threshold problem and it has been implemented
in Compute Unified Device Architecture (CUDA™), an innovative device archi-
tecture (see Section 7). Carnero et al. [9] have presented the use of the FPGA to
implement tissue-like P system rules for solving segmentation problems. Sheeba et
al. [133] have proposed tissue-like P system to segment medical image, nuclei of
the white blood cells (WBCs) of the peripheral blood smear images in morphology
segmentation technique. Their algorithm has been implemented using MATLAB
software.

In the work of Diaz-Pernil et al. [33] a CUDA™ has been presented to imple-
ment tissue-like P system rules for segmenting images by the use of gradient-based
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Skelelon
Skelelon

Fig. 2. A hand-written word and its skeletonization. Image borrowed from [38].

edge detection to enhance the traditional methods of segmenting digital images.
In [145], Yahya et al. used the tissue P systems simulator presented in [7] to check
the validity of their design.

4 Skeletonization

Skeletonization in image processing is an approach for representing a shape with
a small amount of information by converting an image into a more compact rep-
resentation and keeping the meaningful features. The conversion should remove
redundant information, but it should also keep the basic structure. The concept
of skeleton was introduced by Blum in [5, 6], under the name of medial axis trans-
formation. The skeleton of an image is useful to characterize objects by a compact
representation while preserving the connectivity and topological properties of any
image. The most important features concerning a shape are its topology (repre-
sented by connected components, holes, etc.) and its geometry (elongated parts,
ramifications, etc.), thus they must be preserved.

Roughly speaking, we can say that the image B is a skeleton of the black and
white image A, if the former has fewer black pixels than the latter, preserves its
topological properties and, in some sense, keeps its meaning. Figure 2 illustrates
this idea. The skeletonized image keeps the meaning of the original one and it uses
fewer black pixels. It keeps the basic geometry of the original image and also its
topology. Let us remark that the white regions inside the hand-made words are
also white regions in the skeletonized one and the connectedness is preserved.

Skeletonization has been found useful for data compression and pattern recog-
nition in a wide range of applications in the industrial and scientific fields. It is
usually considered as a pre-processing step in pattern recognition algorithms, but
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its study is also interesting by itself for the analysis of line-based images such
as coronary arteries [41], human fingerprints classification [72], cartography [82],
data compression and data storage [59], automated inspection of printed circuit
boards [148] or optical character recognition (OCR) [134] among others. In many
cases, the transformation of all the pixels can be done in parallel, since the state
of a pixel at the step i only depends on the states of a set of pixels at the step
i — 1. Such parallelism in skeletonizing algorithms has been broadly studied (see,
e.g., [65, 87, 138, 151]). The development of new hardware architectures has also
contributed to new parallel implementations of these algorithms [55, 70, 71].

In [38, 39], Diaz-Pernil et al. presented an implementation of the Guo and Hall
algorithm [65, 66] for skeletonizing images by using Spiking Neural P systems.
In this algorithm, the pixels are examined for deletion in an iterative process.
First of all, given an p X ¢ image, it is divided into two sub-sections. One of
the sections is composed by the pixels a;; such that 7 4 j is even. Alternatively,
the second sub-section corresponds to the pixels a;; such that i + j is odd. The
algorithm consists on two sub-iterations where the removal of redundant pixels
from both sub-sections are alternated, i.e., in each step only the pixels of one of
the subsections are evaluated for its deletion.

The decision is based on a 3 x 3 neighborhood. Given a pixel P0, a clockwise
enumeration P1,..., P8 of its eight neighbor pixels is considered, as shown in
Figure 3 (a). As usual, for each ¢ € {1,...,8}, Pi is considered as a Boolean
variable, with the truth value 1 if Pi is black and 0 if Pi is white. In each iteration,
an evaluated black pixel PO is deleted (changed to white) if and only if a set of
conditions are satisfied. The key point in [39] is the use of a compact representation
of the neighborhood of a pixel (also used in [125]) and the use of weights associated
to the synapses of the SN P system.

A different approach to the skeletonization of images with P systems was pre-
sented by Nicolescu [92] where an approach to the problem is presented by using
complex objects and actors in the framework of Membrane Computing.

1723 1/22 1/2¢
P1 | P2 | P3 y A <
4 0
P8 | PO | P4 /27 - - 1/2
» Y 4
PT|PO|PS 1/2° 1/28 1/27

Fig. 3. (Left) Enumeration of the pixels in a 3 x 3 neighborhood. (Center) 3 x 3
neighborhood with encoding [0,0,0,0, 1,1, 1,1, 1], or, shortly, 2* 425426 +-27 + 2% = 496.
(Right) Scheme of the weights of the synapses. Figure borrowed from [38].
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5 Algebraic-Topological Aspects

A different approach to computer vision can also be obtained from Topology.
Topology in Computer Vision is referred to connectivity, in a general way. For ex-
ample, we look for connected components, holes in these connected components,
etc., where the compulsory idea is the connection. In particular, algebraic topology
[47] provides techniques and algorithms for dealing digital images from a topolog-
ical point of view.

The relationship between Algebraic Topology and Natural Computing is not
new. In 1996, J. Chao and J. Nakayama [17] connected both areas using Neural
Networks by extended Kohonen maps. Some years after, Giavitto et al. studied
in [54] the topological structure of the Membrane Computing and Ceterchi et al.
published two works where Digital Image is introduced in the framework of the
Membrane Computing [14, 15].

5.1 Effective Homology

Recently, the links between algebraic topology and membrane computing have
started to be explored via Homology Theory [23, 24, 37]. In such cases black and
white images are taken and using labeling techniques the number of black con-
nected components and the number of holes® of these connected components are
calculated. This information is known as the Betti numbers from a 2D picture.
Effective Homology [110, 130, 120], is a algebraic-topological theory mainly
based on the computational notion of chain homotopy equivalence, a concept
which algebraically connects a cell complex or subdivided object with its homology
groups. Roughly speaking, a chain homotopy equivalence can be specified by an
operator, called chain homotopy operator, working at level of linear combinations
of cells which represents an efficient and non-redundant way of connecting cells.
For instance, a chain homotopy operator at level of cells of dimension 0 of a cell
complex K can be completely described by a directed spanning forest (as many
trees as connected components the object has) of the graph subcomplex formed by
all the cells of K of dimension 0 and 1. Effective Homology uses chain homotopy
operators for capturing homology information and for representing the object in an
algebraic-topological way. In fact, this idea is underlying the Eilenberg-MacLane
work [43, 44] for computing the homology of prime spaces in homotopy theory, and
it has been recently used in discrete image context. In [62], a method for comput-
ing homology aspects (with coefficients in the finite field Z/2Z = {0, 1}) of a three
dimensional digital binary-valued volume V' considered over a body-centered-cubic
grid is described. The representation used in that paper for a digital image is an
algebraic-topological model (AT-model) consisting in two parts:

e Geometric modeling level: A cell complex K (V') topologically equivalent to the
original volume is constructed. A 3D—cell complex consists of vertices (0—cells),

® White connected components surrounded by black connected components
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edges (1-cells), faces (2—cells) and polyhedra (3—cells). In particular, each edge
connects two vertices, each face is enclosed by a loop of edges, and each 3—cell
is enclosed by an envelope of faces;

e Homology analysis level: Homology information about K (V') is exclusively cod-
ified in terms of a chain homotopy operator [60, 61].

This method has recently evolved to a technique for generating a Z/2Z-
coefficients. It takes an AT-model for a 26-adjacency voxel-based digital binary
volume V' using a polyhedral cell complex at geometric modeling level [76, 77, 89]
and a chain homotopy operator described by a combinatorial vector field (a set
of semidirected forests or a discrete differential form) at homology analysis level
[111, 112]. For instance, a chain homotopy operator at level of cells of dimension
0 (vertices) of a cell complex K (V) can be completely described by a semidi-
rected spanning forest of the graph subcomplex formed by all the cells of K (V') of
dimension 0 and 1.

In Figure 4, a pixel-based digital object O (first picture from the left) is ana-
lyzed as a cell complex in which the square pixels are the 0O-cells. The 1-cells are
edges joining 8-neighbor pixels and these 2-cells are triangles or squares formed
by three or four mutually (and in a maximal way) 8-adjacent pixels. Picture (b)
describes this cell complex (in dark grey) in which the barycenters of the differ-
ent cells are drawn (solid circles for the O-cells, crosses for the 1-cells and solid
squares for the 2-cells). The subcomplex formed by the 0 and 1-cells can be seen
as a subgraph of the 8-adjacency graph of O. In (¢), a spanning tree covering all
the vertices of the cell complex is specified. In fact, we consider a subdivision of
this tree, having as 0O-cells the vertices of the cell complex and the barycenters of
the 1-cells belonging to the tree. An arrow in the tree determines the pairing of
the source (0-cell) and sink (1-cell) cells and, consequently, indicating in this way
that both are killed in homology group computation. Let us emphasize that only
the top left O-cell of the complex is not paired. It is a representative cycle (critical
0O-cell of the homological process determined by the tree) of the unique connected
component that the object has. Finally, in (d) we also draw the trees covering the
rest of cells. They are semidirected, with arrows from the barycenters of 1-cells
to the barycenter of the 2-cells. In terms of a process for computing homology
groups, an arrow also means here that its source and sink cells are both killed.
There is a edge marked in yellow which is not paired with an arrow. This 1-cell is
a representative critical cell of the one-dimensional homology generator that the
object has.

Using Effective Homology Theory as main tool for designing algorithms for
computing complexes topological invariants (cohomology ring, (co)homology op-
erations, homotopy groups,...), the problem of decomposing the objects into com-
binatorial graph-like pieces appears in a natural way. A possible solution to solve
the high complexity costs of these processes is provided here by Membrane Com-
puting.

Authors use in [32, 34] a well known tool from Membrane Computing, promot-
ers. They are used to speed up the membrane algorithms. In that way, a bigger
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Fig. 4. Example. Pictures (a) left up, (b) right up, (c) left down and (d) right down.

amount of information is handled. Within the Digital Imagery setting, we de-
termine here an Membrane Computing strategy for partially specifying a chain
homotopy operator at the level of pixels for a pixel-based digital 2D binary object
O. This fundamental data structure in Effective Homology is obtained in terms
of a forest spanning every vertex of its associated adjacency graph. Every tree of
this forest determines and localizes the corresponding connected component. In
[32] authors obtain something more than the Betti numbers, they obtain the rep-
resentative objects of each connected components and the borders of the holes. In
this way, they get the homology groups.

Until here, the efficiency of the membrane models with these kind of problems
is tested. But, we have to think to a bigger problem: what will happen when
we want to work with bigger dimensions? We have two different ways to follow.
We could carry on as before, where the simplicity (from algebraic point of view)
enables high efficiency. Or, we can introduce new algebraic-topological concepts
where the amount of information to deal would be increased.

Reina-Molina et al. decided to take this second option in [114, 115, 116]. They
present a simulation of the Morse theory algorithms in a parallel way, getting the
homology groups of n-D objects.

We have introduced two different theoretical ways to solve problems from Al-
gebraic Topology, but software based on these theories have been development
too. On one hand, Pena-Cantillana et al. in [32] generate a parallel software using
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GPUs by CUDA to get the homology groups of 2D shapes based on techniques of
spanning trees generated with membrane models where the promoters are compul-
sory. On the other hand, Reina-Molina et al. use PyCUDA (Python plus CUDA)
to solve homological problems in a practical way in [117]. But, the complexity
to adapt the Morse theory to parallel algorithms is high. So, this last software is
working almost completely parallel.

Many open questions arise in the relation of Membrane Computing and Topol-
ogy. From Algebraic Topology, we wonder if the Membrane Computing techniques
can help for a better understanding of the problems and the design of more effec-
tive solutions. From Membrane Computing, a deeper study is necessary in order
to explore how specific techniques of the different models can be applied. In par-
ticular, the use of priority in the application of rules is a strong requirement. It is
worth to study if it can be avoided. From an implementation point of view, the
exploration of the different parallel hardware architectures (clusters, grids, FPGA,
...) for the efficient implementation of the algorithms theoretically developed is
an open research line.

6 An Example of Application

Image analysis and processing have a great significance in the field of medicine,
especially in non-invasive treatment and clinical study. However, with the develop-
ment of new technologies, larger quantity of data, especially high quality images,
is available. Therefore, there is a new necessity of efficient and fast algorithms
capable of processing and extracting meaningful features from images in a rea-
sonable time. This is the case of mass screening programs for the early detection
of retinal diseases such as glaucoma or diabetic retinopathy. Visual inspection of
the large number of images so obtained is a time consuming task for the medical
experts. Moreover, CAD (Computer Aided Diagnosis) tools based on retinal image
processing developed in the past are limited by the balance between accuracy and
complexity due to their sequential programming.

In [35], a fully automatized algorithm based on Membrane Computing tech-
niques for the parallel segmentation of the optic disc in retinal fundus images
was presented (see Fig. 5). The optic disc is seen on fundus color photographs as a
bright yellowish disc in human retina from where the blood vessels and optic nerves
emerge. Its relevance resides in the fact that it is a key point for the diagnosis of a
wide variety of diseases such as glaucoma or diabetic retinopathy. Moreover, it is
usually taken as a base for detecting other anatomical structures (macula, blood
vessels) and retinal abnormalities (microaneurysms, hard exudates, drusens, etc.).
Most of the methods found in the literature are semi-automatized. This means
that the computer treatment is crucial in the localization and detection of the op-
tic disc, but the human expert is the one who takes the final decision. In this paper,
a fully automatized method is presented where no human expert is necessary for
the detection of the optic disc.
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Fig. 5. Retinal image taken from the Standard Diabetic Retinopathy Database (DI-
ARETDBI). The optic disc can be located as a yellow disc inside the image.

Changes in the optic disc can indicate the current state and progression of
a certain disease while its diameter is usually used as a reference for measuring
retinal distances and sizes [128]. Therefore, accurate optic disc localization and
detection of its boundary is a principal and basic step for automated diagnosis
systems [94].

In [35], a new method has been implemented with the Graphics Processing
Units (GPU) technology. Image edges are extracted using a new operator called
AGP-color segmentator based on the Membrane Computing approach presented
in [33]. It is a Membrane Computing implementation on CUDA™ of the 3 x 3 and
5 x 5 versions of the Sobel algorithm [135] for edge detection. In order to choose
an appropriate threshold to the binarization, a P system implementation [98] of
the Hamadani algorithm [69] is applied. In order to avoid erroneous results, the
obtained image is processed by eliminating the eye border. This is performed by
applying a threshold on each color plane of the original image with the algorithm
presented in [98]. The circular Hough transform is applied in parallel to the image
in an interval of radius wide enough to consider all the possible optic discs.

The Hough transform is a well-known feature extraction technique used in im-
age analysis. The classical Hough transform was concerned with the identification
of lines in the image, but later the Hough transform has been extended to identify-
ing positions of arbitrary shapes, most commonly circles or ellipses [4, 40, 73]. The
basic idea behind the Hough transform is to convert the image into a parameter
space that is constructed specifically to describe the desired shape analytically.

The reliability of the tool was tested with 129 images from the public databases
DRIVE [136] and DTARETDBI [75] obtaining an average accuracy of 99.6% and a
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mean consumed time per image of 7.6 and 16.3 sec. respectively. A comparison with
several state-of-the-art algorithms shows that the algorithm represents a significant
improvement in terms of accuracy and efficiency.

7 Final Conclusions

Parallelizing classical digital image algorithms is a big challenge in the years to
come [29, 97]. Such paralleling is much more complex than the merely simultane-
ous application of the sequential algorithm to different pieces of the image. The
coordination of different simultaneous processes in a whole algorithm is so hard
task that commonly the parallel algorithm needs to be re-designed with only slight
references to the classical one. Usually, the design of a new parallel implementation
not inspired by the sequential one allows an open-mind vision of the problem and
the proposal of new creative solutions. Such new parallel solutions needs a strong
theoretical support that allows to control, to formalize, to check and to formally
verify new algorithms.

As pointed out above, many of the problems in digital images share features
very interesting for using these techniques: the information can be split into lit-
tle pieces and expressed as (multi)sets of objects; the computation steps can be
processed by rewriting rules; and the same sequential algorithm must be applied
in different regions of the image which are independent and they can be treated
locally by a set of processors. All these features lead us to consider Membrane
Computing to deal with digital images.

The key point of paralleling classical sequential algorithms is the search of the
efficiency and this efficiency is strongly linked to the development of new parallel
hardware architectures which allows a realistic implementation of the theoretical
advantages of the parallel processes. Different hardware architectures (clusters,
grids, FPGA, ...) propose different solutions [78, 79, 93, 127]. One of the most used
architectures in the papers presented above has been the Compute Unified Device
Architecture, CUDA™. This is a general purpose parallel computing architecture
that allows the parallel NVIDIA Graphics Processing Units (GPUs) to solve many
complex computational problems in a more efficient way than on a CPU.

GPUs have emerged as general-purpose coprocessors in recent years. Tradi-
tionally designed for gaming applications, GPUs offers many computing threads
arranged in a Single-program Multiple-data (SPMD) model. The chosen hardware
architecture for our parallel implementation has been the Compute Unified Device
Architecture, (CUDATM) | which allows the parallel NVIDIA GPUs [155] to solve
many complex computational problems in a more efficient way than on a sequen-
tial Central Processing Unit (CPU)®. This architecture has been widely used in
Membrane Computing not only for dealing with images [12, 13].

The choice of this parallel architecture is supported by several reasons. The first
one is that the computing language CUDA™ allows programmers a friendly model

5 For a good overview, the reader can refer to [95].
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for implementing easily parallel programs, but the main reason comes from the
practical side. In the last years, there exists an increasing interest in the specialized
industry for the development of more and more powerful Graphic Processing Units
which can be used for general purposes. This interest leads, on the one hand, to
a more economically accessible (and hence, more extended) hardware and, on the
other hand, to the development of more powerful computational units. The use
of this new parallel architecture is currently explored as a tool for paralleling the
treatment of digital images [11, 90].

Many other problems related to digital images have been addressed with Mem-
brane Computing techniques. We can cite smoothing [99] which study how to en-
hance an image by removing regions which do not provide relevant information, the
approach presented in [150], where Membrane Computing and quantum-inspired
evolutionary algorithms are combined or the search of partially bounded regions
[19]. This problem is also related to the HGB2I problem which consists on calcu-
lating the number of connected components and the representative curves of the
holes of these components.

Special attention deserves the work by Gimel'farb et al. [56, 58], where the
symmetric dynamic programming stereo (SDPS) algorithm [57] for stereo matching
was implemented by using Membrane Computing techniques.

Many other approaches not cited in this paper have also been reported in the
literature. This research area is rather active and it provides many lines for future
researchers. Many open questions about new P system models, new digital image
problems, new real-life application cases or new architectures will need deep studies
in the next years.
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Summary. P colonies are abstract computing devices modelling communities of very
simple reactive agents (cells) living and acting in a joint shared environment. The concept
was motivated by colonies, grammar systems based on interplay of very simple agents, on
one hand, and by membrane systems, massively parallel computational models inspired
by cell biology, on the other hand. Some variants of P colonies also allow the environment
to participate actively in the system’s evolution. In this paper we summarize the most
important results on P colonies, present open problems concerning these constructs, and
suggest new research directions in their study.

1 Introduction

In contemporary computer science, there has been a growing demand for reli-
able and efficient computing devices to describe the behaviour of communities of
dynamically changing agents which are in interaction with their shared environ-
ment. Multi-agent systems with very simple reactive agents are of special interest,
in particularly with respect to their emerging behaviour and the limits of their
power.

P colonies, introduced in [25], were motivated by these problems. They are
variants of very simple tissue-like P systems, where the agents (the cells) have
only one region and they interact with their shared environment by using programs
(collections of rules of special form). P systems (or membrane systems), introduced
in [30], are a family of computing devices inspired by biology and biochemistry
of cells. Colonies of simple formal grammars, also motivating P colonies, were
introduced in [23].

During the years, P colonies have been studied in detail; a summary of results
can be found in [26].

Although several variants of P colonies have been developed, all of them have
some common basic features. Inside each agent (each cell) there is a finite multiset
of objects. These objects are processed by a finite set of programs associated to the
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agent. The number of objects inside each agent is constant (does not change) during
the functioning of the agent community and it is called the capacity of the P colony.
The agents share an environment which is represented by a multiset of objects.
One type of these objects, called the environmental object, is distinguished, and it
is supposed to be in a countably infinite number of copies in the environment. (In
the literature, the reader may also find that the environmental symbol appears in
an arbitrarily large number of copies in the environment).

Using their programs, the agents can change the objects present at their dis-
posal and can exchange some of their objects with objects present in the en-
vironment. These synchronized actions correspond to a configuration change (a
transition) of the P colony; a finite sequence of consecutive configuration changes
starting from the initial configuration is a computation. The result of the compu-
tation is the number of copies of a distinguished object, called the final object,
present in the environment in a final configuration of the P colony.

It can easily be seen that the environment is both a communication channel
for the agents and a storage for the objects. It plays strategic role in synchronizing
the work of the agents during the computation.

One major research topic in the theory of P colonies is the study of their com-
putational power related to their descriptional complexity. These investigations
focus on that questions how many components are necessary and how much ex-
tent the programs can be simplified to obtain a certain computational power. In
addition to these problems, the working modes of P colonies have obtained at-
tention as well, whether or not parallelism in the joint work of the agents plays
significant role in increasing the expressive power of P colonies.

The rules of P colonies demonstrate strong similarities with instructions or
rules of some well-known computing devices (register machines, rewriting systems
based on point mutations, other variants of membrane systems), thus comparisons
of these constructs with other classical and non-classical computing devices are
also of interest.

P colonies, due to their original motivation, model multi-agent systems (com-
plex systems) acting in an environment. According to the basic definitions, the
objects present in the environment have significant role in the change of the states
of the agents. Therefore, one of the research directions in the theory is devoted
to studying the role of the dynamics of the environment in the behaviour of P
colonies, i.e., the case when the objects in the environment are provided step-by-
step not only by the actions of the agents but by some special object provider
device.

Due to their simplicity and distributed nature, P colonies are convenient tools
for modelling complex systems as robot collections, sender and consumer systems,
eco-systems. We expect several new areas of applications in the future.



P Colonies 131

2 Notations

We assume that the reader is familiar with formal language and automata theory,
computability, and the basics of membrane computing [31, 29].

Throughout the paper we use the following notions and notations. Let X be
the alphabet and let X* be the set of all words over X (including the empty word
g). The length of a word w € X* is denoted by |w| and the number of occurrences
of the symbol a € ¥ in w by |w|,,.

A multiset of objects M is a pair M = (V, f), where V is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : V — N; f assigns to each
object in V its multiplicity in M. Each multiset of objects M with the set of
objects V! = {aq,...a,} can be represented as a string w over alphabet V', where
lwl,, = f(a;); 1 < i < n. Obviously, all words obtained from w by permuting
the letters represent the same multiset M. Symbol € represents the empty multiset.
The set of all multisets with the set of objects V' is denoted by V*. The cardinality
of M, denoted by |M|, is defined by [M| =3, f(a).

The set of all non-negative integers is denoted by N. We use REG, C'F' and
RE as notations for the families of regular, context-free and recursively enumer-
able languages. The family of languages accepted by matrix grammars without
appearance checking and with erasing rules is denoted by MAT® and the family of
interactionless L systems is denoted by 0L. NRFE denotes the family of recursively
enumerable set of non-negative integers.

Definition 1. [28] A register machine is a construct M = (m, H,ly, 1, P) where:
- m is the number of registers,
- H 1is the set of instruction labels,
- lo 1is the start label,
- Iy, is the final label,
- P is a finite set of instructions injectively labeled with the elements
from the set H.

The instruction of the register machine are of the following forms:

Iy : (ADD(r),la,13) Add 1 to the content of the register r and proceed to the in-
struction (labeled with) Is or I3.

ly : (SUB(r),l2,13) If the register r stores the value different from zero, then
subtract 1 from its content and go to instruction Iy, other-
wise proceed to instruction l3.

lp : HALT Halt the machine. The final label [, is only assigned to this
instruction.

Without loss of generality, one can assume that in each ADD-instruction [; :
(ADD(r),ls,13) and in each SUB-instruction [y : (SUB(r),ls,l3) the labels Iy, 2,3
are mutually distinct.

The register machine M computes a set N (M) of numbers in the following way:
it starts with all registers empty (hence storing the number zero) with the instruc-
tion labelled Iy and it proceeds to apply the instructions as indicated by the labels
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(and made possible by the contents of registers). If it reaches the halt instruction,
then the number stored at that time in the register 1 is said to be computed by
M and hence it is introduced in N(M). It is known (see e.g. [28]) that in this way
we compute all Turing computable sets of numbers.

The register machine is called partially bind if the SUB-instruction is executed
as follows: If register r stores a non-zero value then this value is decreased by
one and the next instruction will be Iy or I3, otherwise the computation aborts.
When the partially blind register machine enters the final state, the result obtained
in the first register is only taken into account if the remaining registers store
value zero. The family of sets of non-negative integers generated by partially blind
register machines is denoted by NRM,. The partially blind register machines
accept a proper subfamily of NRE.

3 The basic model of P colonies

The original concept of a P colony was introduced in [25] and presented in a
developed form in [24, 16].

Definition 2. A P colony of capacity k, k > 1, is a construct
I = (Ae, f,vg,B1,...,By), where

A is an alphabet, its elements are called objects;
e € A is the basic (or environmental) object of the colony;
f € A is the final object of the colony;
vE 18 a finite multiset over A — {e}, called the initial state (or initial content)
of the environment;
e B;, 1<i<mn, are agents, where each agent B; = (0;, P;) is defined as follows:
- 0; is a multiset over A consisting of k objects, the initial state (or the initial
content) of the agent;
- P ={pi1,---,Dik } is a finite set of programs, where each program consists
of k rules, which are in one of the following forms each:
a—b, a,be A, called an evolution rule;
cerd, e,d € A, called a communication rule;
r1/r2, called a checking rule; r1,79 are both evolution rules or both com-
munication rules.

We add some brief explanations to the components of the P colony.

We first note that throughout the paper, we use term ”object a inside agent
B” and term "a € w, where w is the state of agent B” as equivalent.

The first type of rules associated to the programs of the agents, the evolution
rules, are of the form a — b. This means that object a inside the agent is rewritten
to (evolved to be) object b.

The second type of rules, the communication rules, are of the form ¢ +» d. If a
communication rule is performed, then object ¢ inside the agent and object d in
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the environment agent swap their location. Thus, after executing the rule, object
d appears inside the agent and object ¢ is located in the environment.

The third type of rules are the checking rules. A checking rule is formed from
two rules of one of the two previous types. If a checking rule 71 /ry is performed,
then the rule ry has higher priority to be executed over the rule r5. This means that
the agent checks whether or not rule r; is applicable. If the rule can be executed,
then the agent must use this rule. If rule vy cannot be applied, then the agent uses
rule ro.

We note that these types of rules are the basic ones; in some variants of P
colonies other types of rules have been also considered. We will discuss them in
later sections.

The program determines the activity of the agent: the agent can change its
state and/or the state of the environment.

The environment is represented by a finite number (zero included) of copies
of non-environmental objects and a countably infinite copies of the environmental
object e.

In every step, each object inside the agent is affected by the execution of a pro-
gram. Depending on the rules in the program, the program execution may affect
the environment as well. This interaction between the agents and the environment
is the key factor of the functioning of the P colony.

The functioning of the P colony starts from its initial configuration (initial
state).

The initial configuration of a P colony is an (n+ 1)-tuple of multisets of objects
present in the P colony at the beginning of the computation. It is given by the
multisets o; for 1 < i < n and by multiset vg. Formally, the configuration of the
P colony IT is given by (wy,...,w,,wg), where |w;| =k, 1 <14 < n, w; represents
all the objects present inside the i-th agent, and wg € (A — {e})* represents all
the objects in the environment different from the object e.

At each step of the computation (at each transition), the state of the environ-
ment and that of the agents change in the following manner: In the mazimally
parallel derivation mode, each agent which can use any of its programs should
use one (non-deterministically chosen), whereas in the sequential derivation mode,
one agent uses one of its programs at a time (non-deterministically chosen). If the
number of applicable programs for an agent is higher than one, then the agent
non-deterministically chooses one of the programs.

A sequence of transitions is called a computation. A computation is said to be
halting, if a configuration is obtained where no program can be applied anymore.
With a halting computation, we associate a result which is given as the number of
copies of the objects f present in the environment in the halting configuration.

Because of the non-determinism in choosing the programs, starting from the
initial configuration we obtain several computations, hence, with a P colony we
can associate a set of numbers, denoted by N (II), computed by all possible halting
computations of given P colony.
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In the original model (see [25]) the number of objects inside each agent is set
to two. Therefore, the programs were formed from only two rules. Moreover, the
initial configuration was defined as (n + 1)-tuple (ee, ..., ee, €) so at the beginning
of the computation the environment of the P colony is “empty”, it is without an
input information.

The number of agents in a given P colony is called the degree of IT; the maximal
number of programs of an agent of I is called the height of I and the number
of the objects inside an agent is the capacity of II. The family of all sets of
numbers N(IT) computed as above by P colonies of capacity at most ¢ > 0,
degree at most n > 0 and height at most h > 0, using checking programs, and
working in the sequential mode is denoted by NPCOLg.,K (c,n, h); whereas the
corresponding families of P colonies working in the maximally parallel way are
denoted by NPCOL,.K(c,n, h). If one of the parameters n and h is not bounded,
then we replace it with *. If only P colonies using programs without checking rules
are considered, then we omit parameter K.

4 Computational power of P colonies

Although P colonies are very simple computing devices, due to their (mainly paral-
lel) working mode and distributed nature they demonstrate large expressive (com-
putational) power. In most cases, computational completeness can be obtained
with these constructs even with a very few components and a very few restrictions
on the programs. In this section, we briefly summarize some important results
concerning their expressive power. Most of the statements are based on simula-
tions of register machines, thus providing further knowledge on the nature of these
classical computing devices as well.

To demonstrate a connection between P colonies and register machines, we add
an example how the ADD-instruction of a register machine can be simulated by a
P colony.

Ezample 1. Let IT = (A, e, f,vE, B) be the P colony with capacity two and let the
current content of the agent be lye. Let M = (m, H, ly, I, P) be a non-deterministic
register machine with m registers. The ADD-instruction ly = (ADD(r),ls,l3) of
M can be simulated by the following programs associated with the agent:

P:

1:{ly = ;e = ap);
2: (] = la;a, <> e);
3: (] = ls;a, ¢ e);

At the beginning, objects [; and e are placed inside the agent. The content of
register r is encoded to the number of objects a, placed in the environment. The
computation is done in such a way that the agent rewrites its content to lja, by
using the first program (there are two rewriting rules in it). In the second step the
agents rewrites 1 to object corresponding to the label of the next instruction Iz (
or l3) to be executed and it puts object a, into the environment.
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4.1 Restricted P colonies

By [25], P colonies of capacity two are computationally complete. Furthermore,
their programs have special forms: one of the rules is an evolution rule and the
other one is either a communication rule or a checking rule with two communication
rules.

These variants of P colonies are called restricted P colonies.

The family of all sets of numbers computed by restricted P colonies without
checking rules and with parameters c¢,n, h and working modes par and seq, see
above, is denoted by NPCOLyqrR(c,n,h) or NPCOLgeqR(c,n,h), respectively.
If the restricted P colonies are with checking rules, then we add K in front of R.

Let us have one more example.

Ezample 2. Let I = (A,e, f,ug,B) be the P colony with capacity two and
let the current contents of the agent be lie. Let M = (m, H,ly,ln, P) be a
non-deterministic register machine with m registers. The ADD-instruction [, =
(ADD(r),l2,l3) can be simulated by the following programs associated with the
agent:

P

1:{e = ar;ly < e); 3:(lh = ly;de);
2: (e > dja, < 11); 4:(lh = l5;d <€)

At the beginning, objects I; and e are inside the agent. The content of register r
is encoded to the number of objects a,. placed in the environment. The computation
is done in such a way that at one computational step the agent must rewrite one
of the objects inside it and should exchange the other one with an object from
the environment. At the first step the agent rewrites e to object a, and sends
object [; into the environment. In the second step it rewrites e to auxiliary object
d and exchanges object a, and [; from the environment. At the last step the agent
rewrites object [; to the object corresponding to the label of the next instruction
lo (‘orl3) to be executed and it puts object d into the environment.

For restricted P colonies, using the maximally parallel working mode, the fol-
lowing results hold:

NPCOLya KR(2,%,5) = NRE in [16, 25],
NPCOLyq R(2,%,5) = NRE in [18],
NPCOLp. K(2,,4) = NRE in [16],
NPCOLpo KR(2,1,%) = NRE in [18],
NPCOLp.rR(2,2,%) = NRE in [8].

The reader can easily see that the family of sets of natural numbers computed
by restricted P colonies with or without the use of checking rules having at most
five programs associated with agent equals to NRE. If we remove the restriction
on the type of rules in the programs, P colonies need only at most four programs
associated with every agent to obtain computational completeness. The difference
in the last two results demonstrates the power of checking rules and the power
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of synchronized cooperation. To generate NRE, the restricted P colonies need
only one agent if the agent can use checking rules and two agents if they are not
equipped with checking rules.

The maximally parallel application of rules does not necessarily add power, as
the following results demonstrate:

NPCOL,.tKR(2,%5) = NRE in [18],
NPCOL,,KR(2,1,%) = NRE in [18],
NPCOL,K(3,%,6) = NRE in [16, 24].

However, if only restricted P colonies with the sequential working modes are
considered, the maximal computation power to be obtained is equal to the recog-
nition power of blind counter machines, thus significantly reduced, irrespectively
from the number of programs and agents in the P colony.

Notice that the property ”restricted” demonstrates strong similarity to some
normal forms of variants of regulated grammars, where some of the production
is used for programming the action and some other production is responsible for
its execution. By using some well-organized synchronizing mechanisms, simulation
of standard P colonies with restricted ones can be demonstrated, thus, we may
consider restricted P colonies as "normal forms” for the family of P colonies.

We note that the idea of restriction can be extended, with prescribing the ratio
of evolution and communication rules in the programs of capacity k, k > 2.

4.2 Homogeneous P colonies

If each program in the P colony consists of rules of the same type (for a P colony
with capacity two, this means that the program is formed from two evolution rules,
or two communication rules or two checking rules of the same type), then we can
call the P colony homogeneous.

Indicating by symbol H that homogeneous P colonies are considered, the fol-
lowing results were obtained:

e NPCOL,., KH(2, % 4) = NRE in [9],
NPCOLyo KH(2,1,%) = NRE in [9].

As for the previous variants, we provide an example.

Ezample 3. Let II = (A, e, f,vg, B) be the P colony with capacity two and let the
current content of the agent be lye. Let M = (m, H, ly, lj,, P) be a non-deterministic
register machine with m registers. The ADD-instruction Iy = (ADD(r),ls,13) can
be simulated by the following programs associated with the agent:

P

1:{(lh = lj;e—an); 4:(lf = lase —e);
2:{lf «ear e 5: (5 = ls;e —e);
3:{ewll;ere);
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At the beginning, objects [; and e are placed inside the agent. The content of
register r is encoded to the number of objects a, placed in the environment. The
computation is done in such a way that the agent at one computational step must
rewrite all object inside it or must exchange all of its objects with objects from
the environment. At the first step, the agent rewrites multiset /;e to multiset I} a,.
In the second step, it sends both objects of multiset I{a, into the environment. At
the third step, it consumes objects of multiset Ije and at the last step the agent
rewrites object {1 to the object corresponding to the label of the next instruction
to be executed, namely, lo (or l3).

The results have been recalled so far concern mainly P colonies with agents of
capacity at least two. It is a challenging question, whether the work of agents with
capacity one, i.e., with agents having one rule in each program can be organized in
such way that they obtain the same power as P colonies in the general sense. Notice
that in this case the objects play more important rule in the synchronization of
the work of the agents. The following results give positive answer to this question.

NPCOLp. K(1,%,5) = NRE in [10],
NPCOLp. KH(1,%,6) = NRE in [9],
NPCOLya K(1,4,%) = NRE in [8],
NPCOLpa(1,6,%) = NRE in [13).

Finally, we provide two more interesting results dealing with P colonies with
capacity three [16, 4].

e NPCOL,qK(3,%,3) = NRE in [16],
NPCOLp. H(3,2,%) = NRE in [4].

In Table 1 the reader can find a summarized list of results concerning the
computational complete variants of P colonies.

5 P colonies with prescribed teams

P colonies with prescribed teams were introduced in [19]. Unlike the original vari-
ants of P colonies, the agents use finite sets of rules called teams instead of pro-
grams; with each agent a finite set of teams is given, with priorities (pri) among
them. The used rules can be communicating (com), rewriting (rew), and so-called
membrane rules (mem). The membrane rules are in a form a — b (a goes out and
becomes b) or b «— a (a goes in and becomes b).

The P colony can work in sequential (seq) or parallel (par) manner. The rules
are applied by the team in parallel manner with various stop conditions: * (stop
after arbitrary number of derivation steps), <1, > [, resp. = [ (stop after at most ,
at least [ resp. after exactly | derivation steps) and t( (the team becomes inactive
when it is no longer able to work as a team.)
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n. mode capacity degree height checking rules / restricted pro-
of comp. grams / homogeneous programs

1. par 1 * 5 in [10]

2. par 1 * 6 K H in [9]

3. par 1 4 * K in [8]

4. par 1 6 * in [13]

5. par 1 3 * in [15]

6. par 2 * 8 in [16]

7. par 2 * 5 K R in [25, 16]

8. seq 2 * 5 K R in [18]

9. par 2 * 5 R in 18]

10.  par 2 * 4 K in [16]

11.  par 2 s 4 K H in [9]

12. seq 2 * 4 K in [24]

13. seq/par 2 1 * K R in [16, 18]

14. par 2 2 * R in [8]

15. seq/par 2 1 * K H in [9]

16.  par 1 3 325 K H in [5]

7. par 2 23 5 K R in [17]

18. par 2 22 6 K R in [17]

19.  par 2 22 5 K in [17]

2.  par 2 92 3 H in [5]

21.  par 2 70 5 H in [5]

22. seq/par 2 1 74 K R in [5]

23. seq/par 2 1 66 K in [5]

24.  par 2 2 163 H in [5]

25.  par 2 35 8 in [17]

26. par 2 57 8 R in [17]

27. par 3 35 7 in [17]

28. seq/par 3 * 3 K in [16, 24]

29.  par 3 2 * H in [4]

Table 1. Computational complete classes of P colonies

At each step of the computation, the contents of the environment and the
contents of every agent changes in the following way: in the maximally parallel
derivation mode, each agent which can use any of its teams should use one (non-
deterministically chosen) in the mode d, while in the sequential derivation mode,
one agent uses one of its teams in the mode d at a time (non-deterministically
chosen). As in the usual case, any copy of an object can be involved in only one
rule. Using the teams as described above, with all agents acting simultaneously
or sequentially, non-deterministically choosing the team(s) to be applied, the P
colony changes its configuration.

In [19], the authors showed that the families of P colonies with prescribed teams
are computationally complete if some conditions hold. These conditions concern,
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for example, the working mode, the number of objects in the agents using rewriting
and communication rules, the priority among the teams, the number of teams.
The following table summarizes the list of results on computational complete-
ness of P colonies with prescribed teams which use rewriting and communication
rules [19].
(In the tables, below, d indicates that the results hold for any of the modes.)

compu- capacity maz. maz. number number priorities mode
tational number number of agents of teams
mode of sets in of rules
the team in the set
seq 2 2 1 * 6 pri d
par 2 2 1 * 5 d
seq 2 2 1 1 * pri d
seq 2 2 2 1 * to

The following table contains a list of results from [19] concerning P colonies
using membrane rules only.

compu- capacity maz. maz. number number priorities mode

tational number number of agents of teams

mode of sets in of rules

the team in the set

seq 2 2 1 * 12 pri d
seq 2 2 1 1 * pri d
par 2 3 1 * 10 d
par 2 3 2 * d
seq 1 2 2 1 to
seq 1 2 1 1 pri to

6 P colonies with senders and consumers

In [13] new types of programs for P colonies with two objects inside each agent were
introduced. The first of them is a deletion program — (a;,;bc — d); using this
program an agent consumes one object (a) from the environment and transforms
the two objects (b, ¢) inside the agent into a new one (d). The second type is an
insertion program in the form (a,y,:; b — cd). By executing this program, the agent
sends to the environment one object (a) and generates two new objects (¢, d) from
the other object (b).

Ezample 4. [13] (a) A P colony with one sender cell can generate the Parikh set of
a regular language L C T*. Let G = (N, T, P, S) be a regular grammar such that
L(G) = L.

For generating the Parikh vectors of the words in L, we use, for each S — aB of
P, the programs (e, out; e — eS), (e, out; S — aB) and then (x,out; A — aB),x €
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T for every A — aB in P. Finally, for every rule of the form A — a we need
(x,out; A = aF),x € T, {a,out; F — FF), where F ¢ TUN.

(b) A P colony with one consumer cell can “consume” the Parikh set of a
regular language L. To see this, let M = (Q,T,0,qo, F) be a deterministic finite
automaton such that L(M) = L.

We need the program (e, in;ee — o), and to every transition d(g;,a) = ¢; in
M, we introduce (a,in;zq; — ¢;),x € T U {e}. If ¢; € F in 6(¢;,a) = g; we have
to add the programs (a,in;zq; — F),x € T, where F' ¢ QUT.

In [4] the authors showed that P colonies with one sender and one consumer
and some initial content in the environment are computationally complete. In [13]
the authors proved that P colonies with senders and consumers with three agents
and with only environmental objects in the initial configuration can generate every
recursively enumerable set of natural numbers.

e NPCOL,.(3,*) = NRE in [13).
NPCOL,.(2,*,ini) = NRE in [4, 14].

7 P colonies with evolving environment

The environment is static in the basic model, it can be changed only by the activity
of the agents. Eco-P colonies were constructed as a natural extension of P colonies
with dynamically evolving environment, the evolution does not depend only on the
activity of agents. The mechanism of evolution in the environment is based on an
OL scheme. An OL scheme is a pair (X, P), where X' is the alphabet of 0L scheme
and P is the set of context-free rules. It fulfils the following condition: for alla € X
there exists w € X* such that (a — «) € P. For wy,ws € X* we write wq = wy if
W) = A1G3 . . . Gy, Wy = Q1Q3 ...Qn, for a; = a; € P,1 < i< n.

Definition 3. A generalized P colony with capacity k > 1 is a construct
II'=(Aye, f,vp, D, B1,. .., By), where

A is the alphabet of the generalized P colony, its elements are called objects,

e is the basic (environmental) object of the generalized P colony, e € A,

f is the final object of the generalized P colony, f € A,

vg is the initial content of the environment, vg € (A — {e})*,

Dg is an OL scheme (A, Pg), where Pg is the set of context-free rules,

B;, 1 <i <mn, are the agents, every agent is a construct B; = (0;, P;), where

0; 18 a multiset over A, it defines the initial state (content) of agent B; and

lo;i|l = k and P; = {pi1,...,pik; } is the finite set of programs of three types

(a,b,c,d € A):

(1) generating program with generating rules a — bc and transporting rules
d out - the number of generating rules is the same as the number of trans-
porting rules.
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(2) consuming program with consuming rules ab — ¢ and transporting rules d in
- the number of consuming rules is the same as the number of transporting
rules.

(8) rewriting/communication program which can contain three types of rules:
o a — b, called a rewriting rule,

o ¢ > d, called a communication rule,
o 1r1/rg, called a checking rule; each of r1,r9 is a rewriting or a communi-
cation rule.

Every agent has only one type of programs. The agent with generating pro-
grams is called sender and the agent with consuming programs is called consumer.
The capacity of a P colony with senders and consumers must be an even number.

The initial configuration of a P colony is the (n+1)-tuple (o1,...,0n, vg), with

the same interpretation of the symbols 04, ..., 0,,vEg as in Definition 3. In general,
the configuration of the P colony IT is defined as (n + 1)-tuple (wy,...,w,, wg),
where w; represents the multiset of objects inside the i-th agent, |w;| = k, 1 <

i <n,and wg € (A— {e})* is the multiset of objects different from e placed in
the environment.

By applying programs, the generalized P colony passes from one configuration
to some other configuration. Objects in the environment unaffected by any program
in the given step are rewritten by the OL scheme Dg. (Notice that in this case
the OL scheme is considered as a multiset rewriting mechanism). At each step,
every agent tries to find one of its programs to apply. If the number of applicable
programs is higher than one, then the agent non-deterministically chooses one
program. At each step of, the set of active agents executing a program must be
maximal, i.e., no further agent can be added to it.

A sequence of consecutive configurations starting from the initial configuration
is called a computation. A configuration is halting if the P colony has no applicable
program. Each halting computation has an associated a result — the number of
copies of the final object placed in the environment in a halting configuration.

N(H) = {|U}E‘f | (01,...,0n,UE) =" (wla"'awfqu)}a

where (01, ...,0n,vg) is the initial configuration, (w1, ..., w,,wg) is the final con-
figuration, and =* denotes reflexive and transitive closure of =-.

Let NEPCOL(, j, h,u,v,w) be the family of the sets of numbers computed
by generalized P colonies with at most j > 1 agents with ¢ > 1 objects inside the
agent and with at most h > 1 programs associated with each agent such that:
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u = check if the P colony uses rewriting/communication rules with
checking rules

u = no-check if the P colony uses rewriting/communication rules without
checking rules

u=s/c/sc if the P colony contains only sender / only consumer / both
sender and consumer agents

v = pas if the rules of OL scheme are of type a — a only,

v = act if the set of rules of OL scheme disposes of at least one rule
of another type than a — a,

w = ini if the environment or agents contain initially objects different
from e, otherwise w is omitted,

If a numerical parameter is not bounded, we use notation *.
Ezample 5. Let M = (m, H,ly,lp,, P) be a non-deterministic register machine with

m registers. The ADD-instruction l; = (ADD(r),ls,l3) will be simulated by the
following rules:

ENV : B:
1:l1i—>airl’1D; 5Z<P6*>PZQZTZ>,
Q:ﬁ—ﬂglgD; 63<P6*>Plgl’n,>,
3:l724>12D; 7:<Plg—>Pem>,
4:[34)lgD; 8I<Pl3—>PBZ’I’L>

The computation is done in such a way that the OL scheme works in the
environment, it adds one to the contents of register r (generates one copy of object
a, - the rule number 1) and generates objects Iy and I3, labels of all instructions
which will be possibly executed in the next steps of computation of the register
machine M (the rule 2). In the next step, consumer agent B takes one of these
objects inside the agent - the rule 5 or 6. Then, instruction l5 or I3 will be simulated.

Generalized P colonies with two agents (senders and consumers) with passive
environment (0L scheme contains the rules of type a — a only) are computationally
complete. If the environment is active, then the family of generalized P colonies
is computationally complete if the systems have two consumers and the initial
contents of their environment is different from e.

NEPCOL(2,2, %, sc,pas,ini) = NRE in [14],
NEPCOL(2,2, %, c,act,ini) = NRE in [3],

NRM ,, € NEPCOL(2,1, %, ¢, act,ini) in [15],
NEPCOL(1,2, *, no-check, act,ini) = NRE in [15],
NRM pp, € NEPCOL(1, 1, %, check, act, int) in [15].

Generalized P colonies can be related to other variants of P systems. In [15]
it was shown that for an arbitrary extended catalytic P system with one catalyst
there exists a generalized P colony with checking rules and one agent containing
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one objects such that the two constructs determine the same set of numbers.
Catalytic P systems are of interest in membrane computing, due to their relevance
to chemical catalysts [29].

8 PCol automata

The basic motivation of P colonies was to model multi-agent systems with very
simple agents interacting with their shared environment. The interaction was re-
alized in communicating objects, and the description of the result of the activity
of the P colony was defined as the multiset of distinguished objects in the envi-
ronment when no more action could be performed.

Interaction of the environment and the collection of agents can also be described
as the sequence of multisets of non-environmental agents that are found in the
environment during the computation, i.e., the sequence of computational steps.
From this point of view, the concept of a P colony can be extended to the notion
of a PCol automaton (a P colony automaton), motivated by P automata from
membrane computing [29] and classical finite automata [32].

In reference to the finite automaton, the concept of the P colony was extended
by an input tape and the generating device was changed to an accepting one [7].
The agents of the P colony work according to the actual symbol read from the input
tape. To do this, they have rules which can “read” the input tape, we call them
tape rules or T-rules. The other rules, which are rules of standard P colonies, are
called non-tape rules or N-rules. An input symbol is said to be read if at least one
agent processed it (by using its corresponding T-rule).

Now we recall the notion of a PCol automaton.

Definition 4. A PCol automaton of capacity k and with n agents, k,n > 1, is
a construct I = (A, e,vg, (01, P1),...,(0on, Pn), F) where

e A is an alphabet, the alphabet of the PCol automaton, its elements are called
objects;

e ec A isthe environmental object of the PCol automaton; vy € (A — {e})* is
a string representing the multiset of objects different from e, called the initial
state of the environment ;

o (0;,P),1 <i<n, is the i-th agent; where
— 0; 18 a multiset over V, the initial state (contents) of the agent,

- P, is a set of programs, where every program consists of k rules, each of
them is one of the of the following types:

tape rules of the form a Lborad b, called rewriting tape rules and
communication tape rules, respectively; or
non-tape rules of the form a — b, or ¢ « d, called rewriting (non-tape)
rules and communication (non-tape) rules, respectively.
and
o [ s a set of accepting configurations of the PCol automaton.
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For each i, 1 <1 < n, we distinguish tape programs and non-tape programs. The
set of tape programs (T-programs), denoted by PL, are formed from one tape rule
and k—1 non-tape rules, the set of non-tape programs (N -programs) which contain
only non-tape rules, is denoted by PV, thus, P, = PT U PN and P n PN = 0.

The computation starts in the initial configuration, i.e., when the input word
is on the input tape and all agents are in initial state.

For a configuration (wg, w1, ...,wy,) and an input symbol a, the sets of appli-
cable programs, P, can be constructed. To pass from one configuration to some
other one in one step we define the following types of transitions:

o i-transition =§¢: There exists at least one set of applicable programs P € P such

that every p € P is T-program with T-rule in the form x Laorzd a,r €A
and the set P is maximal.

e n-transition =,: There exists at least one set of applicable program P € P
such that every p; € P is N-program and the set P is maximal.

o tmin-transition =1, If exists at least one set of applicable program P € P

such that there is at least one T-program in P in the form z Laored a,x €
A and possibly N-programs. The set P is maximal.
o tmazx-transition =§ . There exists at least one set of applicable program

P € P such that P contain as many T-programs (they are in a form z L aor

PR a,x € A) as possible, P can contain N-programs too, and the set P is
maximal.

We say that a PCol automaton works in ¢ (tmaz, tmin) mode of computation if
it uses only ¢- (tmaz-, tmin-) transitions. It works in nt (ntmazx or ntmin) working
mode if it uses ¢-(tmaz- or tmin-) transitions and there is no set of applicable
T-programs that can use n-transition. PCol automaton works in init mode if
it performs only #transitions and after reading all the input symbols it makes
n-transitions.

If the PCol automaton works in tn, tmazx or tmin mode, then it reads one input
symbol in every step of computation. Consequently, the length of the computa-
tion equals to the length of the input string. Notice that this property strongly
resembles to some property of e-free finite automata.

The computation by a PCol automaton may end in a final state. It is successful
if the whole input tape is read and the PCol automaton is in some configuration
in F'.

Let M = {t,nt, tmaz, ntmax, tmin, ntmin, init}.

The language accepted by a PCol automaton II, given as above, is defined as
the set of strings which can be read during a successful computation:

L(II,mode) = { w € A*|(w;vg,01,...,0y,) can be transformed by IT

into (g;wg,ws,...,w,) € F with a computation
in mode mode € M}.

Let L(PCol A, mode) denote the class of languages accepted by PCol automata

in the computational mode mode € M.
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Language classes of the Chomsky hierarchy can be described by PCol automata
as follows [7].

e For every regular language L there exists a PCol automaton working in the
t-mode having only one agent accepting all words from L.

e There exists a context-free language that can be accepted by a PCol automaton
with only one agent and working in the tmode.

e The family of languages accepted by PCol automata with one agent working
in the +mode is a subfamily of the family of context-sensitive languages.

It is open question whether the family of context-sensitive languages is equal
to the family of languages accepted by PCol automata with one agent working in
the mode. Notice that unlike other variants of P colonies PCol automata working
in the +mode are not computationally complete.

In [7], it was shown that class of languages accepted by PCol automata working
in the nt, ntmin or ntmax mode equals to the class of recursively enumerable
languages, respectively. The workspace needed to obtain this computational power
is provided by the interaction between the agents and the environment.

L
L
L
L

PColA,nt) = RE in [7],

PColA,ntmin) = RE in [7],
PColA,ntmazx) = RE in [7],
PColA,init) = NRE in [4].

o~~~ A~

In [22] the concept of a PCol automaton was generalized in the following man-
ner: as in the case of the original model, the agents work in a maximally parallel
way, but the agents are allowed to use any of their tape rules at every computation
step. Those symbols that are read by the agents from the tape at a certain step
of the computation form a multiset. If the symbols in this multiset form a prefix
of the not-yet read part of the input, then this prefix of the input is considered to
be read. The process continues until the whole string is read and no agent is able
to apply any program.

The class of languages accepted by generalized PCol automata where all the
communication rules are tape rules are denoted by L(genPCol,com — tape), the
class of languages accepted by generalized PCol automata with all programs having
at least one tape rule by L£(genPCol, all —tape), and, finally, the class of languages
accepted by generalized PCol automata where the programs are with arbitrary
types of rules are denoted by L(genPCol, *).

In [22] it is shown that

L(genPCol,com — tape) U L(genPCol,all — tape) C L(genPCol, ),
L(genPCol,com — tape) N L(genPCol, all — tape) — L(CF) # 0,
L(REG) C L(genPCol,com — tape) N L(genPCol, all — tape).

One of the most important results in [22] is

L(genPCol, com — tape) U L(genPCol,all — tape) Cr — 1ILOGSPACE,
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where r—1LOGSPACE is a proper subclass of the class of languages accepted
by Turing machines with a one-way input tape using logarithmic space on work
tapes.

The authors compare the accepting power of generalized PCol automata to
standard P automata, constructs combining properties of antiport P systems and
finite automata. For more information on P automata the reader is referred to
Chapter 5 of [29].

9 APCol systems

In [6] the authors make one step further in combining properties of P colonies
and automata. While the behaviour of the agents of PCol automata is determined
both by the string to be processed and the environment consisting of multisets of
symbols, in the case of APCol systems (Automaton-like P colonies), the agents
act only on the input string. This interaction between the agents of the P colony
and the input string is realized by exchanging symbols between the objects of the
agents and that of the string (communication rules), and the states of the agents
can change both by communication and evolution; the latter one is an application
of a rewriting rule to an object. The distinguished symbol, e (in the previous models
the environmental symbol) has a special role: whenever it is exchanged by a symbol
in the environmental string, this symbol is erased. An evolution rule is of the form
a — b. It means that object a inside the agent is rewritten (evolved) to the object
b. The second type of rules are called communication rules. A communication rule
is in the form ¢ <+ d. When this rule is performed, the object ¢ inside the agent
and a symbol d in the string are exchanged, so, we can say that the agent rewrites
symbol d to symbol ¢ in the input string. If ¢ = e, then the agent erases d from
the input string and if d = e, symbol c is inserted into the string.

The computation in APCol systems starts with an input string, representing
the environment, and with each agents having only symbols e in their state. (Note
that the initial states of the agents can be chosen not to consist of only e.)

A computational step means a maximally parallel action of the active agents,
i.e., agents that can apply their rules. Every symbol can be object of the action of
only one agent. The computation ends if the input string is reduced to the empty
word, there are no more applicable programs in the system, and meantime at least
one of the agents is in so-called final state.

Definition 5. An Automaton-like P colony (an APCol system, for short) is a
construct
II=(Ae By,...,B,), n>1, where

e A is an alphabet; its elements are called the objects,
e ec A, called the basic object,
e B;, 1<i<n, are agents. Each agent is a triplet B; = (0;, P;, F;), where
— 0; is a multiset over A, describing the initial state (content) of the agent,
|Oi| = 27
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- P =Api1,---,pik:} 1S a finite set of programs associated with the agent,
where each program is a pair of rules. Each rule is in one of the following
forms:

a — b, where a,b € A, called an evolution rule,
c <> d, where c,d € A, called a communication rule,
F; C A* is a finite set of final states (contents) of agent B;.

As in the case of other variants of P colonies, the number of objects inside the
agents are called the capacity of the APCol system, which is 2.

During the work of the APCol system, the agents perform programs. Since
both rules in a program can be communication rules, an agent can work with
two objects in the string in one step of the computation. In the case of program
(a ¢ b;c + d), a substring bd of the input string is replaced by string ac. If the
program is of the form (¢ > d;a > b), then a substring db of the input string is
replaced by string ca. That is, the agent can act only in one place in one step of
the computation and the change of the string depends both on the order of the
rules in the program and on the interacting objects. In particular, we have the
following types of programs with two communication rules:

(a <> b;c <> €) - b in the string is replaced by ac,

(c 4> e;a > b) - b in the string is replaced by ca,

(a <> e;c 4> e) - ac is inserted in a non-deterministically chosen place in the
string,

(e <> bye <> d) - bd is erased from the string,

(e <> d;e <> b) - db is erased from the string,

(e » e;e > d); (e > e;c<>d), ...~ these programs can be replaced by pro-
grams of type (e — e;c <> d).

At the beginning of the computation of the APCol system the environment is
given by a string w of objects which are different from e. Consequently, an initial
configuration of the APCol system is an (n + 1)-tuple ¢ = (w; 01, ...,0,) where w
is the input string and the other n components are multisets of strings of objects,
given in the form of strings, the initial states the of agents.

A configuration of an APCol system IT is given by (w;wi,...,w,), where
|w;| =2, 1 <i<n,w,; represents the state of the i-th agent and w € (4 — {e})*
is the string to be processed.

At each step of the (parallel) computation every agent attempts to find one of
its programs to use. If the number of applicable programs is higher than one, the
agent non-deterministically chooses one of them. At every step of the computation,
the maximal possible number of agents have to be active, i.e., have to perform a
program.

By computation steps given above, the APCol system performs a transition,
i.e., it passes from one configuration to some other configuration. A sequence of
configurations started from the initial configuration is called a computation. A
configuration is halting if the APCol system has no applicable program. A com-
putation is called accepting if and only if at least one agent is in final state and
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the string to be processed is e. Hence, the string w is accepted by the APCol
II if there exists a computation by II such that it starts in the initial configu-
ration (w;o1,...,0,) and the computation ends by halting in the configuration
(e;w1,. .., wy), where at least one of w; € F; for 1 < ¢ < n. The language L..(II)
accepted by IT is the set of words over (A — {e}) which are accepted by II.

APCol systems are powerful computational devices as it is shown in [6]:

Let A be an alphabet and let L C A* be a recursively enumerable language.
Let L' =S - L-FE, where S,E ¢ A. Then there exists an APCol system [T with
two agents such that L' = L(IT) holds.

APCol systems can also be used not only for accepting but generating strings. A
string wr is generated by an APCol system IT if there exists a computation starting
in an initial configuration (g;ee, ..., ee) and the computation ends by halting in
configuration (wp;wsy,...,w,), where w; € F; for at least one w;, 1 <i < n. The
language Lger, (IT) generated by IT is the set of words over (A — {e}) which are
generated by I1.

In particularly important are those variants, where the programs are restricted
(as defined for standard P colonies).

We denote by APColyc.R(n) (or APColyc.(n)) the family of languages accepted
by APCol systems having at most n agents, n > 1, with restricted programs only
(or without this restriction). Analogously, we denote by APColyc, R(n) the family
of languages generated by APCol systems having at most n agents, n > 1, with
restricted programs only, and APColye,(n) denotes the case when the programs
are without any restriction.

We may associate sets of numbers to APCol systems working in the generating
or the accepting mode in the usual manner.

For an APCol system IT, N Lgc.(II) and N Lge,(IT) denote the length sets of
Loce(IT) and Lgey, (IT), respectively. The family of length sets of languages accepted
or generated by restricted APCol systems with at most n agents, n > 1, is denoted
by NAPCol,R(n), x € {acc, gen}, respectively, and NAPCol,(n) denotes the case
when the programs are without any restriction.

The following results were obtained in [6]:

NAPColye, R(2) = NRE.
NRM,;, € NAPColye, R(1).
APColye, R(1) C MAT.
APColye, R(1) C MAT.

10 2D P colonies

In [11] a new model, called 2D P colony was introduced. As in the original model,
the P colony is of capacity two and the agents are equipped with sets of the
programs formed from rules — communication and evolution. The main change is
in the environment. Namely, the authors put the agents into the 2D grid of square
cells and they provide the agent with the possibility to move — the motion rule.
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The direction of the movement of the agent is determined by the contents of cells
surrounding the cell in which the agent is placed.

The program can contain at most one motion rule. To achieve the greatest
simplicity in agent behaviour, one other condition was set. If the agent moves, it
cannot communicate with the environment. So if the program contains a motion
rule, then the other rule is an evolution rule.

Definition 6. A 2D P colony is a construct
I =(Ae, Env,By,...,Bg, ),k > 1, where

A is an alphabet of the colony, its elements are called objects,

e € A is the basic environmental object of the 2D P colony,

Env is a pair (mXxn,wg), where mxn, m,n € N is the size of the environment

and wg is the initial contents of environment, it is a matriz of size m X n of

multisets of objects over A — {e}.

o B;, 1<i<k, are agents, each agent is a construct B; = (0;, P;,[0,p]), 0 <
o<m, 0<p<n, where

- 0; is a multiset over A, it determines the initial state (contents) of the
agent, |o;| = 2,

- Pi={pia,---:pis },1 > 1,1 <i<kisa finite set of programs, where each
program contains exactly 2 rules, which are in one of the following forms
each:

a — b, called the evolution rule, a,b € A,

c < d, called the communication rule, c,d € A,

[agr] = 5,0 <gq,r <2,s€{<,=,11}, called the motion rule,
e f € A isthe final object of the colony.

A configuration of the 2D P colony is given by the state of the environment -
matrix of type m x n with multisets of objects over A — {e} as its elements, and
by the state of all agents - pairs of objects from alphabet A and the coordinates of
the agents. An initial configuration is given by the definition of the 2D P colony.

A computational step consists of three parts. The first part lies in determining
the applicable set of programs according to the actual configuration of the 2D
P colony. There are programs belonging to all agents in this set of programs. In
the second part we have to choose one program corresponding to each agent from
the set of applicable programs. There is no collision between the communication
rules belonging to different programs. The third part is the execution of the chosen
programs.

A change of the configuration is triggered by the execution of programs and
it involves changing the state of the environment, contents and placement of the
agents.

A computation is non-deterministic and maximally parallel. The computation
ends by halting when no agent has an applicable program.

The result of the computation is the number of copies of the final object placed
in the environment at the end of the computation.
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The aim of introducing 2D P colonies is not studying their computational power
but monitoring their behaviour during the computation.

In [11] an example for a 2D P colony simulating a kind of cellular automata —
Conway’s Game of Life ([20]) is presented. The following example is the pattern
called beacon (see Fig. 1).

H -

Fig. 1. Pattern beacon changes in two consecutive steps

Let ITs be 2D P colony defined as follows: Iy = (A, e, Env, By, ..., Bis, f),
where

A:{e,f,D,S,Z,M,O7L,N},

e € A is the basic environmental object of the 2D P colony,
Env = (6 X 6,wg),

DDDDDD

DSSDDD

DS SDDD

DDDS SDY|

DDDSSD
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Bl = (6€,P17 [1, 1]), BQ = (6€,P2, [1,2]), ey Blﬁ = (€€,P16, [4, 4]),
f € A is the final object of the 2D P colony.

The states of the automata are stored inside the cells ( D - dead automaton,
S - live automaton ). There is only one kind of agent in this 2D P colony, so there
are sixteen identical agents located in the matrix 4 x 4 of inner cells with following
programs:

The first program is to initialize the agent (e > ¢; e = Z);

We sort the programs using the number of copies of object S in the condition
of the motion rule.

1. when neighbouring automata are dead - a single program for both dead as well
DDD

as alive automaton < DeD| —1M Z— M>
D DD
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2. when there is one alive neighbouring automaton - there are eight possible
S DD
programs for dead and alive automata < DeD| -0 Z—->M > and seven
D DD
other combinations.
3. when there are two alive neighbouring automata - twenty-eight programs for

S SD
alive automata < DSD|—>1 Z— O> and other twenty-seven combina-
D DD
tions.
4. when there are two alive neighbouring automata - twenty-eight programs for
S SD
dead automata < DDD| -1 Z—>M > and other twenty-seven combi-
D DD
nations.
5. when there are three alive neighbouring automata - fifty-six eight possible
S S S
programs for dead and alive automata < DeD| -1 Z— O> and other
D DD

fifty-five combinations.
6. when there are four alive neighbouring automata - eight possible programs for
SSS
dead and alive automata < SeD| > Z->M > and other sixty-nine
DDD
combinations.
7. when there are at least five alive neighbouring automata - fifty- eight possible
SSS
programs for dead and alive automata < SeS| -1 Z2— M> and other
k ok ok
fifty-five combinations.

After executing one of the above programs, all agents move one step forward and
rewrite one of their objects e to object M (automaton will be dead) or to object
O (automaton will be live). The following programs are for downward movement
and for updating the state of an automaton - i.e., the replacement of the object
in the cell for an object in the agent to change the state of the automaton.
kX ok ok kX 3k ok
< xex| — O—>S>;< xex | —; M—>D>;
* ok % * ok %
(e—= L; S&S);{(e—= LD S); (S— e L—oe); (D— e L—e);
(e— Ly S+ D);{e— L; D+ D).
(see Fig.2).
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D D D D D D D D D D D D
D S(ee) S(ee) D(ee) D(ee) D D S(eZ) S(eZ) D(eZ) D(eZ) D
D S(ee) S(ee) D(ee) D(ee) D D S(ezZ) S(eZ) D(eZ) D(eZ) D
D D(ee) D(ee) S(ee) S(ee) D D D(eZ) D(eZ) S(eZ) S(eZ) D
D D(ee) D(ee) S(ee) S(ee) D D D(eZ) D(eZ) S(eZ) S(eZ) D
D D D D D D D D D D D D
D D(eO) D(eO) D(eM) D(eM) D D D D D D D
D S(eO) S(eM) D(eM) D(eM) D D S(eS) S(eS) D(eD) D(eD) D
D S(eM) S(eM) D(eM) D(eO) D D S(eS) S(eD) D(eD) D(eD) D
D Ds(eM) D(eM) S(eO) S(eO) D D D(eD) D(eD) S(eD) S(eS) D
D D D S S D D D(eD) D(eD) S(eS) S(eS) D
D D D D D D D D D D D D
D D D S S D D D D D D D
D S(LS) S(LS) D(LD) D(LD) D D S(ee) S(ee) D(ee) D(ee) D
D S(LS) D(LS) D(LD) D(LD) D D S(ee) D(ee) D(ee) D(ee) D
D D(LD) D(LD) D(LS) S(LS) D D D(ee) D(ee) D(ee) S(ee) D
D D(LD) D(LD) S(LS) S(LS) D D D(ee) D(ee) S(ee) S(ee) D
D D D D D D D D D D D D

Fig. 2. The sequence of configurations of the 2D P colony simulating beacon

11 Applications of P colonies

Robot controllers

P colonies and PCol automata were introduced as robot controllers in [2]. The
authors followed two ideas of controlling a robot with use of P colonies.

The first controller model used the PCol automaton with instructions for the
robot on the input tape. The agents have to read the current information from
the tape and together with objects in the environment coming from the receptors,
they generate objects - commands for actuators.

The agents are assembled into modules. All the modules are controlled by
the main control unit. Each input symbol on the input tape represents a single
instruction which has to be done by the robot, so the input string is the sequence of
the actions which guides the robot in reaching its goal; performing all the actions.
In this meaning the computation ends by halting, and it is successful if the whole
input tape is read.

The second idea was to use original model of the P colony and put all infor-
mation to the environment. They also used module-oriented structure of agents,
each module performs the individual functions in the control of the robot. The au-
thors constructed a P colony with four modules: The control unit, the left actuator
controller, the right actuator controller and the infra-red receptors. The controller
(the P colony) is completed by the input and output filter. The input filter codes
signals from the robots receptors and spread the coded signal into the environ-
ment. In the environment there is the coded signal used by the agents. The output
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filter decodes the signal from the environment which the actuator controllers sent
into it. Decoded signal is forwarded to the robots actuators.

Surface runoff

2D P colonies appear to be suitable to simulate multi-agent systems. In [1] the
authors presented hydrological modelling flow of liquid over the earth’s surface
using 2D P colonies.

The issue of the flow of liquid over the Earth’s surface is studied by experts
from two areas - hydrology and geoinformatics. Both of these disciplines work
closely together on the issue of the so-called “surface runoff”. Surface runoff is
the water flow that occurs when the soil is saturated to full capacity and excess
water from rain, meltwater, or other sources flows over the land.

Agents in the model have capacity 2, the agent contains two objects. Each of
the objects carries the information about the state of the agent. One of the objects
stores information about the activity of the agent. At this stage of the simulation
it is the information that the agent “flows” down the terrain or the agent is still
inactive (belonging to the rainfall that have not fall). The other object stores
information about the previous direction of flow. This information can further
modify the way of the agent as inertia.

Based on the entered data - the slope surface, a source of fluid and quantity -
they simulated the fluid distribution in the environment.

The research continues in [12] where the model can fill sinks (places without
output).

12 Open problems and conclusions

We recalled the idea and functioning of the basic model of P colonies. This model
was introduced in [25] in 2004. Since that time many papers and studies about
the model and its variations have been published.

Almost all these works are focused on describing the computational power
of more or less restricted variants of P colonies. Although extensive investiga-
tions have been made in this direction, some basic questions have remained open:
what about deterministic P colonies, furthermore how to define determinism in P
colonies. Notice that determinism can be defined in several levels of the syntax and
the semantics of the system. Another interesting question can be the problem of
reversibility: how to define reversible P colonies and, thus, reversible computation
in P colonies?

Automaton-like P colonies (PCol automata and their variants) are topics of
further study as well. Although they have been compared to some classical and non-
classical automata variants, precise descriptions of their relation to P automata
and to some further variants of classical and non-classical automata would be very
useful. Several other, related open problems can be found in [21].
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P colonies can also be compared to several types of P systems, in particularly
tissue-like constructs. Generalized communicating P systems, where the rules of
this tissue-like membrane systems describe the move of pairs of objects from pairs
of compartments to new locations (each object of the pair is moved to a new
compartment) demonstrate functional similarity to P colonies. Initial steps in this
direction have been made in [27].

The second part of this survey was dedicated to the extension of the P colonies
called 2D P colonies. This model was found suitable for simulations of multi-agent
systems. One of the simulation introduced in [1] is the simulation of surface runoff.

In the future, many ways appear for improving the model of the 2D P colonies.
One way is to assign the number to objects in addition to the type. This number
will indicate the value of the parameter that the object represents. Another pos-
sibility is to extend the environment with mechanism which is able to change the
object in the environment independently from the activity of the agents.

The concepts and results reported in this survey demonstrate that P colonies
(and their variants) and are simple but very powerful devices. In addition, they can
serve as modelling tools as well. The reader is welcome to contribute in exploring
this fruitful research area.
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2-MBP: 2-Multiset Balancing Problem

Two (finite) multisets of multisets My, My over a set of atoms X, shortly 2-
multisets over X, are balanced when in their respective sums Y My, Y M each
atom of X occurs with the same multiplicity. For example the following pair of
2-multisets (subscripts and multiplicative coefficient are the multiplicities of the
two levels) are balanced:

2a2b3 + 3abcey, 4cz + 3bza + 2as

Let us consider a simple chemical reaction, the combustion of methane, which
is essentially an oxidation where C'Hy reacts with the Oxygen molecule O,. The
subscript index of atom symbol denotes its multiplicity in the molecule, while the
coefficients of molecules, are put on the left of the molecules (multiplicity 1 is
implicit when no coefficient is indicated). Therefore, the methane combustion is
correctly balanced when a methane molecule combines with two Oxygen molecules,
by giving as products a Carbon dioxide molecule plus two water molecules:

CHy + 205 — CO5 + 2H50.

We adopt the same style by using abstract atoms denoted by lower case letters
a,b,c... Whence the reaction above is of type:

aby + 2¢co — acy + 2bsc.

We again remark that the transformation above as any chemical reaction is
between a multiset of multisets over an alphabet into another multiset of multisets
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over the same alphabet, that is, a (finite) second-order multiset transforms into
another second-order multiset (over a finite alphabet). In passing, it is interesting
to consider that many chemical laws follow from the simple fact that molecules
are finite multisets of atoms and atoms cannot be created or destroyed in chemical
reactions (disregarding here the isomeric molecular forms).

Referring to the example above, given the two sets A = {aby,c2} and B =
{aca, bac}, we search for the positive integers multiplicities x1, o of the elements of
A and y1, ys of the elements of B such that the corresponding multisets xz1abs+zoco
and yyacs + yoboc respectively have the same number of a, b, c.

In general, the 2-multiset balancing problem can be stated with the following
abstract chemical formulation. Given two sets A, B of (abstract) molecules over
some alphabet of atoms, written as T = A — B, find a vector of positive integers
(a multiplicity vector) (u,|n € AU B) such that the multiset of molecules uT =
Z/LGA Uy b —> Z/LEB u, it is balanced, that is, for every atom a in the alphabet, if
w(a) is the multiplicity of @ in the molecule y, then:

S wa)u, = 3 pla)u

nEA neB

This formulation easily transforms in linear algebra notation as the search
for two vectors of positive integers U, V', of size m, k respectively, that verify the
following equation, where A and B are n x m and n X k matrices of positive
integers coefficients (n is the number of atoms, m and k the cardinalities of the
sets of molecules of A and B):

AU =BV

A natural question is: Can any 2-multiset transformation be correctly balanced?
The answer is negative, and it is easy to provide examples showing it.

A preliminary analysis of 2-MBP problem suggests that a general strategy
for attacking 2-MBP could be computationally very hard. In fact, if is surely
complex to find general conditions for deciding the solvability of the problem and
for generating its possible solutions, nevertheless it could be useful to discover a
number of results that can be used for giving answers for a large class of instances
of this problem, especially if this can be done with reasonable computational costs.
Another issue of interest is the individuation of well-known problems that can be
seen as particular or more general cases of this problem.
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Many results in the area of membrane systems highlight, in various forms, an
important point: The ability to encode powerful computations is often linked to
the ability of the cells to have some sort of synchronization of their responses i.e.,
the ability to communicate and to exchange (simple) messages [5]. This is, for
instance, the case in simple model of agents (simplified cells) [1] — the ability of
agents to synchronize allows the population to perform powerful computations,
equivalent to a class of register machines.

In many actual biological scenarios, such synchronization is based on the pos-
sibility to communicate either through a shared environment or using diffusible
signaling molecules [6, 4].

In this last case, at least some of the cells must be able to produce and secrete
the diffusible molecules. Such producers are cooperators paying an individual cost
to produce a public good: a signal that allows the cells to coordinate their response
to a stimulus. The overall computing power of the population is then linked to the
fate of those cells that contribute to the production of the signal. However, the pub-
lic goods nature of the computation is potentially threatened by the endogenous
appearance of cheaters, cells that take advantage of the enhanced computing power
mediated by public good, but which do not contribute to its production, avoiding
paying the costs associated to it. In situations where the cost-benefit breakdown is
favorable to these cheaters, cheating cells may spread in the population disrupting
the ability of the cells to properly process environmental information [4].

Interestingly, the ability of individual cells to process information can be a
possible solution to the cheating problem. This is indeed the case when such
information-processing is coupled to the ecological constraints in which the cel-
lular population is embedded [2] and [3].

In this brief note we want to suggest that the area of membrane computing may
be a good framework in which one could combine the notion of cellular computation
with evolutionary dynamics and study the issue of evolutionary resilience in a
systematic and mathematical manner.
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For instance, one could look for formal trade-offs between cellular computa-
tion, parallelism and evolutionary resilience. How can a computational process be
distributed between individual cells and which is the cost in terms of evolutionary
resilience? Which is the best strategy to divide the computational labor between
the cells to avoid the emergence of detrimental mutants?

These types of questions may be approached by properly extending standard
models of membrane computing. For instance, in the context of a model with
agents [1], one may add cell division and assume that cells may divide at different
speed — cells that are simpler (in terms of the employed internal biochemistry)
will divide faster, spreading in the population and altering the proper balance
between different types of cells. This would naturally couple the notion of cellular
fitness to that of cellular computation. Such idea could also be easily added in
classical models of membrane computing with division, known for their ability
to solve efficiently (in parallel way) hard computational problems [5]. One could
then study which of the obtained results with membrane systems with divisions are
evolutionary stable —i.e., they are not compromised by the fact that some cells may
execute less internal complex instructions/biochemistry and then divide faster,
spreading in the population and, possibly, compromising the overall computation
(certainly remains to formulate a good measure for the complexity of the internal
cellular instructions, perhaps in terms of classical descriptional complexity).

We are aware that our suggestions are just a starting point of a discussion
on this issue but hopefully may help to contribute novel ideas in how to address
a novel and intriguing point in membrane computing — cells need to split the
computational tasks with the evolutionary constraint to keep the proper balance
between the different types of cells, avoiding that some of them would outcompete
the others.
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Summary. By considering various encodings of the spike train generated by a spiking
neural (SN) P system, several related languages are obtained. A few proposals on how to
define such a family of languages, some preliminary results, and a series of suggestions
for further research are briefly presented.

1 Basic Definitions, Basic Problems

The reader is supposed to be familiar with SN P systems (in general, with mem-
brane computing area), so that we pass directly to introducing the families of
languages mentioned above.

The idea is simple: to take the binary language Lq(IT) generated by an SN
P system IT (the set of all binary strings — also called spike trains — describing
halting computations of IT: a symbol 0 is associated with a step when no spike is
sent to the environment, and a symbol 1 is associated with a step when at least
one spike is sent to the environment, until the system halts), and to encode blocks
of k digits, for various natural numbers k, in such a way that various languages
Ly (IT) are obtained.

Of course, we have to take care of the case when the spike train is not of a
length which is a multiple of the considered k. In this case, we add symbols 0 so
that the obtained binary string is of a length divisible by k.

More formally, let B = {0,1} be the binary alphabet, let k¥ > 1 be a natural
number, and Vj, be an alphabet. Consider a mapping ¢y : B¥ — V}.. For each
string w € B* we consider the string yw = w0', where ¢t = min{n > 0 | |w0"| is a
multiple of k}.
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The string yw can be written in the form jw = z1z5. .. xs, such that |z;| =k
for all j = 1,2,...,s. Then, ¢ can be extended to (B¥)* in the natural way:
(Y2 Y1) = or(y1)en(ya) - pr(ye) for all y; € B¥,1 <4 <t,t>0.

Thus, for an SN P system IT and an encoding ¢y as above, we can define the
language

Lo (I1) = {pr(xw) | w € L (I)}.

This language depends on the encoding ¢y, hence a family of languages can be
associated with IT by varying k and the mapping .

Already at this very general level there appear several research issues. Consider
classes of mappings ¢ with various properties and investigate the properties (size,
closure, decidability, etc.) of the corresponding families of languages generated by
SN P systems. How these properties depend on the SN P systems? Following
suggestions and importing notions and questions from the grammar forms area (a
very active research area some decades ago, starting with the pioneering paper [2]
— see also the corresponding chapter from the first volume of [5]) can be useful.

2 The One-to-one Case

Actually, the present research idea occurred in a framework related to classical
communication channels with encoded information, where with every SN P system
different languages can be associated that depend on a parameter that fixes a time
window to analyze the spikes train at the output.

A natural possibility is to order in a precise way, e.g., lexicographically, the
strings in B¥, and to associate with each of them a distinct symbol from an al-
phabet X}, with 2* elements.

The fact that the encoding is one-to-one is rather restrictive: the passing from
the binary language L1 (IT) to a given Ly (II) (we omit mentioning the mapping )
can be done by means of a sequential transducer (a gsm, in the usual terminology,
[5]). Conversely, the passage from Ly (IT) to Ly (II) is done by an one-to-one (non-
erasing) morphism, which implies that the converse passage is done by an inverse
morphism.

This observation is interesting enough to be formally formulated:

Proposition 1. If L1(II) € FL, where FL is a family of languages closed under
gsm mappings or under inverse morphisms, then Ly (IT) € FL, for allk > 1. If FL
is closed under non-erasing morphisms and Ly (IT) € FL, then also L1(IT) € FL.

Families as F'L above are REG, LIN,CF in the Chomsky hierarchy, hence
if Li(IT) is regular/linear/context-free, then also all languages Ly(IT) are
regular/linear /context-free, respectively, and conversely.

This means that each family F(IT) = {Ly(IT) | kK > 1} contains only languages
of the same type in the Chomsky hierarchy (for instance, it is not possible to
have a context-free non-regular language Ly (IT) together with a regular language
L;(I), for some k # j.
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Of course, if Li(IT) is finite, then all languages Ly (II) are finite, hence the
family F'(IT) is finite, up to a renaming of symbols of alphabets Y.

If, instead, L1(I) is infinite, then F'(IT) can be an infinite family, because the
alphabet of Lj41(IT) might be larger than the alphabet of Ly (IT).

This is the case, for instance, for the SN P system IT generating L;(IT) =
{1"01™ | n,m > 1} (which is an infinite regular language).

This assertion seems to be true (conjecture) for all SN P systems IT with infinite
Li(1).

3 The Non-injective Case

The previous type-preserving Proposition 1 does not hold in the case of using
encodings which are not one-to-one.

Here is an example: Consider IT such that L;(II) = {1"01" | n > 1} (SN
P systems are universal, [4], hence any language can be taken as the starting
language). Of course, L;(IT) is context-free non-regular.

Consider the encoding ¢, : B¥ — {a,b} defined by ¢ (w) = a if |w|y < 1,
and g (w) = b if |w|o > 2. We get

Li(IT) = a* Ua*b, for k > 4,

and
Ly(IT) = at Ua™h, for k =2,3.

Clearly, the languages Ly (IT),k > 2, are regular, in spite of the fact that L (IT)
is (context-free) non-regular.

The properties of the encoding is crucial for the properties of the obtained
language families (this is true in other frameworks, see, e.g., [3] and its references),
hence this issue deserves further research efforts.

4 Final Comments

The idea of associating a family of languages with a given P system is rather
natural. We have illustrated it here with the case of SN P systems, but the same
strategy can be applied for any type of P systems producing a language (such that
cell-like P systems with external output, SN P systems generating trace languages
[1], etc.).

A more systematic study of this idea is of interest, starting with relevant ex-
amples, continuing with “standard” formal language theory questions, and ending
with possible applications of this approach (as languages generated by the same
P system are “genetically” related, maybe in this way one can capture biological
connections/dependencies or other types of relationships).

Of course, further ways to associate a family of languages to a given SN P
system, to a given P system in general, remain to be found.
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Membrane systems analysis is a less developed research area in membrane com-
puting although concepts such is causality — of different types — [1, 2, 3] have been
introduced and investigated. In relation to testing, the identifiable P systems have
been studied [4]. Also, connections with Petri nets, where analysis methods and
tools exist in abundance, have been made [5]. However, for this analysis to become
effective it is necessary to develop further research into: (a) identifying simpler
components of the execution strategy, similar to occurrence nets of various types
(simple, behavioural, communicating etc) [6]; and (b) efficient algorithms for im-
plementing these analysis concepts. This should be a research that will involve any
membrane systems, but those benefiting from simulation and verification tools are
the most appropriate to be considered. This research should address both formal
foundations of these concepts as well as evaluation methods and the construction
of appropriate tools supporting the analysis.
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Summary. I expand the use of P systems in Economics that was introduced in [1],
[2] by developing a model and reporting simulation results for a dynamic two-level ex-
change model of buyers and sellers with investment. I invite comments, criticisms, and
suggestions.

1 Introduction

Economic simulations using mathematical models have the advantage of rigorous
specification, but they have been criticized for being unrealistically rational and
restricted to a small number of agents with limited heterogeneity. One alternative
is multi-agent systems, which have the advantages of accommodating a large num-
ber of agents, heterogeneity, non-optimal behaviors, and agent interactions that
produce emergent effects. I have used multi-agent systems to analyze complex
interactions in auctions [3], [4], and the possible applications are many [5]. How-
ever, multi-agent system models have in turn been criticized for having arbitrary
specifications.

Another promising alternative is P systems. These models are dynamic, rig-
orously specified, and produce emergent effects. They can be deterministic or
stochastic. They are scalable in that we can develop a model, observe its be-
haviour by hand for a few steps, and then run relatively easy-to-develop computer
simulations. In summary, P systems have the advantages of multi-agent systems,
but are more transparently specified and understood by non-programmers. The
applications of P systems are many [6], and the first applications of P systems
to Economics were process models of vertical integration and spin-off [1] and a
dynamic model framework [2]. More recent applications of P systems in animal
Ecology [7], [8], [9], [10], [11] have provided additional inspiration for the applica-
tion of P systems to dynamic Economic models.

My objective in this project was to design and implement a relatively simple,
but not trivial, model of a dynamic buyer-seller exchange with two types of invest-
ment: investment in technology that lowers seller production costs and investment
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in advertising that entices more buyers into the market. Section 2 contains de-
scriptions of the model’s structure and objects. Section 3 specifies the rewriting
rules, and Section 4 specifies the processes that use the rewriting rules. Section
5 contains simulation results, and Section 6 concludes with a brief description of
more sophisticated models currently in development.

2 Model Structure

P systems consist of objects that evolve and interact in compartments called mem-
branes, a term that reflects the use of P systems in simulations of cellular processes.
In this section I describe the membranes and the agent and catalyst objects.

2.1 Membranes

In the two-level exchange model there are four membranes: an economy membrane
E, that contains a market membrane M, that in turn contains buyer and seller
membranes B and S. The membrane hierarchy is B,S C M C E, so that an
empty economy string is [[[]5[]g],,] p- In the implementation, the membranes
must also be preceded by their type: &[ar[B[ 154l ]s],,] 5 but T use the briefer
notation for readability. The outer economy membrane F contains the market
membrane M and individual buyer and seller agents that have exited or not yet
entered the market. Buyers and sellers that have entered the market are contained
in membranes B and S that are both contained in M. Buyers and sellers move into
M in order to execute buy-sell transactions, and then move back into B and S.

2.2 Agent Objects

The agent objects are buyers and sellers that come in different types. This model
uses high, medium, and low levels (h, m, 1) for types. The membrane B contains
buyers b; that have low or high willingness to pay (demand) ¢ € {l, h}, and mem-
brane S contains sellers s; that have low or high production costs j € {l, h}. Buyer
type can change from low demand to high demand, depending on the intensity of
advertising. Seller type can change from high cost to low cost, depending on the
intensity of investment in technology.

2.3 Catalyst Objects

There are catalyst objects a for advertising and rj for low, medium, or high profit,
ie., k € {l,m,h}. For example, n advertising objects in E induce entry of a buyer
from E to B; n medium-profit objects in S induce investment in advertising and/or
cost-reduction technology; n high-profit objects in F induce entry of a high-cost
seller from F to S; and n low-profit objects in S induce exit of a high-cost seller
from S to E. There are two possible ways to use catalysts: deterministic and



P System for Two-Level Economic Exchange 169

probabilistic. A deterministic method applies one of the n catalyst objects to
induce the rule to fire and then reduces the number of catalyst objects to n-1. A
probabilistic approach uses the number of catalysts to generate a probability that
increases with the number of catalyst objects. In this approach, the probability
p should increase with the number of catalyst objects and have an upper bound
bound of 1. This calls for a logistic function, for example p= 1/(1 + 2e~°-75"),
which gives an increasing sequence of probabilities {0.51, 0.69, 0.83, 0.91, ... }. In
this model, I use the probabilistic method since this better reflects the uncertainty
in the decisions of economic agents.

2.4 Initial String

The two-level exchange economy is represented by a string consisting of these mem-
branes, agents, and objects. The string evolves through time by applying a repeated
sequence of processes that represent economic decisions and interactions. An ex-
ample of an initial string is U[blbhbh]B[SzShSh]S]MblszhSh]E- The seller agents
outside the M membrane are high-cost producers since low-cost producers would
have entered; and that the buyer agents that have not entered are low demand
since a high-demand buyer would have entered. Each time period is modelled by a
sequence of six economic processes, and each process consists of a sequence rules
selected from a set of six rewriting rules that are described in the next section.

3 Rewriting Rules

Basic P system rewriting rules for cellular process simulations are explained in
[1] and [12] among others, and T have adapted these basic rules for modelling
Economics systems. Three fundamental rule types are evolution rules that rewrite
object strings within a membrane, communication rules that rewrite object strings
across membranes, and active membrane rules that rewrite membranes. The two-
level economic exchange model uses rules only of the first two types, but rules
of the third type will be required for more complex models. In this system, the
evolution rules are add, txn, and type while the communication rules are tran, trap,
and trat.

The txn rule implements profit-generating transactions between buyer and
seller agents that have been randomly paired. The probabilistic add rule creates
new objects depending on probability determined by a catalyst. For example, an
advertising object is induced probabilistically by profit objects. The type rule is
also a catalyst-driven probabilistic rule that changes the type of an object. For
example, the type of a seller is changed from high-cost to low-cost depending on
the level of investment in technology.

The tran rule is used for deterministic transfer of objects from one membrane
to another. This single rule replaces the two common in and out rules that trans-
fer objects from container membranes to submembranes and vice versa in cellular
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process simulations. In Economic models a membrane can contain more than one
submembrane and sometimes we require transfer up or down more than one level
in the membrane hierarchy. The trap rule is a catalyst-driven probabilistic transfer
rule that transfers objects from one membrane to another depending on proba-
bility determined by a catalyst. The semi-probabilistic trat rule is an interesting
combination of the probabilistic type rule and the deterministic tran rule. If there
are one or more catalyst objects, an object is transfered from one membrane to
another, but before it is transferred its type may be changed depending on proba-
bility determined by a catalyst. For example, a buyer enters the market when there
is one or more advertising object, but the buyer is more likely to be high-demand
if there is more than one advertising object.

The rules are summarized for general use in Table 1. In the rule specifications,
membranes are represented by M and N, objects by a and b, specific object types
by t and s, and general object types by ¢ and j . Each probabilistic rule is po-
tentially triggered by a catalyst ¢;, such as advertising or profit, that is used to
calculate a probability threshold p. When a random draw is less than p the rule
fires and the catalyst is deleted.

4 Processes

Each process is described in the text and then summarized in a table that shows
each rule, its specification for the two-level exchange model, and the result of apply-
ing the rule to a running example with initial state [[[b;bnbn] g[sisnsn] gl bibisnsn] -
In the rule specifications, only the relevant membranes are shown, but the entire
model is shown in the example.

4.1 P1: To Market

Each period begins with b and s agents migrating from their home membranes B
and S to the market membrane M. There are two tran rules, one for the b agents
and one for the s agents, as shown in Table 2.

4.2 P2: Transaction

In the Transaction process, b and s agents in M are randomly paired, each bs string
in M induces induces a transaction resulting in a profit object, the profit object is
transferred to the appropriate membrane, and the b and s agents are transferred
back to their home membranes. The profit object ry is type k = {I,m, h} depending
on the types for (b,s) being (I, h), (I, 1) or (h, h), or (h, I) respectively. To explain,
if the buyer has low willingness to pay (low demand) and the seller has high costs,
the difference (profit) between the revenue and the cost will be low; if the buyer
has low demand and the seller has low costs or vice versa, the difference between
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Table 1. Rules Specifications

Rule Template

Description

Specification

add (M, at, ct)

Add typed object a; into M with probability p that depends on
a catalyst c¢;.

[eelpr = Plad]

tran (M, N, a;)

Transfer all types of a from M to N.

lai] s = lai]y

tT’llp (M7 N7 (It,Ct)

Transfer typed object a: from M to N with probability p that
depends on a catalyst c;.

lace] py — plad]

trat (M, N, at, as, ct)

Change a’s type from t to s with probability p that depends on
a catalyst ¢; and transfer the resulting a; from M to N.

lacce]pr — plail v

tzn (M, a;, b;)

Execute a profit-generating transaction between randomly
paired objects a and b.

[acasbsbi]y, — [atbsasberers],,

typ@ (M, Aty s, Ct)

Change a’s type from t to s with probability p that depends on
a catalyst c;.

lacce]pr — Plas|y,

Table 2. P1: To Market

Process | Rule

Specification

Initial: H[blbhbh]B [slshsh]s] A{bzbzshsh] 5

Pla tran (B, M, b;)

[bl]B - [[ }Bb"] M

[[[ ]B[sthsh}sblbhbh] Mblbzshsh] »

P1b tran (S, M, s;)

[silg — [[ ]ssj]M

[[[ 15! }sbzbhbhswhsh]Mblblshsh]

E
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the revenue and the cost will be medium; if the buyer has high demand and the
seller has low costs, the seller’s profit will be high.

If k=h the profit object is transferred to E to be used as a catalyst for seller
entry, and if k= [ or m the profit object is transferred to S to be used as a catalyst
for seller exit or investment.

The Transaction process (P2) uses rules tzn and tran as shown in Table 3 to
implement the transactions between randomly paired buyers and sellers, transfer
the profit objects to the appropriate membrane, and transfer the buyers and sellers
back to their home membranes.

Table 3. P2: Transactions

Specification
Process | Rule

Current: [[[ 15l ]Sblbhbhslshsh] MbleShSh] p

[bisj]ay = [bisjre],, where k=l for i=lj=h;
P2a ton (M, bi,85) | k=m for i=j; k=h for i=h,j=1

H[ 15l ]Sblshbhslbhshrlrhrm] szbzshsh] 5

[bisjTalpy = [biss]alre] g

P2b tran (M, E,rp)
[[[15[rirm] sbisnbnsibnsn] Mblblshshrh} 5
bisirk]y; — [biSs] s |Tk] o5 for k=lm

- ran (M. S,3) [bisjTrlar = [bisi]arlrel s
H[ ]B['f'l?"m}sbla‘?hbhslbhsh]Nlblblshshrh} »
biS' — |85 bl

Pod tran (M, B, by) [bisj]n — [si]arlbi] 5
H[blbhbh]B[Tsz]SShSzSh] szbzshshrh] .
Sila — [s4

P2e tran (M, S, s;) 5310 = [eals

[[[bzbhbh}B[ShSzShTsz]s] MblbLShShTh] »

4.3 P3: Investment

Seller agents can invest in advertising to increase demand and in technology to
reduce costs. Since high profits do not provide incentive for investment and low
profits do not provide sufficient funding for investment [13][14], investments are
more likely to occur when transactions have produced profits of type m . The
probability of investment depends on the number n of m profit objects and, for
brevity, I denote n occurences of m profit objects as rJ,.

Profit objects in S induce investment in advertising and/or technology with
probability p. If the advertising condition fires, an advertising object a is created in
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S and transferred to E. If the advertising condition does not fire and the technology
condition fires, the type of one of the high-cost seller agents s;, in membrane S is
changed to an [. When either of these processes fires the 77, catalyst objects are
deleted, signifying that the profits have been invested.

The process of investment in advertising and/or technology is modeled by three
rules, add, tran, and type as shown in Table 4. The example assumes that P3a fires
(and so P3c does not) so that an advertising object is created in the £ membrane.
Note that if P3a does not fire, the tran rule has a null effect.

Table 4. P3: Investment

Specification
Process | Rule

Current: H[blbhbh]B[shslshrsz]s] A{blblshsh'f'h} B

[Tfn]s - ﬁ[a}s

P3a add (S,a,ry,)
[[[bzbhbh]B[Shszshmd]S] Mblblshshrh} »
ale = [a

P3b tran (S, E, a) lals = Lol
[[[blbhbh]B[shslshrl]s} IwblbLShShTha} B
ShTmlq = Plsi

P3c type (S, sh, S1,7m) [ E ol

[[[blbhbh]B [shslshrl]s} MblblShShThCL} E

4.4 P4: Seller Entry

A string of one to n high-profit objects, denoted r}, in F induces entry of a high-
cost seller from E to S with probability p, and if entry occurs the 7} profit objects
are deleted. The Seller Entry process uses a trap rule as shown in Table 5 to
simulate seller entry that is induced by high profits. The example assumes that
P4a fires, i.e., p < p, so that a seller enters and the high-profit objects are deleted
from the E membrane.

4.5 P5: Seller Exit

A string of one to n low-profit objects, denoted 7}, in S induces exit of a high-cost
seller from S to £ with probability p and, if exit occurs, the r* profit objects are
deleted. The Seller Exit process uses a trap rule as shown in Table 6 to simulate
seller exit that is induced by low profits. The example assumes that the processes
fire, i.e., p < p, so that a high-cost seller exits from S to E and the low-profit
object is deleted from the S membrane.
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Table 5. P4: Seller Entry

Process

Rule

Specification

Current: H[blbhbh}B[shslshn]s] szbzshshrh]E

P4a

tmp (E7 Sv Shﬂn}:)

“ ]Sshrﬂ B ﬁ[[sh}s] E

[[[bzbhbh}g[ShSzShShTz]S] Mblblsha] .

Table 6. P5: Seller Exit

Process

Rule

Specification

Current: [[[blbhbh]B[shsthShTz]S]Mblblsha] 5

P5a

[[Shﬁn]s]E - /7[[ ]ssh]E

trap (Sv Ev Sha/rin)

[[[blbhbh]g [sh,slsh,]s} Mblblsh,sha] E

4.6 P6. Buyer Entry

A string of one to n advertising objects, denoted a™, in F induces deterministic
transfer of a new buyer from E to B and a probabilistic change in type using
the semi-probabilistic trat rule. The type for this new buyer depends upon the
advertising intensity indicated by the number n of advertising objects. If a random
draw is less than p, one of the low-demand buyers is changed to high-demand, and
this buyer with type ¢ equal to [ or h is then transferred from F to B. The example
shown in Table 7 assumes that p < p causing P6a to change a low-demand buyer

to high demand before transferring from F to B.

Table 7. P6: Buyer Entry

Specification

Process | Rule
Current: [[[blbhbh]B[shslsh]S] Mblblshsha]E
bia™] o = plbi] 5, for i=lh

P6a trat (E, B, by, by, a™) (bl = Pl

[[[blbhbhbh]B [ShSlSh}s] Alblshsh] B
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5 Simulation Results

The model was very amenable to implementation in Java, with processes passing
parameters to rules. In order to convey some of the variation between simulations, I
show results for two of the simulations restricted to 50 periods. Table 8 shows that
most transactions result in medium profits, some result in high profit, but only a
few result in low profit. The medium profit transactions result in investment in
technology that leads to lower costs, as demonstrated in Table 9 by the increasing
number of low-cost sellers. Investment in advertising induces buyer entry which
increases demand. Table 9 shows the number of buyers of both high and low types
increasing steadily. In simulation 1, there are always more low-demand buyers
than high-demand buyers, but in simulation 2 the number of high-demand buyers
eventually matches the number of low-demand buyers. Table 10 illustrates that
most entry is by buyers and that the entry by sellers is somewhat offset by seller
exit.

Table 8. Profit

Simulation 1 Simulation 2

6 grh Brh

mrm mrm

Srl fl

UL

9 11131517 192123 25272931333537394143454749 1357 91113151719212325272931333537394143454749

6 Next Steps

This two-level model demonstrates the feasibility of implementing Economic ex-
change models using P systems. The two-level model can be extended to include
objects and types for prices, profits, market concentration, and consumer surplus,
as well as enhanced structural features such as membranes for agents, products,
and industries. The model can be extended in even more interesting ways by adding
another level of exchange so that the three levels represent wholesalers (or manu-
facturers), retailers (or dealers), and consumers. This three-level model can then
be used to model different types of vertical restraints such as resale price mainte-
nance. The rules created for the two-level model are directly usable in the extended
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Table 9. Agent Growth

Simulation 1 Simulation 2

0> - A AN 0 1 "
1357 9111315171921 232527 293133 35 37 39 41 43 45 47 49 135 7 911131517 192123 2527 293133 3537 39 41 43 4547 49

Table 10. Entry and Exit

Simulation 1 Simulation 2

W Bentry m Bent

et BSexit

25 | 2.5
Sentry mSent]

11131517 19 21 23 25 27 29 31 33 35 37 39 41 4345 47 49

11131517 19 21 23 25 27 29 31 33 3537 394143 4547 49

9

7

two-level and the three-level models, but new rules are required for transferring
membranes, pairing membranes, and updating numeric values.
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Summary. In the spiking neural P systems investigated so far, the application of evolu-
tion rules depends on the contents of a neuron (checked by means of a regular expression),
a specified number of spikes are consumed and a specified number of spikes are produced,
and then sent to each of the neurons linked by a synapse to the evolving neuron. In this
work, we consider the opposite strategy: spikes are requested from neighboring neurons,
depending on the contents of the neuron (again, checked by means of a regular expres-
sion). No spike is consumed or created, they are only moved along synapses and replicated
(when two or more neurons request the contents of the same neuron). It is proved that the
obtained computing devices are universal, equivalent with Turing machines, but where
two types of spikes are used. It remains open whether the second type of spikes can be
avoided without decreasing the computing power.

1 Introduction

Spiking neural (SN) P systems are abstracted from the way the neurons cooperate
by sending to each other electrical impulses of identical shape (spikes), which
were introduced in [3] and investigated in a large number of papers, see a recent
bibliography in [10].
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Briefly, SN P systems have the following structure and functioning. Neurons
(in the form of a membrane) are placed in the nodes of a graph (whose edges are
called synapses) and they contain a number of spikes, identical objects denoted by
a, which evolve by means of rules of the form E/a® — aP: if the contents of the
neuron are described by the regular expression E (over the alphabet {a}), then
c spikes are consumed and p spikes are produced; the produced spikes are sent
to all neurons to which a synapse starting from the evolving neuron points out,
with the p spikes replicated in such a way that each destination neuron receives
p spikes. The system evolves synchronously, in each time unit, each neuron which
can use a rule, should use one. When the computation halts, no further rule can
be applied, a result is obtained, e.g., in the form of the number of spikes present
in a specified neuron in the halting configuration. Many variants of SN P systems
were considered. Most of the obtained classes of SN P systems are computationally
universal, equivalent in power to Turing machines. An interesting topic is to find
small universal SN P systems (first results, much improved after that, can be found
in [12]). In certain cases (see, e.g., [4], [9]), polynomial solutions to computationally
hard problems can also be obtained in this framework. The interested reader can
consult the above mentioned bibliography or the chapter in [13] dedicated to SN
P systems.

In terms of parallel-cooperating grammar systems (PCGS), see [1], the “stan-
dard” SN P systems are communicating on command: the initiative for commu-
nication belongs to the emitting neuron. Taking the inspiration from PCGS area,
it is natural to consider also the reverse case: the communication on request. The
spikes should be moved from a neuron to another one when the receiving neuron
requests that.

Request-response is an important concept in software engineering. A request-
response interaction (also called request-reply) is one of three event based interac-
tion types in an event based system, which is a system in which interactions among
the agents in the system are governed by events, principally those interactions that
are request-response, message-passing, or publish-subscribe [8]. A request-response
interaction happens between two agents. Agent A makes a request to agent B by
sending agent B a request indicating the type of request along with the details of
the request. Agent B processes the request and responds by sending a reply back
to agent A. In a request-response interaction, there are potentially four events [8]:
(1) the act of sending the request by agent A; (2) the receipt of the request by
agent B; (3) the act of sending the reply by agent B; and (4) the receipt of the
reply by agent A. For synchronous request-response interactions, especially those
that occur over short periods of time, these four events are normally all combined
together and considered one event. There are several instances.

Request-response is one of the basic methods computers use to communicate
with each other, in which the first computer sends a request for some data and
the second computer responds to the request [18]. For example, browsing a web
page is an example of request-response communication. Request-response can be
seen as a telephone call, in which someone is called and they answer the call.
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Request-response is a message exchange pattern in which a requestor sends a
request message to a replier system which receives and processes the request,
ultimately returning a message in response [18].

The class of SN P systems we introduce here have only rules for requesting
spikes from the neighboring neurons, the action being again dependent on the con-
tents of the neuron. Basically, the rules are of the form E/Q(a™, 1) - (a™™, jm),
with the meaning that, if the neuron where this rule resides (say, neuron 4) has
a number of spikes described by the regular expression E, then it asks (this is
the meaning of @) n; spikes from neuron ji, ..., n,, spikes from neuron j,,. If
the neurons ji,...,j, cannot satisfy the requests (they contain less spikes than
requested), then the rule cannot be applied. Also queries of the form (a®, j) can
be formulated, with the meaning that all spikes from neuron j are requested, no
matter how many they are, maybe none. When several neurons request simul-
taneously spikes from the same neuron, the queries should be identical, and the
requested spikes are replicated. Details will be given in the next section.

We want to stress an important feature of this variant of SN P systems, shortly
call them SNQ@ P systems: no spike is consumed, they are only moved from a
neuron to another one (from this point of view, they remind P systems with
symport/antiport rules, [11]); the only way to increase the number of spikes in the
system is by replicating the spikes in neurons which receive multiple queries.

Replication is a powerful operation. For instance, in the framework of SNQ
P systems we can easily generate non-semilinear sets of numbers. However, we
are not able to prove whether SNQ P systems are universal or not (we actually
believe that they are not universal). The universality is obtained if we extend the
definition by considering spikes of two types (in the proof they are denoted by a
and b, with spikes of type b used only for controlling the evolution of the system).
It remains open whether or not this second type of spikes can be avoided, without
decreasing the computing power. Further research questions are pointed out in the
end of the paper.

2 SN P Systems with Communication by Request

We pass now to formally defining the devices briefly described above. The reader
is assumed to be familiar with basic elements of membrane computing, e.g., from
[13], as well as with some basic notions and notations from language and automata
theory, e.g., from [14]. We only mention that V* denotes the free monoid generated
by the alphabet V' under the operation of concatenation and the null element A (the
empty string), and that the family of sets of natural numbers computed by Turing
machines is denoted by NRE (they are the length sets of recursively enumerable
languages, hence the notation).

We directly introduce the devices that we investigate, in the general form (with
several types of spikes).

A spiking neural P system with communication by request (shortly, SNQ P
system), with k types of spikes, is a construct
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II=(0,01,...,0m,0a;,out),

where:

1. O ={a1,az,...,a;} is an alphabet (a; is a type of spikes), k > 1;
2. 01,...,0m, are neurons, of the form o; = (ai"a3?...a*, R;),1 < i < m,
ng >0, 1 <t <k, where:
a) n; > 0 is the initial number of spikes of type a; contained in neuron o,
1<j<k
b) R; is a finite set of rules of the form E/Qw, with w a finite non-empty list
of queries of the forms (a?,j) and (a$°,7), 1 <s<k,p>0,1<j <m;
3. a4y, 1 < ig <k, is the type of output spikes and out € {1,2,...,m} indicates
the output neuron.

The meaning of a query (a2, j) is that neuron o; requests p copies of as from
neuron o, while (a2°, ) means that all spikes of type as from o;, No matter how
many they are, are requested by o;.

Please note that we have not specified the set of synapses, as they are implicitly
defined by the rules.

An SNQ P system starts from the initial configuration, described by the num-
bers of spikes of each type present in each neuron in the beginning of the com-
putation, and proceed by applying the rules in the style of usual SN P systems —
synchronously, one rule is applied in each neuron where a rule can be used. E/Quw
can be used if both (1) the contents of the neuron are described by the regular
expression E (note that the contents of the neuron are interpreted in the multiset
sense, all strings obtained by permuting a string describing the number of spikes
in the neuron are equivalent to each other) and (2) all queries formulated in w are
satisfied (if (a?,7) is a query in w and o, contains strictly less than p spikes, then
the rule cannot be applied). Note that a query (a°, j) is always satisfiable, as all
spikes a, from o are requested, no matter how many they are, maybe none.

There is another situation when a rule cannot be applied, namely in the case
of conflicting queries: if two different neurons 41,75 ask from the same neuron j
different numbers of occurrences of the same spike ag, then the two rules cannot be
used simultaneously (but one of them, non-deterministically chosen, can be used).
Note that there are two different cases considered, that is, two queries of the form
(a2, ), (aZ, j) with p # r, and two queries of the form (a2, j), (a°, j), for p a given
number.

A delicate point appears when defining the result of a computational step,
because of the interplay of the queries. We describe a step in terms of several
sub-steps as follows.

e Sub-step 1. In each neuron, we choose a rule to apply, and check its appli-
cability. This means checking three conditions: (i) that the regular expression
in the rule corresponds to the contents of the neuron, (ii) that the queries in
the rule can be satisfied by the indicated neurons, and (iii) that there are no
conflicting queries among the selected rules. If any of these conditions is not
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satisfied, then the rules should be changed, or, in the case of the third condition,
some of the rules involved in conflicting queries should be omitted. However,
the set of selected applicable rules should be maximal, in the sense that no rule
can be added to the set without losing the applicability (each neuron which
can evolve, should do it).

e Sub-step 2. The requested spikes are removed from the neurons where they
were present. For each neuron we have three cases: (i) no spike a5 was requested
by any other neuron (and then the existing number of spikes as remains un-
changed), (ii) all spikes of some kind a, were requested, by at least one other
neuron (and then no spike of this kind remains here), or (iii) p spikes of type
as are requested, by at least one other neuron (and then p is deduced from the
number of copies of as present in the neuron). Note that because of the fact
that the requests are not conflicting, we know precisely how many spikes of
each type we have to deduce from each neuron.

e Sub-step 3. The queries are satisfied, the requested spikes are moved to the
requesting neurons. To the result of Sub-step 2 we add the requested spikes,
with the following meaning: if two (or more) neurons request spikes from the
same other neuron, then the number of spikes to be submitted to the two (or
more) neurons is the same (say, p copies of some as), but only p spikes are
removed from the emitting neuron, the p spikes are replicated and exactly p
spikes are moved to each of the requesting neurons. The same in the case of
two or more queries of the form (a°, j), all spikes present in o; are replicated
as many times as the number of other neurons having submitted queries to o;.

Of course, the three sub-steps together form a step, which lasts for one time unit.

After a computation step as illustrated above, the system passes to a new
configuration. A sequence of such transitions from a configuration to another one,
starting from the initial configuration, is called a computation. A computation
halts if it reaches a configuration where no rule can be applied. The result of a
halting computation is the number of copies of spike a;, present in neuron g, in
the halting configuration. For an SNQ P system II, let us denote by N (II) the set
of numbers generated by I1.

Let us also denote by NSN;, P,,,(Q) the family of sets N (II) generated by SNQ
P systems using at most k types of spikes and at most m neurons. When the
numbers k or m can be arbitrary, the corresponding parameter is replaced with .

Note that there are several important differences of SNQ P systems in com-
parison with usual SN P systems: (1) we use several types of objects, and we still
call all of them spikes, (2) there is no interaction with the environment, no spike
is sent out, hence we have to consider the result of a computation only in the
internal mode (no spike train is defined here), (3) there is no other way to increase
the number of spikes than the replication in the case of multiple queries from the
same neuron (this corresponds to the case when a neuron in a usual SN P system
sends spikes to several neurons to which it has synapses).

It is also worth mentioning the difference from the systems we consider here
and those in [15], where the request is done only from the environment, for cell-like
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SN P systems, using (in the skin region only) rules of the form E/\ < aP, with
the meaning that p spikes are brought from the environment. Besides these rules,
usual spiking rules are used in [15].

3 Preliminary Results

We start the study of SNQ P systems by examining the power of small systems,
which have a small number of neurons and of types of spikes. This is also an
opportunity to illustrate the previous definitions with a couple of simple examples.

Directly from definitions, it follows that the two parameters k& and m induce a
double hierarchy of families of sets of numbers:

NSNPn(Q) € NSNiy1 Py, forall k> 1,m > 1.

As we will see in the next section, the hierarchy on the number of types of
spikes collapses at the second level (SNQ P systems with two types of spikes are
already universal). Because of the universality, the other hierarchy on the number
of neurons cannot be infinite, but we do not know its precise height.

The following observation is obvious: systems with only one neuron cannot
apply any rule, hence they only generate singleton sets.

Lemma 1. NSN P, = NSN,P, = SING,k > 1, where SING denotes the fam-
ily of singleton sets.

Systems with two neurons have also a rather limited power.

Lemma 2. NSNyP, = NSN,.P, = FIN,k > 1, where FIN denotes the family
of finite sets of numbers.

Proof. In systems with two neurons, spikes cannot be replicated, hence the initial
number of spikes cannot be increased, and NSN,P, C FIN.

On the other hand, FIN C NSN;P,: consider a finite set of numbers, arranged
in the increasing order, n; < ng < ... < ng, and consider the SNQ P system from
Figure 1. We use the standard style in representing SN P systems; we also explicitly
represent the synapses defined by the queries, as well as the initial spikes present
in neurons (if no spike is specified, this means that no spike is present in that
neuron in the initial configuration). Also as usual in the area of SN P systems, we
identify a neuron with its label, thus equivalently saying “neuron ¢;” and “neuron
7.

Each computation takes only one step, one of the elements of the finite set is
non-deterministically generated. O

The passage from two neurons to three neurons entails a rather large increase
of the generative power, and the explanation resides in the possibility to have
replication of spikes, not only permitting the increase of number of spikes, but
even an exponential increase.
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1 2/out

Fig. 1. An SNQ P system generating a finite set

Lemma 3. The family NSN1P3(Q) contains any arithmetical progression.

Proof. Let us take an arithmetical progression L = {ng +1i-n; |7 > 1}, for some
ng > 0 and n; > 1, and construct the SNQ P system II from Figure 2.

ni

a
a™/Q(a™,3)
a™ /Q(a™ "1, 3)

a"(a™)"/Q(a", 1)

a™ /Q(a™, 1)

Fig. 2. An SNQ P system generating an arithmetical progression

Formally, the system is:

{a},01,09,03,a,2), where

ni, {anl /Q(anl ) 3)7 a™ /Q(a"1_17 3)})7
no, {a" (a")*/Q(a™,1)}),

ni, {a"/Q(a", 1)}).

In each step, neurons o7 and o3 repeatedly exchange n; spikes, while neuron
o9 also requests n; spikes from neuron o; (hence the n; spikes of neuron oy
are duplicated), thus going along the terms of the arithmetical progression. The
computation can stop in any moment, by using the second rule of neuron o;:
neuron oy brings only n; — 1 spikes inside (hence the query of neuron oy cannot
be satisfied) and neuron o3 remains with one spike inside, which, together with
the n; spikes brought from neuron o1, do not allow the use of the rule in neuron
og. Clearly, N(II) = L. O

(
(

I
01
02
03

(
(
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Lemma 4. The family NSN1P3(Q) contains non-semilinear sets of numbers.

Proof. Let us consider the SNQ P system I7 in Figure 3.

2
a

A/Q(a™,2)(a™,3)
A/Q(a,3)

2/out

A/Q(a™,1)
Fig. 3. An SNQ P system generating a non-semilinear set

The neurons 01,092,053 can use a rule only if they are empty. This is the case
in the beginning with neurons o5 and o3, hence they request all spikes of neuron
o1. Now neuron o; can request back the spikes from neurons os, 03, getting 4
spikes inside. As long as the neurons use their rules asking for all spikes of the
partner neurons, the number of spikes present in neuron oy is doubled, and this
also happens with the contents of neurons o5 and o3.

At some step, \/Q(a,3) is used in neuron oy, simultaneously with neurons
02,03 requesting the spikes of neuron o;. The computation halts, because all
neurons have at least one spike inside, hence they can use no rule. The number of
spikes from the output neuron is a power of 2, so N(IT) = {2" |n > 1}. O

Therefore, the increase of the number of neurons from 1 to 2 and to 3 induces
a strict increase of the computing power of SNQ P systems. It remains to be
investigated whether the strict increase of computing power is also true for the
next levels of the hierarchies NSNy Py, (Q) € NSNiPyt1-

4 The Universality of SNQ P Systems

We give now the main result of the paper, the universality of SNQ P systems with
two types of spikes (without a bound on the number of neurons). The proof will
use the characterization of NRE by means of register machines.

Such a device is a construct M = (n, H,ly,l,I), where n is the number of
registers, H is the set of instruction labels, {; is the start label (for simplicity, we
may assume that [; labels an ADD instruction, but this is not essential; note that
in many places the start instruction is labeled with [y, but here we prefer to start
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from 1), I, is the halt label (assigned to instruction HALT), and I is the set of
instructions; each label from H labels only one instruction from I, thus precisely
identifying it. The instructions are of the following forms:

e [; : (ADD(r),l;,lx) (add 1 to register r and then go to one of the instructions
with labels [}, 1),

o 1;:(SUB(7),l;,1;) (if register r is non-empty, then subtract 1 from it and go to
the instruction with label {;, otherwise go to the instruction with label ),

e [, : HALT (the halt instruction).

A register machine M starts with all registers empty (i.e., storing the number
zero), applies the instruction with label I; and proceeds to apply instructions as
indicated by labels (and made possible by the contents of registers); if the machine
reaches the halt instruction, then the number n stored at that time in the first
register is said to be computed by M. The set of all numbers computed by M is
denoted by N(M). If the computation never halts, then no number is generated.
It is known that register machines compute all sets of numbers which are Turing
computable, hence they characterize NRE (see, e.g., [7]).

Theorem 1. NRE = NSNyP.(Q).

Proof. As usual, we only prove the inclusion C, the opposite one can be obtained
through a straightforward but cumbersome construction of a Turing machine sim-
ulating an SNQ P system, or we can invoke the Turing-Church thesis.

Starting from a register machine M = (n, H,ly,l,I) we construct an SNQ
P system IT with two types of spikes, which we denote by a and b, hence O =
{a,b}. We associate one neuron with each register of M (denoted by 1,2,...,n),
one neuron og; with each label [ € H, as well as a second neuron, o with each
instruction of M of the form I; : (SUB(r),l;,lx). We also consider the neurons
0;,1 < i < 5, as mentioned below. (Therefore, the number of neurons depends
on the number of registers and labels of M, that is why we cannot bound it in
advance.)

If the value of a register r is m, then the corresponding neuron o, contains m
spikes a. That is, a is the spike indicating the result of the computation, and the
output neuron is oy (associated with register 1).

Let us assume that H contains ¢ elements, [ly,ls, ..., ;. Initially, each neuron
contain 2¢ copies of b and no copy of a, with the exception of neurons o.,,1 <1i < 5,
which contain the spikes a, b, b, b, b | respectively (see also the construction below).

ADD module: For each instruction I; : (ADD(r),l;,1x) of M we construct the
module represented in Figure 4.

In order to simplify the proof, we first assume that we are allowed to also use a
query of the form (a, env), with the meaning that one copy of a is requested from
the environment — with the environment supposed to contain arbitrarily many
copies of a. Later we will remove this kind of rules.
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l;
N

b /Q(a>, ) (b, 1)
a*bt+i—l/Q(bt+17lj) lk

a*bt+i71/Q(bt+l,lk) J bzt

o~
<

b2t

b2t

bR /Q(a™, 1) (b, 1) (a, enw)

Fig. 4. The ADD module

Such a module is activated when ¢t + 1 spikes b from neuron I; are requested
by another neuron. (In this construction, the neuron which asks ¢ + 1 copies of b
from oy, is o¢,. If we would accept the query (a, env), hence neurons ¢y, ca, g will
be absent, then we have to start with only ¢ — 1 spikes b in neuron [y, the starting
one.) The neuron (with label) I; becomes active and it requests from neuron r all
copies of a as well as i copies of b. Note that i precisely identifies the label I;, which
precisely identifies the instruction (hence neurons r,1;, ).

In the next step, both neurons /; and r can apply a rule. In this way, the previous
contents of neuron r returns to neuron r, at the same time neuron r requesting one
copy of a from the environment, which corresponds to the fact that the register was
increased by 1. Simultaneously, neuron /; uses one of the rules a*b*™ =1 /Q (b1, 1),
a*b' =1 /Q (b1, I1,), non-deterministically chosen, which means that one of the
neurons l;, 1l is activated, while /; ends with 2¢ copies of b inside, as it was the
case at the beginning. The instruction of M is correctly simulated, and one of the
instructions with label I;, [} will be simulated in the next steps.

It is important to note that, in spite of the fact that several instructions ADD
can refer to the same register r (as well as several instructions SUB), this does
not lead to wrong computations (i.e., computations in IT not corresponding to
computations in M), because the regular expression b>'~¢ of the rules in neuron r
precisely identifies the neuron [; to which a query is addressed from neuron r.

Let us see now how to avoid the query (a, env). Instead of the query (a, env),
we put in neuron r the query (a,cp), and then we consider the module consisting
of three neurons given in Figure 5. Their role is to produce arbitrarily many copies
of spike a, keeping them available to neurons with label r corresponding to ADD
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instructions, then to request ¢ + 1 copies of spike b from neuron [y, thus triggering
the simulation of the first instruction in M.

)‘/Q(aoov 62)(‘1007 63)
)‘/Q(awv 02)(b7 82)(a007 03)(b7 63)(bt+17 ll)

N

b b
b/Q(awvcl) b/Q(aoo7cl)

Fig. 5. The module producing arbitrarily many copies of spike a

This module functions in a way similar to the system in Figure 3: as
long as neurons co,c3 contains one copy of spike b, they can request the
contents of c¢;, which then can bring back, doubled, the number of spikes
a, repeatedly, until non-deterministically choosing to use the second rule,
A/Q(a™, c2)(b,c2)(a®, c3)(b, c3) (b1, 11). This rule blocks the functioning of neu-
rons cs, c3, and also activates neuron ;.

It is easy to see that this module substitutes the use of the query (a,env),
with only one exception: if the module in Figure 5 stops “too early” and there are
not enough copies of spike a, as necessary for the simulation of the computation
in M. To avoid this situation, we also consider a “trap module”: we add the rule
b*=1/Q(b, c4) to neuron 7. If the rule b2~ /Q(a>°,1;)(b,1;)(a, c1) cannot be used
because neuron c¢; contains no copy of spike a, then this new rule should be used,
requesting one copy of spike b from neuron c4. This neuron is a part of the module
in Figure 6.

Cc4 Cs
b b
A/Q(b, cs) A/Q(b, ca)

Fig. 6. The trap module
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With spikes b inside, neurons ¢4 and c; cannot use any rule, but after remov-
ing the spike b from c4, neurons ¢4 and cs; will repeatedly ask to each other the
remaining spike b, and the computation never stops.

SUB module: For each instruction I; : (SUB(r),l;,l;) of M we construct the
module given in Figure 7.

li
p2t Ik

B Qa0 7) b
bt+i71/Q(bt+l, lk)
at b /QOL L))

b2t
a*btil/Q(aa 7") (bt+17 l])

b2i
b%ii/Q(aw? ll)(b27 ll)

Fig. 7. The SUB module

When neuron I; “looses” t + 1 spikes b, it becomes active, and can absorb all
spikes a and ¢ spikes b from neuron r. In the next step, both neurons r and /; can
use one rule. If there is no spike a present (corresponding to the fact that register
r was empty), then neuron /; has to use the rule b'*=1/Q(b'*1, ), and neuron Iy,
is activated. In parallel, neuron 7 returns to its previous contents (no subtraction
was made), neurons [}, l; are not modified.

If there is at least one copy of spike a present, the subtraction is performed by
activating first neuron l‘; (in parallel, neuron r returns to its previous contents).
Neuron [ decreases by one the contents of neuron r and activates neuron I;. The
copies of spike a requested by neuron I, during a computation remain in this
neuron, they are “accepted” by the regular expression of the rule in ..

Again, no unwanted interferences between SUB modules appear, because the
label I; precisely identifies the instruction (hence the module). In this way, the SUB
instruction is also correctly simulated.

The simulation of the computation in M continues until the halt instruction is
reached. In the neuron associated with I there is no rule, hence after activating
this neuron, the computation in /7 halts. The number of copies of spike a in neuron
1 is the result of computation, hence N(M) = N(II). O
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5 A Small Universal SNQ P System

Starting from a universal register machine, as those presented in [5], we will obtain
a universal SNQ P system.

In [5], the register machines are used for computing functions, with the univer-
sality defined as follows. Let (g, @1, - ..) be a fixed admissible enumeration of the
unary partial recursive functions. A register machine M,, is said to be universal
if there is a recursive function g such that for all natural numbers z,y we have
0z (y) = My(g9(x),y). In [5], several universal register machines are constructed,
with the input (the couple of numbers g(x) and y) introduced in specified input
registers and the result obtained in another specified register, the output one.

The machine from [5] used in [12] is given in Figure 8. It has 8 registers and 23
instructions. Because here we do not work with numbers encoded in the spike train,
as the distance in time between consecutive spikes, but with the multiplicity of
spike a in specified neurons, we can have the input and the output of a computation
in an SNQ P system defined in the same way as in register machines, hence no
input and output module as in [12] is necessary.

lo (SUB(l), l1,12), l1: (1-\DD(7)7 lo),

lo: (ADD(G),lg), I3 : (SUB(5),Z2,Z4),

ls : (SUB(6),15,13), l5 : (ADD(5), lg),

le (SUB(7), l7, lg), l7 : (1-\DD(1)7 l4)7

lg (SUB(G)7 lg, lo), lg : (ADD(G), llo),

l1o : (SUB(4), lo, 111), 111 : (SUB(5), l12, l13),
l12 : (SUB(5),Z14,Z15), l13 . (SUB(Q),hg,hg)7
l14 : (SUB(5), ll(;, l17), l15 : (SUB(?))7 llg, lgo)7
l16 (ADD(4),Z11), l17 : (ADD(Q),lm),

l18 : (SUB(4), lo, lh), l19 . (SUB(O)7 lo, l18)7
Lo : (ADD(0), lo), oy ¢ (ADD(3), lis),

Iy : HALT.

Fig. 8. The universal register machine from [5]

Therefore, a direct counting on the modules constructed in the previous proof
(8 registers + 23 labels + 13 SUB instructions + 5 neurons in Figures 5 and 6
means a total of 49 neurons) leads to the following result:

Theorem 2. There is a computing universal SNQ P system with 49 neurons.

It is highly possible that the number 49 can be slightly improved (by looking
to other universal register machines in [5], by possibly saving some neurons by
carefully examining the structure of the starting universal register machine, or by
using a different construction). This task is left as an open problem to the reader.
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6 Further Research Questions

As expected for a fresh kind of model, many questions remain to be investigated.

We
1.

only mention here a few of them:

Can the universality be obtained also for SNQ P systems using only one type
of spikes? (Do we have NRE = NSN;P,(Q)?) We expect a negative answer,
and a confirmation of this conjecture would be rather interesting, as not so
many classes of P systems are known which are not universal (but are able to
compute more than semilinear sets — see the example from Section 3).

. We have seen that the replication can grow exponentially the number of spikes

in linear time. Can this be used in order to solve NP-complete problems in
polynomial time? We again expect a negative answer — prove such a Milano
theorem for SNQ P systems (prove that an SNQ P system can be simulated
by a Turing machine with a polynomial slow-down, as done in [17] for multiset
processing P systems and in [6] for usual SN P systems).

Without duplication (and without bringing spikes from the environment) the
number of spikes present in the system remains constant, hence only regular
sets of numbers can be generated. Can all regular sets be generated in this
way?

Look for normal forms, e.g., in terms of the number of neurons from which a
rule can request spikes. In the proof of Theorem 1 we have rules requesting
spikes from 1, 2 or even 3 neurons (the case of neuron ¢). Is the universality
lost if we bound this number to 1 or 27

An interesting kind of queries seems to be those of the form (a*~%, j): take all
but s spikes a from neuron o;. Of course, if o; contains less than s spikes, then
the query cannot be satisfied, the rule cannot be applied. Are such queries
useful (for instance, in avoiding the use of the second type of spikes in the
universality proof)?

Although we do not have a spike train associated with a computation in an
SNQ P system, we can associate a language to such a system in terms of traces,
as in [2]: follow the path of a designated spike from a neuron to another one.
The family of these trace languages remains to be investigated.

Finally, we point out another natural question: can we remove the regular
expressions from the rules and replace them with polarizations associated with
the membranes, as done in [16] for standard SN P systems? This made the
universality proof in [16] much more difficult, so this is expected also for SNQ
P systems — or maybe they will no longer be universal in this case.

Anyway, it is our belief that the spiking neural P systems with communication on
request deserve further research efforts.
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in the case of Ca?t oscillations, over hours, in the case of the circadian rhythm,
to years in the case of insect eclosion rhythms. Furthermore, the spatial scale
is huge: it ranges from cyclic molecular processes within one cell, for example
in single cell circadian clocks, over complex oscillator networks of thousands of
neurons in the mammalian circadian pacemaker, to population wide predator-prey
oscillations. This thesis picks out three examples from this enormous spectrum of
biological oscillations and analyzes properties and advantages of these rhythms in
a theoretical manner.

The question about the purpose of oscillations in the intracellular Ca?* con-
centration is still not completely answered. Without doubt, the oscillating signal
carries information about the extracellular environment and is decoded into the
correct response of the cell. However, the hypothesis of frequency encoded informa-
tion is nowadays challenged by experimental and theoretical studies showing large
variations in the intervals between subsequent Ca?* spikes due to a random spike
generation. Therefore, our first study analyzed the relation between the average
and steady-state Ca?t concentrations in the cell. Using a mathematical model, we
proved that for a convex Ca2t efflux kinetics the average Ca?* concentration is
lower, which could be advantageous since Ca2?t is toxic. However, for concave ki-
netics this relation is reversed and the analysis of experimental data revealed that
this resembles the natural situation. We believe that the increased average Ca?*
concentration could actually support the random Ca?* spike generation and thus,
lead to a more regular oscillation. In the second study we analyzed if oscillating
Ca?* signals lead to a stronger activation of downstream target proteins compared
to constant signals. Indeed we found that this is the case if the kinetics involved in
the activation of the target protein possess convex parts, for example due to coop-
erative Ca?t binding. Similar observations were made before in experiments and
a comparison with our theoretical results revealed a high degree of consistence.

A further prominent example of a biological rhythm is the circadian rhythm.
The synchronization of this rhythm to light has often been studied, however the
rhythm can also be influenced and synchronized by temperature. In a first study
we reconstructed a circadian clock model for the unicellular green algae Chlamy-
domonas reinhardtii including changing reaction rates with varying environmental
temperature. An important property of the circadian rhythm is that its period is
insensitive to environmental temperature changes. Based on results by Ruoff et al.
(2003) we manually designed such a temperature compensated oscillator and then
analyzed its potential to entrain to an external temperature rhythm with a 24h
period. We found that both compensation and entrainment can be contradictory
which motivated us to analyze them in more detail. To do so we developed an
algorithm to systematically achieve temperature compensation within a specified
temperature range in arbitrary oscillator models. This algorithm was then applied
to several models proposed in the literature and found that especially minimal
models are difficult to compensate, which is probably due to missing parts in these
models. In contrast, very detailed models (e.g. the Arabidopsis model) showed the
problem that their rhythm vanished at higher temperatures. Thus, it is necessary
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to take into account experimentally identified temperature insensitive reactions,
which can be easily done within our developed algorithm. In another study we
investigated the interdependence of temperature compensation and entrainment.
We proved analytically that only a temperature compensated rhythm preserves the
range of its entrainment under different mean temperatures. Therefore, tempera-
ture compensation could have evolved to ensure the same entrainment possibilities
over the seasons. In addition, we numerically analyzed literature models with dif-
ferent degrees of temperature compensation calculated by our previously developed
algorithm. We found that also the waveform of the temperature signal, sinusoidal
or rectangular, influences the entrainment region. While rectangular temperature
signals have a broader entrainment region for small amplitudes, they generally
lead to period-doubling or chaotic regions for large amplitudes and thus, have a
smaller effective entrainment region. This has to be taken into account when de-
signing entrainment experiments since a sinusoidal temperature entrainment signal
resembles the natural situation.

We also modeled several hundreds of neurons in the central circadian pacemaker
of mammals, the suprachiasmatic nucleus (SCN), and analyzed the adaptation of
its circadian rhythm to seasonal changes in length of daytime. Experiments in
mice found that the overall length of electrical activity of the SCN changes over
the season. Using our model we showed that this can be related to properties of
the network connecting the neurons. In particular we found that introducing more
connections between neurons leads to a well synchronized short neuronal activity
characteristic for mice living in winter. In contrast to this reducing the amount
of the connections leads to a broadly distributed electrical activity of the neurons
characteristic for mice living in summer. A mathematical analysis reveals that
the broader distribution is related to the introduction of network communities
that are well connected within each other but not between each other. By the
very same mechanism our model was able to explain the experimentally observed
reduced phase response of mice’s clocks in summer. Since the neurons are not well
synchronized, their overall phase response to a light pulse is diminished.

With the increasing knowledge about molecular interactions in biological sys-
tems and the revelation of underlying principles, the scientific community may
start to consider the artificial design of biological systems. The relatively new field
of synthetic biology has the aim to design biological circuits from basic modules
that fulfill a specified function. In our first two studies we envisioned and imple-
mented a biological phase locked loop (PLL). This control system is designed to
adapt the frequency of a core oscillator to the frequency of an external signal.
Our biochemical implementation of this principle comprises 12 species and the
following modules: a core oscillator, modeled by a Goodwin-type oscillator with
a circadian rhythm, a multiplication unit, modeled by a dimerization reaction,
a low-pass filter, modeled by a linear enzyme cascade and an actuator, modeled
by an enzyme degrading one of the oscillator species. Our implementation of the
biochemical PLL showed the expected behavior of frequency adaptation. The ad-
vantage of our proposed modular design is that each module could be replaced
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by another reaction system having a similar function. We found that a significant
difference to most analog technical designs is the absence of negative values. Thus,
each biological circuit always has to operate around a certain nominal point in-
fluenced by an “average” environmental signal. However, this is not the case for
circuits performing digital operations. In our third study we implemented a bio-
logical frequency divider 1 : 17 using a binary counter with 5 bits. This seemingly
strange ratio is motivated by the unusual 13 or 17-year eclosion rhythm of the
insect genus Magicicada. The bits are implemented as chemical flip-flops using
NOR-gates as demonstrated by Hinze et al. (2009). They cycle through 17 differ-
ent states, where each new state is triggered by an internal or an external annual
periodic signal, which could be the availability of nutrients in the soil. Compared to
an analog signal integrator, for example, one which triggers an eclosion signal after
a certain threshold is reached, the digital design is much more robust to internal
and external noise. However, this robustness comes at the cost of approximately
150 involved species. Therefore, we do not expect to find such a device in the nat-
urally evolved organisms. Nevertheless, again the modular implementation allows
to replace modules. For example, after replacing the annual signal by different
oscillator implementations we observed other frequency divider ratios like 1 : 6,
1:5and 1 : 3. Thus, module replacement could explain the natural occurrence of
13 and 17 year eclosion rhythms.

Contents
1. Introduction 1
1.1. Oscillations in living cells — Three examples.......... ..., 2
1.1.1. Ca?t 0SCillations . ... ..ottt 2
1.1.2. Ca?* oscillations — signaling mechanism........................... 4
1.1.3. Ca?* oscillations — purpose and advantages? ...................... 7
1.1.4. Circadian rhythms........ .. . o 8
1.1.5. Circadian rhythms — single cell clocks ............. .. .. .. ... ... 9
1.1.6. Circadian rhythms — organization in higher organisms............ 11
1.1.7. Synthetic biological oscillators ..ot 12
1.2. Theoretical analysis of biochemical oscillations........................ 14
1.2.1. Modeling of biochemical reactions................. .. ... .. .. 14
1.2.2. Methods to analyze oscillations ................ ... ...t 19
1.2.3. Modeling Ca?t oscillations................ooeiieiiiiaiineenn... 23
1.2.4. Modeling circadian thythms............ ... .. ... o i, 26
1.2.5. Engineering synthetic biological circuits.......................... 30
2. Ca’" oscillations 32

2.1. Jensen’s inequality as a tool for explaining the effect of

oscillations on the average cytosolic calcium concentration.............. 34
2.2. Using Jensen’s inequality to explain the role of regular

calcium oscillations in protein activation ............ ... ... ... L. 48



Abstracts of PhD Theses 199
3. Circadian rhythms 60
3.1. Modeling temperature entrainment of circadian clocks using the
Arrhenius equation and a reconstructed model from
Chlamydomonas reinhardtii..............oo i 63
3.2. Calculating activation energies for temperature compensation in
circadian rhythms. ... ... ... 79
3.3. Temperature compensation and entrainment in circadian rhythms..... 92
3.4. Modeling the Seasonal Adaptation of Circadian Clocks by
Changes in the Network Structure of the Suprachiasmatic Nucleus . ... 103
4. Synthetic modular clocks and timers 115
4.1. Biochemical Frequency Control by Synchronisation of Coupled
Repressilators: An In-silico Study of Modules for Circadian
Clock SYStemS . . ..ot 117
4.2. Chemical Analog Computers for Clock Frequency Control Based
on P Modules. .. ..o 126
4.3. Maintenance of Chronobiological Information by P System
Mediated Assembly of Control Units for Oscillatory Waveforms
and Frequency . ...... ..o 147
5. Discussion 167
5.1. Ca?t 0sCillations. . ... ...uu it 168
5.2. Circadian rhythms............c o i 170
5.3. Synthetic engineering .......... ... 178
5.4, ConclusionS . . . ...t 184
Bibliography 185
A. Supplementary material 204



200 Abstracts of PhD Theses

Author: Zhigiang Zhang (zhiqiangzhang@hust.edu.cn)

Title: Research on the Computational Power of Numerical P
Systems

Supervisor: Lingiang Pan

Key Laboratory of Image Information Processing and Intelligent Control of Edu-
cation Ministry of China, School of Automation, Huazhong University of Science
and Technology, Wuhan 430074, Hubei, China

Date of presentation: November 20, 2016
Thesis abstract

Membrane computing is a branch of natural computing, investigating theoretical
computing models inspired by the structure and functioning of living cell (including
communications and cooperation of cells in tissues, organ, population of cells and
brain) and studying the computing power and computing efficiency of models. The
models in membrane computing are called membrane systems or P systems.

One of the most important topics in membrane computing domain is to inves-
tigate the computational power of all kinds of variants. Numerical P systems are
an important class of P systems, which has a great potential in applications to
robot control and economics. The study on numerical P systems is currently in
development and the elements affecting the computational power of numerical P
systems needs further investigation.

In the thesis, the factors affecting the computational power of numerical P
systems are investigated. The main ingredients of a numerical P system include the
membrane structure, the numerical variables in each membrane and the evolution
rules (each one consists of a production function and a repartition protocol).

The factors investigated in the thesis include the ways of choosing the ap-
plied programs (sequential, all parallel and one parallel), the number of enzymatic
variables used in enzymatic numerical systems, the control of evolving programs
by means of a threshold, using a function to define the repartition coefficients,
allowing to variables to migrate from a membrane to another one, and so on.

The detailed content of this dissertation is as follows:

The computational power of enzymatic numerical P systems affected by the
working mode (the sequential mode) is investigated. It has been proved that en-
zymatic numerical P systems working in the all-parallel or one-parallel mode can
reach universality. However it is still an open problem whether these systems can
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also reach universality when working in the deterministically sequential mode. In
the thesis, the universality of deterministically sequential numerical P systems is
proved. Besides that, a known universal result on the non-deterministically se-
quential systems is improved by reducing the number of membranes and programs
used in the universal systems. These results show that the computational power
of enzymatic numerical P systems is robust with respect to the working mode.

The number of enzymatic variables used in the universal enzymatic numerical
P systems is also investigated. It was proved that enzymatic numerical P systems
can reach universality in the all-parallel or one-parallel mode. However the number
of enzymatic variables needed in the universal systems has not been estimated. In
the thesis, it is proved that for enzymatic numerical P systems used as number
acceptors working in the all-parallel or one-parallel mode one enzyme is sufficient to
reach universality, while for the one-parallel systems used as number recognizers,
two membranes are sufficient to reach universality. These results show that the
computational power of enzymatic numerical P systems is robust with respect to
the number of enzymatic variables: even if the number of enzymatic variables is
only one, the system still can reach universality.

The next topic investigated is the computational power of numerical P systems
with thresholds. It is an open problem whether the computational power of numer-
ical P systems without thresholds working in the all-parallel or one-parallel mode
can reach universality. In the thesis, it is proved that numerical P systems with
a threshold, with one membrane and linear production functions, working in the
all-parallel or one-parallel mode are universal. These results show that thresholds
can improve the computational power of numerical P systems.

Then, numerical P systems with a dynamical repartition protocol are con-
sidered. It is an open problem whether the computational power of numerical P
systems with constant repartition coefficients working in the all-parallel or sequen-
tial mode can reach universality. In the thesis, the coefficients of variables in the
repartition protocol are extended from constants to functions. The value of produc-
tion function distributed to a variable is proportional to the value of its coefficient
functions. The computational power of numerical P systems with dynamic repar-
tition protocols working in the all-parallel and deterministically sequential modes
is investigated. It is proved that one membrane, constant functions as production
functions and linear functions with one variable as coefficient functions suffice to
reach universality for the all-parallel systems; linear production function with at
most one variable and linear function with at most two variables as coefficient
function suffice to reach universality for the deterministically sequential systems.
These results show that the function coefficients can improve the computational
power of numerical P systems.

The computational power of systems as language generators is an important
topic in membrane computing. No result about the computational power of nu-
merical P systems generating languages is reported yet. In this work, the ways
of generating languages by numerical P systems are formulated. The families of
languages generated by numerical P systems, enzymatic numerical P systems, and



202 Abstracts of PhD Theses

purely enzymatic numerical P systems working in the one-parallel mode are com-
pared with the language families in the Chomsky hierarchy, including the finite,
regular, context-free, and recursively enumerable languages.

Finally, we consider numerical P systems whose variables can change the com-
partments (we call them migrating variables). In the standard P systems, a crucial
feature of objects is that they can pass through membranes, between regions of
the same cell, between cells, or between cells and their environment. This feature
is also introduced in numerical P systems, and the new variant is called numerical
P systems with migrating variables (MNP systems). The computational power of
MNP systems is investigated both as number generators and as string generators,
working in the one-parallel or sequential mode. MNP systems used as numbers gen-
erators are proved to be universal when working in any of the above two modes. As
string recognizers, the generative capacity of such systems is investigated having
as a reference the families of languages in the Chomsky hierarchy, and a charac-
terization of recursively enumerable languages is obtained. Migrating variables are
an efficient feature for improving the computational power of numerical P systems
in the sense of less membranes, lower polynomial degree and less variables in the
universal systems.
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Thesis abstract

Nature’s ability in self-organisation is tremendous. For example, fungi create large
underground supply and communication networks which are highly efficient as well
as very tolerant against disturbances. In a 48 hours test, cultures of fungi were
able to replicate infrastructures that engineers and analysts with access to great
resources had optimised over decades. The key to this success lays in the process of
evolution. Thus, in the program at hand, an artificial evolution was implemented
to optimise the layout of a two dimensional grid. The grid consists of coherent
paths as well as processing units for objects. They can access the processing units
and will either pass through unchanged (“passage”) or be combined (“composi-
tion”). The whole grid undergoes random mutation for several generations to find
new layouts. Aiming for the quickest processing and passage of all objects through
the grid, each layout is tested for its total processing duration. The artificial evo-
lution optimises the placement of the processing units using each grid’s individual
processing duration as fitness criteria. With the tool, the user can configure the
paths, the layout and the passing objects according to his problem, only needing
to follow few rules.
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The thesis at hand describes and explains the structure and algorithms of
the tool in detail. The programme is separated into four consecutive parts: At
first, the user configures his initial grid. Also, he sets the quantities and types
of different processing units and same for the objects passing the grid. When
all data is entered, it is edited and saved so that the following computation can
easily access it. The tool now has a complete set of data to compute the initial
processing duration. Therefore, the next step is to calculate the total number of
time steps needed, until all objects have entered the grid, completed their way
through by passing all their assigned processing units and exited again. During
the process, queues may develop due to limited field capacity. Having obtained the
initial fitness, the evolution is started to find an optimal layout. In order to create
a population for the first generation, the initial grid is replicated and each version
is mutated once. The evolution algorithm then repeatedly assesses each concerning
its fitness, eliminates the slowest members of the current population and replaces
them by mutating duplicates of the fastest grids. When no more improvements
can be found, the resulting grid is shown to the user.

This type of topological optimisation problem is common in nature, science
and industry. Due to being formulated abstractly, the software tool may be ap-
plied to a variety of scenarios. To demonstrate this flexibility, the thesis presents
four case studies: minimisation of production time in a cabinet maker’s work-
shop, quicker grocery shopping at an alternative supermarket, the efficient signal
processing in a biological cell and a comparison of different processor architec-
tures. In all cases, the initial processing time can be significantly improved. In-
terestingly, the resulting grids also show features that can be observed in natural
evolution. All in all, the software proves to be a potent tool in optimising the
placement of processing units in a two-dimensional grid. It can be found online at:
http://www-user.tu-cottbus.de/weberlea/public_html/gridtool/
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Thesis abstract

The present thesis considers the problems of computational completeness and uni-
versality for several biologically-inspired models of computation: insertion-deletion
systems, networks of evolutionary processors, and multiset rewriting systems. The
presented results fall into two major categories: study of expressive power of the
operations of insertion and deletion with and without control, and construction of
universal multiset rewriting (P) systems of low descriptional complexity.
Insertion and deletion operations consist in adding or removing a subword from
a given string if this subword is surrounded by some given contexts. The motivation
for studying these operations comes from biology, as well as from linguistics and
the theory of formal languages. In the first part of the present work we focus on
insertion-deletion systems closely related to RNA editing, which essentially consists
in inserting or deleting fragments of RNA molecules. An important feature of RNA
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editing is the fact that the locus the operations are carried at is determined by
certain sequences of nucleotides, which are always situated to the same side of the
editing site. In terms of formal insertion and deletion, this phenomenon is modelled
by rules which can only check their context on one side and not on the other. We
show that allowing one-symbol insertion and deletion rules to check a two-symbol
left context enables them to generate all regular languages. Moreover, we prove that
allowing longer insertion and deletion contexts does not increase the computational
power. We further consider insertion-deletion systems with additional control over
rule applications and show that the computational completeness can be achieved
by systems with very small rules.

The motivation for studying insertion-deletion systems also comes from the
domain of computer security, for the purposes of which a special kind of insertion-
deletion systems called leftist grammars was introduced. In this work we propose
a novel graphical instrument for visual analysis of the dynamics of such systems.

The second part of the present thesis is concerned with the universality prob-
lem, which consists in finding a fixed element able to simulate the work any other
computing device. We start by considering networks of evolutionary processors
(NEPs), a computational model inspired by the way genetic information is pro-
cessed in the living cell, and construct universal NEPs with very few rules. We
then focus on multiset rewriting systems (P systems), which model the chemical
processes running in the biological cell. For historical reasons, we formulate our
results in terms of Petri nets. We construct a series of universal Petri nets and
give several techniques for reducing the numbers of places, transitions, inhibitor
arcs, and the maximal transition degree. Some of these techniques rely on a gen-
eralisation of conventional register machines, proposed in this thesis, which allows
multiple register checks and operations to be performed in a single state transition.
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Thesis abstract

Membrane systems, also known as P systems, constitute an innovative computa-
tional paradigm inspired by the structure and dynamics of the living cell. A P
system consists of a hierarchical arrangement of compartments and a finite set of
multiset rewriting and communication rules, which operate in a maximally par-
allel manner. The organic vision of concurrent dynamics captured by membrane
systems stands in antithesis with conventional formal modelling methods which
focus on algebraic descriptions of distributed systems. As a consequence, veri-
fying such models in a mathematically rigorous way is often elusive and indeed
counter-intuitive when considering established approaches, which generally require
sequential process representations or highly abstract theoretical frameworks. The
prevalent investigations with this objective in the field of membrane computing
are ambivalent and inconclusive in the wider application scope of P systems.

In this thesis we directly address the formal verification of membrane systems
by means of model checking. A fundamental distinction between the agnostic per-
spective on parallelism, advocated by process calculi, and P systems’ emblematic
maximally parallel execution strategy is identified. On this basis, we establish that
traditional process models are decidedly inadequate for expressing P system transi-
tions for the purpose of formal verification. The incompatibility is most eloquently
reflected in the state space growth, relative to the system’s dynamic components
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(processes and compartments), which is exponential for process models and linear
for membrane systems. The observation is decisive for this research project: on
one hand it implies the feasibility of model checking P systems, and on the other
hand it underlines the suitability of this formal verification technique in the con-
text of membrane computing. Model checking entails an exhaustive state space
exploration and does not derive inferences based on the independent instructions
comprising a state transition. In this respect, we define a new sequential modelling
strategy which is optimal for membrane systems and targets the SPIN formal ver-
ification tool.

We introduce elementary P systems, a distributed computational model which
subsumes the feature diversity of the membrane computing paradigm and distils
its functional vocabulary. A suite of supporting software tools which gravitate
around this formalism has also been developed and consists of: 1. the eps modelling
language for elementary P systems; 2. a parser for the eps specification; 3. a model
simulator and 4. a translation tool which targets the Promela specification of the
SPIN model checker.

The formal verification approach proposed in this thesis is progressively demon-
strated in four heterogeneous case studies, featuring 1. a parallel algorithm appli-
cable to a structured model; 2. a linear time solution to an NP-complete problem:;
3. an innovative implementation of the Dining Philosophers scenario (a synchroni-
sation problem) using an elementary P system and 4. a quantitative analysis of a
simple random process implemented without the support of a probabilistic model.
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Thesis Abstract

When faults occur in electric power systems, a large amount of alarm information
will pour into the control center. The abundant information provides various ref-
erences for fault diagnosis. However, it also makes supervisors too busy to handle
timely. Meanwhile, due to the influence of factors such as technology, equipment
and environment, in the alarm information is likely to exist uncertainties such as
information error, loss and distortion. Thus, computers and artificial intelligence
technology are needed when analyzing and processing these alarm information in
fault diagnosis of electric power systems. So, information processing ability of fault
diagnosis methods is very important. Spiking neural P systems (SNPS) is a spe-
cial type of neural-like P systems inspired by communication mechanisms between
biological neurons. Its computing models are dynamic, discrete, distributed and
parallel ones with powerful computing ability and information processing capacity,
which are suitable for solving fault diagnosis problems of electric power systems.
Therefore, from the way of model abstraction, algorithm design and practical ex-
amples and based on the framework and theory of membrane computing and SNPS,
this paper focuses on improving the information processing and self-adaption abil-
ity of SNPS, and proposes SNPS application models to handle fault diagnosis in
electric power systems.

Firstly, based on the demands of knowledge representation and knowledge rea-
soning in fault diagnosis of electric power systems and considering the function
and structures of actual biological networks, this paper designs SNPS application
models from the way of real number fuzzy reasoning and proposes two kinds of
fuzzy reasoning spiking neural P systems with real numbers (rFRSNPS), in which
parameters such as output weights (synaptic weights), firing thresholds and infor-
mation prejudging parameters are considered and definitions of neurons, synapses,
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spikes and firing rules are redefined. The proposed rFRSNPSs called weighted
fuzzy reasoning spiking neural P systems with real numbers (rWFRSNPS) and
weighted prejudging fuzzy reasoning spiking neural P systems with real numbers
(rWPFRSNPS), respectively. Then, reasoning algorithms of rWFRSNPSs and rW-
PFRSNPSs are designed and fuzzy production rules are modeled based on them,
respectively. If the truth values of input neurons and rule neurons are given, then
the proposed algorithms can automatically reason out the truth values of other
proposition neurons in an rFRSNPS to fulfill the knowledge representation and
reasoning. The intuitive graphical modeling process and simple matrix reasoning
computing are quite adaptive to complex knowledge representation and reasoning.
On a background of transmission network fault diagnosis, this paper designs lay-
ered diagnosis models based on rWPFRSNPS for main sections in power systems
and proposes a fault diagnosis method based on rWPFRSNPS in which a temporal
information processing method based on cause-effect networks is considered. This
diagnosis method results in a decrease of matrix dimension, a release of calculation
burden and an improvement of model adaptive ability.

In order to improve the ability of SNPS in processing uncertain and imprecise
information and considering the actual existence situation and real communication
process of knowledge and information, this paper designs SNPS application models
from the way of fuzzy number fuzzy reasoning and proposes fuzzy reasoning spiking
neural P systems with trapezoidal fuzzy numbers ((FRSNPS), in which trapezoidal
fuzzy numbers are considered and definitions of neurons, spikes, ways of pulse
accumulation, firing rules and firing conditions are redefined. Then, a reasoning
algorithm is designed and fuzzy production rules are modeled based on tFRSNPSs.
This paper also proposes a fault diagnosis method based on tFRSNPS in which
fault fuzzy production rule sets for main sections in power systems are given.
The introduction of trapezoidal fuzzy numbers guarantees that SNPS has a strong
ability to express and reason fuzzy knowledge without prejudging the inputs and
decreases the fault diagnosis complexity.

Optimization spiking neural P systems (OSNPS), independent of evolutionary
operators in evolutionary computation to achieve individual evolution, is a kind of
algorithm with superior performances. This paper employs binary strings to repre-
sent chromosomes (individuals) and makes the first attempt to solve fault diagnosis
of power systems by using the idea of optimization methods in the framework of
MC and proposes a fault diagnosis method based on OSNPS.

To verify the practical application performance of SNPS, this paper discusses
the applications of rWFRSNPS, rWPFRSNPS, tFRSNPS and OSNPS in fault
diagnosis of transmission networks, where the 14 bus power system and 220kV local
power system are used to test their feasibility and effectiveness. The experimental
results on several cases show that both the proposed three kinds of fuzzy reasoning
spiking neural P systems and OSNPS produce prospective diagnosis results with
different characteristics.
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Goal: Similarly to the previous editions, the goal is to gather together researchers
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‘Web page: News will be communicated through the BWMC’17 web page at the
Research Group on Natural Computing: http://www.gcn.us.es/15bwmc and also
through the P systems web page: http://ppage.psystenms.eu

Proceedings: As usual, at about two months after the meeting a proceedings
volume will be published as a research report of RGNC. Then, a selection of final
papers will be published in a special issue of a journal as it was always the case
with the previous editions.

Here is the complete list (all journals, except two, are currently indexed in the
IST JCR):

e BWMC 2003: Natural Computing 2 (3), 2003, and
New Generation Computing 22 (4), 2004;

BWMC 2004:

BWMC 2005:
BWMC 2006:
BWMC 2007:
BWMC 2008:
BWMC 2009:

2009;

BWMC 2010:

(2), 2010;

BWMC 2011:
BWMC 2012:
BWMC 2013:
BWMC 2014:
BWMC 2015:
BWMC 2016:

Journal of Universal Computer Science 10 (5), 2004, and

Soft Computing 9 (5), 2005;
Int. Journal of Foundations of Computer Science 17 (1), 2006);
Theoretical Computer Science 372 (2-3), 2007;
Int. Journal of Unconventional Computing 5 (5), 2009;
Fundamenta Informaticae 87 (1), 2008;
Int. Journal of Computers, Control and Communication 4 (3),

Romanian Journal of Information Science and Technology 13

Int. Journal of Natural Computing Research 2 (2-3), 2011;
Int. Journal of Computer Mathematics 99 (4), 2013;

Int. Journal of Unconventional Computing 9(5-6) 2013;
Fundamenta Informaticae 134 (1-2), 2014;

Natural Computing 15 (4), 2016;

Theoretical Computer Science — (to appear)

Registration: In order to register the participants should email Ana M. Ruiz
(anarumez@us.es). A registration fee of 100 EUR will be requested on arrival at
the registration desk. This will cover workshop materials, coffee breaks, lunch,
social dinner and proceedings. Several accommodation options are listed on the
webpage of the BWMC’17 that need to be booked by the participants.
Important advice: Bookings should be arranged the sooner the better, in or-
der to avoid availability restrictions. In particular, reservations for the Univer-
sity residence should be made not later than January 20th 2017 (by email to
anarumez@us.es).
Organizing committee:
e Gh. Paun, Co—Chair °
e M.J. Pérez Jiménez, Co—Chair °
e (. Graciani °
e D. Orellana Martin )
Supported by: Dpt. Ciencias de la Computacién e Inteligencia Artificial, Uni-
versidad de Sevilla

A. Riscos Ntunez

A. Romero Jiménez
A.M. Ruiz Gémez
L. Valencia Cabrera



18th International Conference on Membrane
Computing (CMC18)
24-28 July 2017, Bradford (United Kingdom)

FIRST CALL FOR PAPERS

SCOPE AND LOCATION

The Conference on Membrane Computing (CMC) series started in 2000 as the
Workshop on Multiset Processing. The first Workshop on Membrane Computing
was organized in Curtea de Arges, Romania, in 2001. In 2010 it was transformed
into a conference, CMC11. The last edition, CMC17, was held in Milan, Italy,
in 2016. Nowadays a Steering Committee takes care of the continuation of the
CMC series which is organized under the auspices of the International Membrane
Computing Society (IMCS?!).

CMC18 is the 18th edition of the International Conference on Membrane Com-
puting series. The conference will take place at the University of Bradford, in Brad-
ford, UK. Bradford is located in the north of England, in North-West Yorkshire,
and is a very multicultural city. It has the third largest economy in the Yorkshire,
worth over 8.3bn. Bradford has been designed the world’s first UNESCO City of
Film, it is a thriving cultural destination, with interesting museums and galleries
and attractive theatres?. The climate is... British, i.e., mild — not too cold in the
winter, relatively warm in the summer, with a stable invariant for both: rain! Brad-
ford is famous for some of the finest Asian food in the UK, being crowned Curry
Capital of Britain for five consecutive years?!

The goal of CMCI18 is to bring together researchers working in membrane
computing and related fields, in a friendly atmosphere enhancing communication,

! http://membranecomputing.net/IMCSBulletin/index.php

2 https://www.bradford.gov.uk/business/bradford-economy/
about-bradfords-economy/

3 http://www.visitbradford.com/explore/Bradford Curry Guide.aspx
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cooperation and continuing the tradition of the past meetings. Membrane comput-
ing (P systems theory) is an area of computer science aiming to abstract computing
ideas and models from the structure and the functioning of living cells, as well as
from the way the cells are organized in tissues or higher order structures.

CONFERENCE FORMAT

This edition aims to have the following format, although some changes might occur
based on suggestions made by the Steering Committee. It is planned to include:
(1) three days of communications with invited speakers and short and long con-
tribution talks according to the papers submitted and the reviews of the Program
Committee, and (2) an Interaction Day similar in spirit to the Brainstorming Week
on Membrane Computing (BWMC) that is usually organized in Sevilla every year,
where the participants will work in a collaborative way to attack open problems
and propose new approaches, problems and results. An IMCS General Assembly
will be also organized.

SUBMISSION OF PAPERS

Authors are invited to submit papers presenting original, unpublished research in
PDF format. There are two tracks for submission:

(1) full paper (of a reasonable length),

(2) extended abstract for poster presentation (maximum four pages). Typical
extended abstracts present significant work-in-progress, late-breaking results, or
contributions from students new in the field or at the start of their research career.

Only electronic submissions are accepted. Papers should be written in LaTeX
and formatted according to the usual LNCS article style which can be downloaded
at Springer’s LNCS website (http://www.springer.com/1lncs). Please, include
all source files as well as all additional files (figures etc.), and also attach a PDF
version of the submission.

Submissions have to be sent through the EasyChair web Page — a link will be
circulated soon.

DEADLINES

e Deadline for submissions: 17 April 2017
e Notification of acceptance: 29 May 2017
e Final version: 19 June 2017
e Conference: 24 - 28 July 2017
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PROCEEDINGS

A pre-proceedings volume will be available at the conference in electronic format,
online, and optionally hard copies. A volume devoted to selected and additionally
revised papers will be published in the Lecture Notes in Computer Science series
of Springer-Verlag after the event.

STEERING COMMITTEE

Henry Adorna (Quezon City, Philippines)

Artiom Alhazov (Chisindu, Moldova)

Bogdan Aman (Iasi, Romania)

Matteo Cavaliere (Edinburgh, Scotland)

Erzsébet Csuhaj-Varju (Budapest, Hungary)

Giuditta Franco (Verona, Italy)

Rudolf Freund (Wien, Austria)

Marian Gheorghe (Bradford, UK) - Honorary Member
Thomas Hinze (Cottbus, Germany)

Florentin Ipate (Bucharest, Romania)

Shankara N. Krishna (Bombay, India)

Alberto Leporati (Milan, Italy)

Taishin Y. Nishida (Toyama, Japan)

Lingiang Pan (Wuhan, China)

Gheorghe Paun (Bucharest, Romania) - Honorary Member
Agustin Riscos-Nunez (Sevilla, Spain)

José M. Sempere (Valencia, Spain)

Petr Sosik (Opava, Czech Republic)

Kumbakonam Govindarajan Subramanian (Penang, Malaysia)
Gyorgy Vaszil (Debrecen, Hungary)

Sergey Verlan (Paris, France)

Claudio Zandron (Milan, Italy) - Chair

Gexiang Zhang (Chengdu, China)

PROGRAM COMMITTEE

To be announced

ORGANIZING COMMITTEE

Marian Gheorghe (Bradford, UK) - Co-chair

Savas Konur (Bradford, UK) - Co-chair

Raluca Lefticaru (Bradford, UK) - Communication Chair
Dan Neagu (Bradford, UK)
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CONTACT INFO

Please do not hesitate to contact us if you have any question.
Marian Gheorghe (email: m.gheorghe@bradford.ac.uk)
Savas Konur (email: s.konur@bradford.ac.uk)
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Web Site

https://ucnc2017.csce.uark. edu/workshops/membranessysbio/

The Workshop on Membrane Computing is associated with the 16th Inter-
national Conference on Unconventional Computation and Natural Computation
(UCNC 2017).

June 5-9, 2017, University of Arkansas

Fayetteville, Arkansas, USA

https://ucnc2017.uark.edu/

Workshop

The goal of the Workshop is to bring together researchers working in membrane
computing and researchers working in systems and synthetic biology, in a friendly
atmosphere enhancing communication and cooperation.

Membrane computing is an area of computer science aiming to abstract com-
puting ideas and models from the structure and the functioning of living cells,
as well as from the way the cells are organized and interact in tissues. Synthetic
biology is concerned with the design and construction of new biological entities as
well as with redesign of existing biological systems.

Systems biology integrates experimental and computational research to study
how the behaviour of a biological system results from the interactions of its com-
ponents.

The Workshop will focus on experimental and theoretical developments in
membrane computing and its interface with the areas of systems and synthetic
biology.
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Invited Speakers

Alvaro Sanchez (Yale University)
Sergey Verlan (University Paris Est, Créteil)

Instructions for Authors

Authors are invited to submit original papers to the email address:
wmc-ucnc20170ed.ac.uk

Papers must be submitted in Portable Document Format (PDF) and must be
prepared in LATEX according to the LNCS format:

http://www.springer.com/computer/lncs/Incs+authors

The papers must not have been submitted simultaneously to other conferences
or workshops with published proceedings. All accepted papers will be published
in the workshop proceedings and must be presented at the workshop.

The authors of selected papers from the workshop will be invited to sub-
mit extended versions for publication in the special issue of Natural Computing
(Springer).

Important Dates

Submission deadline: 12th February 2017
Notification of Acceptance: 5th March 2017
Workshop: June 6th 2017

Program Committee

M. Cavaliere (co-chair, University of Edinburgh)

D. Genova, University of North Florida

T. Hinze, University of Jena

V. Manca, University of Verona

L. Pan, Huazhong University of Science and Technology

A. Paun, UPM and University of Bucharest

A. Rodriguez-Patén (co-chair, Universidad Politécnica de Madrid)
P. Sosik, Silesian University

X. Zeng, Xiamen University



Reports on MC Conferences/Meetings

Report on CMC17 — The Seventeenth Conference
on Membrane Computing

Alberto Leporati, Claudio Zandron

Dipartimento di Informatica, Sistemistica e Comunicazione
Universita degli Studi di Milano-Bicocca
Viale Sarca 336/14, 20126 Milano, Italy
{leporati, zandron}@disco.unimib.it

The 17*® International Conference on Membrane Computing (CMC17) was held in
Milan, Ttaly, from July 25 to July 29, 2016. It has been organized, under the aus-
pices of the International Membrane Computing Society (IMCS) and the European
Molecular Computing Consortium (EMCC), by the Research Group on Molecular
Computing of the Department of Informatics, Systems, and Communication, at
the University of Milano-Bicocca.

CMC17 consisted of three different parts: the first day, representatives of re-
search groups working on membrane computing presented recent research activi-
ties of the group, described the composition of the research team, and presented
research networks and projects they are involved in.

From Tuesday to Thursday the conference continued with standard sessions.
The session of Tuesday, July 26, opened with an obituary for Professor Solomon
Marcus, who passed away on March 17, 2016. The obituary, presented by Ghe-
orghe Paun, underlined the various outstanding contributions by Prof. Marcus
in different areas: mathematics, computational linguistics, computer science, but
also poetics, linguistics, and philosophy, stressing his contributions to membrane
computing.

Four invited lectures were delivered during the standard sessions, by researchers
working in Membrane Computing since many years. The invited contributions
were the following: ”Coping with Dynamical Structures for Useful Applications
of Membrane Computing”, by Thomas Hinze (Cottbus, Germany), ” Applications
of P Systems in Population Biology and Ecology” by Paolo Milazzo (Pisa, Italy),
”Borderlines of Efficiency: What’s Up?” by Agustin Riscos-Nufez (Sevilla, Spain),
and ”Eco-Evo Dynamics and the Role of Cellular Computing” by Matteo Cavaliere
(Edinburgh, UK).
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In a special dedicated session on Tuesday afternoon (July 26), the first meeting
of the International Membrane Computing Society was also held. The goal of the
meeting (open to all conference participants) was to introduce the motivations
and the work of the society, and to discuss the short and medium term goal and
activities.

The last day of the conference (Friday, July 29) was devoted to interaction
between participants, to discuss open problems and propose new research topics.

The Best Paper Award of CMC17 was won by Zsolt Gazdag and Gébor
Kolonits, for the paper entitled ”Remarks on the Computational Power of Some
Restricted Variants of P Systems with Active Membranes”.

This edition of the conference planned also two Best Student Paper Awards,
sponsored by Springer-Verlag with a sum of 250 euro each. The awards were
won by the paper ”Walking Membranes: Grid-exploring P Systems with Artificial
Evolution for Multi-purpose Topological Optimisation of Cascaded Processes”, by
Thomas Hinze, Lea Louise Weber, and Uwe Hatnik, and by the paper ”Remarks on
the Computational Power of Some Restricted Variants of P Systems with Active
Membranes” by Zsolt Gazdag and Gabor Kolonits.

The volume with the conference pre-proceedings was available at the confer-
ence (printed and electronically), while the final proceedings volume, containing a
selection of additionally referred papers, will be published by Springer-Verlag in
the LNCS series.

Conference webpage: http://cmc17.disco.unimib.it/

The Organizing Committee of CMC17 consisted of

Alberto Leporati (Milan, Italy) — Co-chair,
Luca Manzoni (Milan, Ttaly),

Antonio Enrico Porreca (Milan, Italy), and
Claudio Zandron (Milan, Italy) — Co-chair.

The Programme Committee of CMC17 consisted of

Artiom Alhazov (Chigindu, Moldova),
Bogdan Aman (Iagi, Romania),

Lucie Ciencialova (Opava, Czech Republic),
Erzsébet Csuhaj-Varji (Budapest, Hungary),
Giuditta Franco (Verona, Italy),

Rudolf Freund (Wien, Austria),

Marian Gheorghe (Bradford, UK),

Thomas Hinze (Cottbus, Germany),
Florentin Ipate (Bucharest, Romania),
Shankara Narayanan Krishna (Bombay, India),
Alberto Leporati (Milan, Italy) — Co-chair,
Vincenzo Manca (Verona, Italy),
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Maurice Margenstern (Metz, France),
Giancarlo Mauri (Milan, Italy),

Radu Nicolescu (Auckland, New Zealand),
Lingiang Pan (Wuhan, China),

Gheorghe P8un (Bucharest, Romania),

Mario de Jesus Pérez-Jiménez (Sevilla, Spain),
Antonio E. Porreca (Milan, Ttaly),

Agustin Riscos-Nufiez (Sevilla, Spain),

José M. Sempere (Valencia, Spain),

Petr Sosik (Opava, Czech Republic),

Gyorgy Vaszil (Debrecen, Hungary),

Sergey Verlan (Paris, France),

Claudio Zandron (Milan, Italy) — Co-chair, and
Gexiang Zhang (Chengdu, Sichuan, China).

The regular papers presented at the conference were the following:

e Simulating R Systems by P Systems, by Artiom Alhazov, Bogdan Aman,
Rudolf Freund, and Sergiu Ivanov

e Purely Catalytic P Systems over Integers and Their Generative Power, by
Artiom Alhazov, Omar Belingheri, Rudolf Freund, Sergiu Ivanov, Antonio E.
Porreca, and Claudio Zandron

e Semilinear Sets, Register Machines, and Integer Vector Addition (P) Systems,
by Artiom Alhazov, Omar Belingheri, Rudolf Freund, Sergiu Ivanov, Antonio
E. Porreca, and Claudio Zandron

e Maximal Variants of the Set Derivation Mode, by Artiom Alhazov, Rudolf
Freund, and Sergey Verlan

e Computational Power of Protein Networks, by Bogdan Aman and Gabriel
Ciobanu

e Comparative Analysis of Statistical Model Checking Tools, by Mehmet Emin
Bakir, Marian Gheorghe, Savas Konur, and Mike Stannett

e P Colonies with Evolving Environment, by Lucie Ciencialové, Ludék Cienciala,
and Petr Sosik

e Continuation Passing Semantics for Membrane Systems, by Gabriel Ciobanu
and Eneia Nicolae Todoran

e Secure Dispersion of Robots in a Swarm Using P Colonies, by Andrei George
Florea and Catalin Buiu

e Remarks on the Computational Power of Some Restricted Variants of P Sys-
tems with Active Membranes, by Zsolt Gazdag and Gébor Kolonits

o Kernel P Systems Modelling, Testing and Verification — Sorting Case Study,
by Marian Gheorghe, Rodica Ceterchi, Florentin Ipate, and Savas Konur

e Walking Membranes: Grid-exploring P Systems with Artificial Evolution for
Multi-purpose Topological Optimisation of Cascaded Processes, by Thomas
Hinze, Lea Louise Weber, and Uwe Hatnik
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Agent-Based Simulation of Kernel P Systems with Division Rules Using
FLAME, by Raluca Lefticaru, Luis Felipe Macias-Ramos, Ionut, Mihai Niculescu,
and Laurentiu Mierla

Shallow Non-Confluent P Systems, by Alberto Leporati, Luca Manzoni, Gian-
carlo Mauri, Antonio E. Porreca, and Claudio Zandron

Data Structures with cP Systems or Byzantine Succintly, by Radu Nicolescu
Rewriting P Systems with Flat-splicing Rules, by Lingiang Pan, Bosheng Song,
and K.G. Subramanian

The Improved Apriori Algorithm Based on the Tissue-like P System, by Yuzhen
Zhao, Xiyu Liu, and Wenxing Sun

The extended abstracts presented at the conference were the following:

Traces of Computations by Generalized Communicating P Systems, by Akos
Balaské and Erzsébet Csuhaj-Varju

Chemical Term Reduction with Active P Systems, by Péter Battyanyi and
Gyorgy Vaszil

Extensions of P Colonies, by Erzsébet Csuhaj-Varja

On Minimal Multiset Grammars, by Giuditta Franco

Transmission Line Fault Classification Based on Fuzzy Reasoning Spiking Neu-
ral P Systems, by Kang Huang

Recent Results and Problems Concerning P Colony Automata, by Krist6f
Kéntor and Gyorgy Vaszil

A Characterization of Symport/Antiport P Systems Through Information The-
ory, by José M. Sempere



A Summary of The 5th Asian Conference on
Membrane Computing (ACMC 2016)

Lingiang Pan!, Gexiang Zhang?, Ravie Chandren Muniyandi®, Bosheng Song*

1 School of Automation, Huazhong University of Science and Technology, Wuhan
430074, China

2 School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031,
China

3 Center for Software Technology and Management, Faculty of Information Science and
Technology, National University of Malaysia, Bangi 43600, Malaysia

The 5th Asian Conference on Membrane Computing (ACMC 2016) was held in
National University of Malaysia (UKM), Malaysia, from November 14 to November
16, 2016. This conference was organized by a joint effort of the Center for Software
Technology and Management (SOFTAM), the Centre for Research Excellence at
the Faculty of Information Science and Technology, UKM, and International Mem-
brane Computing Society (IMCS).

ACMC 2016 is one of the flagship conferences on Membrane Computing aiming
to provide a high-level international forum for researchers working in membrane
computing and related areas, especially for the ones from the Asian region.

ACMC 2016 has received 39 submissions. Each submission was reviewed by at
least three programme committee members. Thirty-five papers were accepted for
oral presentations during the conference. All the 35 papers have been published in
the pre-proceeding of ACMC 2016 and recommended to be published in three inter-
national journals and two Springer series after further standard review processes.
A selection with 5 papers is combined with the papers from the 14th Brainstorm-
ing Week on Membrane Computing (BWMC2016) to be published in the journal
Theoretical Computer Science. A selection consisting of 10 papers are considered
to be included in a special issue of Romanian Journal of Information Science and
Technology. Three papers are recommended to be published in the Special Issue
on Metaheuristic Optimization: Algorithmic Design and Applications of Journal of
Optimization. Two papers will be published in Lecture Notes in Computer Science
together with a selection from the 17th International Conference on Membrane
Computing (CMC). The remaining 15 papers are being published in the volume
of Communications in Computer and Information Science of The 11th Interna-
tional Conference on Bio-inspired Computing: Theories and Applications (BIC-TA
2016).
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This conference has been organized as a friendly interactive platform with
several keynote lectures, oral presentations and specialized discussion sessions,
covering a wide range of topics on membrane computing, including theory, appli-
cations, implementation and various related aspects such as DNA computing and
bioinformatics.

ACMC 2016 was well organized and was a very successful conference. A spe-
cial thanks is due to the Organising Committee and Supporting Committee at
the Universiti Kebangsaan Malaysia, Malaysia, all the authors and participants,
the Steering Committee, Programme Committee, and all the editors of the five
publications mentioned above.

In the opening ceremony of ACMC 2016, The President of IMCS, Prof. Gexiang
Zhang, delivered an introductive report on IMCS and ACMC. The invited talks
are summarized as follows:

Invited Talk 1: Real-life Applications with Membrane Computing
Gexiang Zhang, Professor

Southwest Jiaotong University, Chengdu, China

E-mail: zhgxdylan@126.com

This talk reviews the many facts of real-life applications of membrane com-
puting, such as engineering optimization problems solved by membrane-inspired
evolutionary algorithms, fault diagnosis of electric power systems with fuzzy rea-
soning spiking neural P systems, mobile robots membrane controllers designed by
using (enzymatic) numerical P systems and ecosystems modeling with population
dynamics P systems. This talk also discusses the challenging issues in the real-life
applications of membrane computing.

Invited Talk 2: DNA Computing and Splicing P Systems
D. Gnanaraj Thomas, Associate professor

Madras Christian College (MCC), Chennai, India

E-mail: dgthomasmcc@yahoo.com

The aim of this talk is to give the audience a glimpse of the basic notions of
DNA Computing and Splicing P Systems along with recent results and develop-
ments with potential applications that have appeared in the literature leading to
future directions of research.

Invited Talk 3: Spiking Neural P Systems: Insights and Challenges

Henry N. Adorna, Professor

University of the Philippines, Diliman, Quezon City, Philippines

E-mail: hnadorna@dcs.upd.edu.ph

An SN P system is a variant of P systems that was introduced by Ionescu
et al. in 2006. Since its introduction different modifications have been added to
the original model. Each variant of the original SN P systems is shown to be
potentially useful in attacking NP problems. Among the newest addition to the
SN P systems family is the so-called spiking neural P systems with structural
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plasticity or SNPSP systems, which was introduced in 2013. Structural plasticity
refers to synapse creation and synapse deletion. An initial topology of an SN P
system is given, and other synapses (connections) among neurons are created and
deleted for the purpose of computing. This talk reports some results obtained since
2013 and provides some insights and possible directions to pursue in the future.

Invited Talk 4: Biometric Challenges and Bio-Inspired Approaches
Ibrahim Venkat, Senior Lecturer

Universiti Sains Malaysia, Pulau Pinang, Malaysia

E-mail: ibra@usm.my

In this talk, a glimse on the recent state-of-the-art on biometrics and some

interesting case studies on recognizing complex faces and gaits is presented. Fi-
nally, some potential ideas on the impact of bio-inspired techniques towards the
advancement of these biometrics are proposed.

10.

11.

12.

13.

The following is the list of papers delivered during the ACMC 2016.

. Lian Ye, Ping Guo, A P System Based on Negative Selection for Classification.
. Wenping Yu, Jun Ming, Jun Wang, Hong Peng, Ke Chen, Chengyu Tao,

Fault Diagnosis of Power Systems Using Fuzzy Spiking Neural P Systems with
Interval-valued Fuzzy Numbers.

. Philomenal Karoline, Helen Chandra, Saroja Theerdus Kalavathy, Mary

Imelda Jayaseeli, Simulation of Fuzzy Acsh on Membranes with Michaleis-
Menten Kinetics.

. Ping Guo, Wei Xu, A Family P System of Realizing RSA Algorithm.
. Tingfang Wu, Yanfeng Wang, Suxia Jiang, Xiaolong Shi, Spiking Neural P

Systems with Rules on Synapses and Anti-Spikes.

. Xiyu Liu, Yuzhen Zhao, Wenping Wang, A General Object Oriented Descrip-

tion for Membrane Computing.

. Kelvin Buno, Francis George Cabarle, Henry Adorna, Marj Calabia, Solving

the N-Queens Problem Using dP Systems with Active Membranes.

. Juan Hu, Guangchun Chen, Hong Peng, Jun Wang, Xiangnian Huang, Xiaohui

Luo, Matrix Representation of Parallel Computation for Spiking Neural P
Systems.

. Wenbo Dong, Zhou Kang, Qi Huaqing, Discrete GSO Based on Time Window

Division for Solving Multi-objective VRPTW.

Yingying Duan, Kang Zhou, Huaqing Qi, MPSO with Exchange-Tree Mecha-
nism for Traffic Network Layout Optimization Problem.

Yingying Duan, Kang Zhou, Huaqing Qi, Application of MTabu with Time
Classifier in Vehicle Routing Problem with Time Windows.

Nestine Hope Hernandez, Francis George Cabarle, Solving Some Computa-
tionally Hard Problems Using Numerical P Systems with Thresholds.

Xun Wang, Ma Tongmao, Shaohua Hao, Tao Song, Shanchen Pang, Spiking
Neural P Systems with Anti-spikes and without Annihilating Priority as Num-
ber Generator.
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14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

L. Pan et al.

Yangyang He, Gexiang Zhang, Kang Huang, Tao Wang, Implementation of
Information Fusion Based on Spike Neural P Systems.

Ali Maroosi, Ravie Chandren Muniyandi, Criteria for Designing Membrane
Systems.

Naeimeh Elkhani, Ravie Chandren Muniyandi, Multiple Core Execution of
Kernel P System — Multi Objective Binary Particle Swarm Optimization Fea-
ture Selection Method for Cancer Classification.

Jie Xue, Xiyu Liu, Wenxing Sun, A Density-Grid Based Algorithm by
Weighted Spiking Neural P Systems with Antispikes and Astrocyte in Spa-
tial Cluster Analysis.

Helen Chandra, Saroja Theerdus Kalavathy, M. Nithya Kalyani, The Compu-
tational Power of Array P System with Mate Operation.

Zhigiang Zhang, Yansen Su, Lingiang Pan, The Computational Power of En-
zymatic Numerical P Systems Working in the Sequential Mode.

Bosheng Song, Yanfeng Wang, Lingiang Pan, Tissue P Systems with Promoters
Working in the Flat Maximally Parallel Way.

Nurul Liyana Mohamad Zulkufli, Sherzod Turaev, Mohd Izzuddin Mohd Tam-
rin, Messikh Azeddine, The Computational Power of Watson-Crick Grammars:
Revisited.

Kazeem Rufai, Ravie Chandren Muniyandi, Zulaiha Ali Othman, Integrated
Membrane Computing Framework for Modeling Intrusion Detection Systems.
Liu Shuo, Zhou Kang, Zeng Shan, Qi Huaqing, Chen Xing, An Improvement
of Small Universal Spiking Neural P Systems with Anti-Spikes.

Sureshkumar Williams, Kalpana Mahalingam, Rama Raghavan, Process
Guided P System with Graph Productions and Applications.

Katrina Gapuz, Ephraim Mendoza, Richelle Ann Juayong, Nestine Hope Her-
nandez, Francis George Cabarle, Henry Adorna, Solution to Motif Finding
Problem in Membranes.

Lingiang Pan, Bosheng Song, Atulya K. Nagar, K G Subramanian, Language
Generating Flat Splicing P Systems.

Yang Yunying, Wang Jun, Peng Hong, The Implementation of Membrane Clus-
tering Algorithm Based on FPGA.

Jym Paul Carandang, John Matthew Villaflores, Francis George Cabarle,
Henry Adorna, Miguel Angel Martinez-del-Amor, CuSNP: Spiking Neural P
Systems Simulators in CUDA.

Raghavan S, Chandrasekaran K, Tools and Simulators for Membrane Com-
puting — A Literature Review.

Luis Valencia-Cabrera, Tingfang Wu, Zhiqgiang Zhang, Lingiang Pan, Mario
J. Pérez-Jiménez, A Software Tool for Computer-Aided Design of Cell-like
Spiking Neural P Systems.

S. James Immanuel, D.G. Thomas, Robinson Thamburaj, Atulya Nagar, Par-
allel Contextual Hexagonal Array P Systems.

Messikh Azeddine, Youssouf Hamidou Issoufa, Superadiabatic STIRAP: Pop-
ulation Transfer and Quantum Rotation Gates.
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34. Pradeep Isawasan, Ravie Chandren Muniyandi, Ibrahim Venkat, K G Subra-
manian, Array-rewriting P Systems with Basic Puzzle Grammar Rules and
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Computing: A Literature Survey.
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Workshop on Membrane Computing at the
International Conference on Unconventional
Computation and Natural Computation,
Manchester, UK, July 11-15 2016

Marian Gheorghe, Savas Konur

School of Electrical Engineering and Computer Science
University of Bradford
Bradford, BD7 1DP, UK

The Workshop on Membrane Computing (WMC), at the International Confer-
ence on Unconventional Computation and Natural Computation (UCNC), July
12, 2016, Manchester, UK, is the second event of this type after the one at UCNC
2015 in Auckland, New Zealand. Following the tradition of the 2015 WMC of pub-
lishing the Proceedings as a technical report!, we made the Proceedings available
as technical report with the University of Bradford?.

The Workshop consisted of one invited talk and six contributed presentations
(three full papers and three extended abstracts) covering a broad spectrum of
topics in Membrane Computing, from computational and complexity theory to
formal verification, simulation and applications in robotics. All these papers — see
below, but the last extended abstract, are included in the Proceedings.

The invited talk given by Rudolf Freund, “P Systems Working in Set Modes”,
presented a general overview on basic topics in the theory of Membrane Computing
as well as new developments and future research directions in this area.

Radu Nicolescu in “Distributed and Parallel Dynamic Programming Algo-
rithms Modelled on cP Systems” presented an interesting dynamic programming
algorithm in a distributed and parallel setting based on P systems enriched with
adequate data structure and programming concepts representation. Omar Bel-
ingheri, Antonio E. Porreca and Claudio Zandron showed in “P Systems with
Hybrid Sets” that P systems with negative multiplicities of objects are less pow-
erful than Turing machines. Artiom Alhazov, Rudolf Freund and Sergiu Ivanov
presented in “Extended Spiking Neural P Systems with States” new results re-
garding the newly introduced topic of spiking neural P systems where states are
considered.

! http://ucncib.wordpress.fos.auckland.ac.nz/workshop-on-membrane-computing
-wmc-at-the-conference-on-unconventional-computation-natural-computation/
2 http://hdl.handle.net/10454/8840
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“Selection Criteria for Statistical Model Checker”, by Mehmet E. Bakir and
Mike Stannett, presented some early experiments in selecting adequate statisti-
cal model checkers for biological systems modeled with P systems. In “Towards
Agent-Based Simulation of Kernel P Systems using FLAME and FLAME GPU”,
Raluca Lefticaru, Luis F. Macias-Ramos, Ionut M. Niculescu, Laurentiu Mierla
presented some of the advantages of implementing kernel P systems simulations
in FLAME. Andrei G. Florea and Catéalin Buiu, in “An Efficient Implementation
and Integration of a P Colony Simulator for Swarm Robotics Applications” pre-
sented an interesting and efficient implementation based on P colonies for swarms
of Kilobot robots.

The Programme Committee members — Erzsébet Csuhaj-Varji, Alberto Lep-
orati, Radu Nicolescu, Agustin Riscos-Nunez, Mike Stannett, Gyorgy Vaszil and
Gexiang Zhang — have significantly helped with comments and suggestions to the
improvement of the contributed papers.



Workshop on Unconventional Computing Systems
in commemoration of Yurii Rogozhin
Chisinau, Moldova, November 11, 2016

Svetlana Cojocaru, Alexandru Colesnicov, Ludmila Malahov

Institute of Mathematics and Computer Science
5 Academiei str.
Chiginau, MD-2028, Moldova

The2016 edition of the Workshop on Unconventional Computing Systems, in com-
memoration of Yurii Rogozhin was the third one in this series.

Dr.hab. Yurii Rogozhin (November 11, 1949  March 10, 2014) was a world-
wide known computer scientist with diverse interests, ranged from finding small
universal Turing machines to natural computing (e.g., DNA computing by splicing
and insertion-deletion, membrane computing).

Yurii had some outstanding results concerning universal Turing machines
of a small size. He proved that there are universal Turing machines of the
types UTM (24;2); UTM(10;3); UTM (7;4); UTM (5;5); UT M (4;6); UT M (3;10),
and UTM(2;18), where by UT'M (m;n) we denote the class of universal Turing
machines with m states and n symbols. In 2002 Rogozhin and M. Kudlek presented
a machine of type UTM(3;9), improving the previous result. These results and
results of D. Woods and T. Neary reduce the number of classes UT M (m;n) with
an unsettled emptiness problem (i.e., if the class UT' M (m,n) is empty) to 41.

A time-varying distributed H system (T'VDH system) is a model of biomolec-
ular computing which was introduced by Gh. Paun in 1996 and it has the following
feature: at different moments one uses different sets of splicing rules (these sets
are called components of the TV DH system) repeatedly. Gh. Paun showed that 7
components are enough in order to generate any recursively enumerable language.
In 2004 Yurii and his partners Maurice Margenstern and Serghei Verlan showed
that it is possible to construct a TV DH system of degree one which models any
type-0 formal grammar. Thus they completely answered the question of construct-
ing TV DH systems of smallest degree which generate any RE language using the
parallel nature of molecular computations based on splicing operations.

In the area of membrane computing Yurii Rogozhin has (co)-authored over 50
publications. The first to be mentioned is a series of papers investigating minimal
symport/antiport, in particular establishing the ultimate results for the computa-
tional completeness with two membranes, proved by very creative and highly non-
trivial constructions. He also participated in research of transitional P systems,
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as well as of P systems with active membranes. Other topics of Yurii’s system-
atic interest include using the framework of P systems as an additional control
mechanism for such operations as insertion/deletion (including exo-operations)
and splicing. In particular, he constructed the smallest known universal P system
— with only five rules, the proof displaying how to perform multiple tasks by the
same rule.

It was Yurii’s idea to consider a hybrid computational model combining quan-
tum subsystems and membrane subsystems. Other research directions with prac-
tical motivations in its scope are polymorphism, dictionary operations, generating
inflections, parsing derivatives and annotating affixes of a natural language.

Since the death of Yurii Rogozhin, Institute of Mathematics and Computer
Science in Chisinau, Moldova, holds these commemorative Workshops at a suitable
date near Yurii’s birthday.

The 2016 Workshop consisted of one invited talk and five contributed presen-
tations. Detailed abstracts of works can be seen on the Institute Web site.!

Artiom Alhazov, Omar Belingheri, Rudolf Freund, Sergiu Ivanov,
Antonio E. Porreca, and Claudio Zandron in “Semilinear Sets, Register Ma-
chines, and Integer Vector Addition (P) Systems” considered P systems working
with multisets with integer multiplicities focusing on a model in which rule appli-
cability is not influenced by the contents of the membrane. Authors show that this
variant is closely related to blind register machines and integer vector addition
systems. Furthermore, they described the computational power of these models.

The next two papers were dedicated to network control theory. Vladimir Ro-
gojin in “NetControldBioMed - Automatic discovery of combined drug therapy”
used the computational analysis of the structure of intracellular molecular interac-
tion networks, they being a formal representation of relations between numerous
components within cells. Network controllability studies focus on discovering com-
binations of external interventions that can drive the biological system to a desired
configuration. In practice, these studies can be translated into finding a combined
multi-drug therapy in order to achieve a desired response from a cell. The author
developed a pipeline that finds a minimal set of nodes controlling a given set of
targets within a network. The pipeline highlights those control nodes for which
there are known FDA approved drugs. The network is generated automatically
through querying of a number of pathway databases.

Eugen Czeizler in “How graphs help us fight cancer: structural control of dis-
ease networks” applied recent research in the area of network science and network
control theory to the analysis of the structure of intra-cellular molecular interaction
that can suggest novel therapeutic approaches for systemic diseases like cancer. It
was proved that the structural target controllability problem is NP-hard. Search
algorithms were improved using several heuristics. The application in the analysis
of three types of cancers was demonstrated.

Serghei Verlan and Sergiu Ivanov considered one special class of sys-
tems in “Universality of Graph-controlled Leftist Insertion-deletion Systems with

! http://www.math.md/news/2016/12246/
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Two States”. They permitted regular expressions as rule contexts and proved that
in this case the computational completeness is achieved when additional control
mechanisms are used. Then authors investigated simulation of rules with regular
contexts by conventional rules of small sizes, and provided a construction that
guarantees universality of such systems.

In “Small Asynchronous P Systems with Inhibitors Defining Non-semilinear
Sets” Artiom Alhazov described 54 systems that are small in different ways like
the alphabet size, the number of rules, etc.

The invited talk “Logic in Computer Science, Engineering and Industry” was
presented by Yuri Gurevich from Microsoft Research. He noted that in software
industry, engineers do formal logic daily even though they may not realize that,
but, instead of studying logic, they spent a lot of time studying calculus which
they use rarely, if ever. Dr. Gurevich illustrated why logic is so relevant and why
it is hard for software engineers to pick it up.
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Some Wonders of a Bio-Computer-Scientist*

Gheorghe Paun

Romanian Academy, Bucharest, Romania
gpaun@us.es, curteadelaarges@gmail.com

1. The previous title takes some precautions, which are visible, but still I want to
stress them.

First, the autobiographical character. The last two decades — to be precise, the
last twenty two years — I was totally dedicated to bio-computability, one can even
say that I was confiscated by this research area, so fascinating, promising, endless
in possibilities of theoretical developments and of applications. The beginning is
placed in the spring of 1994, when I read a paper by Tom Head, a wise American
who later became a friend and a collaborator of mine, who, already in 1987, pro-
posed a formal language theory model for the recombination operation of ADN
under the influence of restriction enzymes and ligase. He has named it the splicing
operation. I will shortly describe it later. I remember it exactly — I was in Austria,
in Graz, participating in a conference. On the one hand, I became immediately
enthusiastic about this idea — after two decades of research in formal language
theory, I was subconsciously looking for areas to apply this theory, on the other
hand, I was somewhat unsatisfied, because Head’s formalization was complex, it
remained, to my taste, too close to the biological reality. Right then, in the hotel
in Graz, I have imagined a simpler definition, closer to the style I was used, I
can call it Salomaa-Marcus style. Four years after that I have worked in this area.
Until 1998, when I had a second thrill, after defining a model inspired from the
architecture and the functioning of the living cell, the first one from a families of
models which continues to grow. After that, I have totally identified myself with
membrane computing, a research area which transformed me in a letter and which
will be the territory through which I will invite the reader in what follows. (I will
sometimes use the abbreviation MC for membrane computing.)

* This is the English version of a lecture delivered on December 8, 2016, on the occasion
of receiving a Doctor Honoris Causa title from the West University of Timigoara,
Romania.
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I return to the title. Wonders-questions, not models-results-applications, al-
though the former are connected to the latter. Places where the mathematician
who I am by education and the computer scientist with twenty years of theoret-
ical research — I have graduated mathematics in 1974 — remains still, with raised
elbows, either not understanding, or expecting something different, or faced with
objects coming from biology which, seen through the glasses of the theoretical
computer scientist, suggest computability ideas-models totally new for theoretical
computer science and, much more, for practical computer science, in the forms
we know them from books and from implementations. During billions of years of
evolution (I adhere here to the evolutionist paradigm, this is not a suitable place
for an evolution version creation discussion, furthermore, for what follows we do
not need any creationistic hypothesis, to quote a phrase assigned to Laplace, but
also to other big names of physics), life has evolved many processes and supports
for these processes of a high precision, remarkably subtly and efficient, which can
be transferred, at least at the theoretic level, to computer science. How to do that,
asks himself the mathematician-computer scientist? With what practical conse-
quences, asks himself the computer scientist interested in applications? Why so
many computability aspects, as they were developed up to now, look non-natural,
far from the “real reality”, from the biological one?

Some of these questions get close to the science fiction (SF) frontier of science,
but I will not avoid them, as long as the science, physics in particular, does not
totally refute them as non plausible. We are placed here under the flag of the
possible, not of the probable...

There will also appear questions-wonders which are more precise, more local-
ized. Only part of those which I have reached, significantly fewer than those which
were possibly met by other colleagues of bio-computing. That is why the title
starts with some...

A few remarks about the style. Although I will refer to many notions, from
biology and from computer science, although in the end I will provide a pretty
comprehensive bibliography (also this one will be mainly autobiographical), the
discussion will be informal, without precise references.

In what concerns the bibliography, one of the items is my Reception Discourse
in the Romanian Academy, delivered on October 24, 2014, and having the privilege
to be followed by a response by Solomon Marcus, the Professor, always with capital
initial letter. The present pages can be seen as a continuation of the Discourse, at a
more informal-colloquial level, but also as an opportunity to pay my homage to my
Professor, who constantly used to promote the state of wondering, of questioning
yourself. Sadly, the Professor passed away in March 2016.

Above all these, this text is an invitation to the reader to wonder together...

2. Before mentioning any reason to wonder-question ourselves, it could be
useful to roughly specify the framework: what/how much biology, what/how much
computability are necessary for what follows?

Mainly cellular biology, at a general level: membranes which enclose compart-
ments, “protected reactors” where specific biochemical reactions take place, in-



Some Wonders of a Bio-Computer-Scientist 243

volving “reactants” (from ions to large macromolecules) which swim in an aque-
ous solution or they are bound on membranes or on the cytoskeleton, then protein
channels which make possible the communication among compartments. Many
other ingredients can be added, the biologists know a lot of things about the cell.
The monograph Molecular Biology of the Cell, by Alberts, Johnson, Lewis, Raff,
Roberts, Walter, has over 1500 pages of a large format. A true universe — of a
nanometrical scale. The smallest entity about whose alive character there is no
doubt (about viruses the opinions are mixed). A complex “factory”, at the same
time robust and fragile, very precisely and efficiently organized.

Already at this level we get an important question, but one mainly of a biolog-
ical type: what is making the difference between alive and non-alive? Chemistry
and physics cannot provide a convincing answer. The borderline seems to be de-
fined in terms of organization, information, in terms of something which we cannot
yet perceive, understand, and model. We may call it soul, or wital breath, just for
moving the question away.

An important detail: the today biology, chemistry, physics are much developed
in the study of their object of study in terms of substances and energy, but not
also in terms of information. I do not enter into details, this opens the gate to
many questions, starting with the definition itself of information, organization,
complexity. Can we conceive information without any support, of a substance or
energy type, the other two components of what we use to call matter? Two more
remarks: (1) biology and physics seems to be on the verge of passing to “a new
age” — for biology there were proposed some up-dated names, such as infobiology
and infobiotics, and (2) computer science is a part of information theory, in the
broad sense, therefore, the computational, algorithmic approach seems to be one of
the ways through which the biology and the physics will evolve in the near future.
Quantum computing seems to be one of the first steps for physics (Gruska), bio-
computability seems to be half of the path for biology.

Let us return to the cell, with a slogan- “equation” launched by Solomon Marcus
during one of the first MC meetings, in Curtea de Arges, Romania, 2001:

Life = DNA software + membrane hardware.

It is stressed here the role played by membranes in the life of cells, thus also
motivating the name which I gave to this research area, membrane computing;
maybe a better name were cellular computing.

After the individual cell, I will also incidentally invoke populations of cells,
tissues, organs, colonies of bacteria, in the end, also the “thinking cell”, the neuron.

Details, in the next sections — here, the computer science basic prerequisites.
First of all, Turing computability. The standard framework for most computability
research. By Turing-Church Thesis, the highest level of algorithmic computability.
At only 24 years, the genial Turing answered Hilbert’s question on what can be
mechanically computed, with a particular application to the decidability in arith-
metics, by introducing what is now known under the name of Turing machine, the
most general and the most convincing (for the contemporary researchers, Church,
Kleene, Godel etc., who tried in various ways to answer Hilbert’s question) of the
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notion of an algorithm. Then, by the definition of the universal Turing machine (a
machine able to simulate any particular Turing machine as soon as a code of the
particular machine, together with an input for it, are placed as an input on the tape
of the universal Turing machine), and by the theorem proving the existence of the
universal Turing machine, Turing was signing the birth certificate of the computers
as we have them today: when designing and constructing the first (programmable,
as the existence of a universal Turing machine made possible) computers, at the
beginning of forties, last century, John von Neumann was explicitly influenced by
Turing ideas. From here, the name of Turing-von Neumann computers, from here
their sequential character and their theoretical vulnerability to computer viruses
(programs and data are placed in the memory, with the possibility of affecting
programs by other programs in the same way as data are affected).

At the maximal level, the Turing machine, at the lowest level of computability,
the finite automaton, a form of a Turing machine restricted in an extreme extent.
These are the two poles of computability to which the bio-inspired computability
is constantly referred to.

These are the two poles of the computability competence. From a practical point
of view, at least equally important is the performance, the efficiency. In this way,
it enters into the stage the famous distinction between the class of problems which
can be solved in polynomial time (with respect to the size of the input) and the
class of problems for which no polynomial algorithm is known, but, if somebody
proposes a solution (if a solution can be “guessed”), we can check it in polynomial
time. The famous complexity classes P and NP, the (in)famous problem whether
or not P = NP, the first one in the list of “millennium problems” for whose
solution the Clay Institute from USA offers one billion dollars.

I will also invoke grammars (especially Chomsky grammars); further details
will be mentioned when they will be useful.

3. Let us start with DNA, chronologically the first investigated and a relevant
case study.

Today we are learning the language in which God created life, historically
claimed Bill Clinton in the summer of 2000, when the reading of the human genome
was completed. A language, indeed. Syntax, in the proper meaning of the term.
Four “letters”, A (adenine), C (cytosine), G (guanine), and T (thymine), placed
along two strands, with well specified pairs face to face, the so-called Watson-Crick
complementary pairs (Watson and Crick have received the Nobel Prize, in 1962,
for the discovery of the DNA structure, at the beginning of fifties): A is always
in front of T, and C always forms a pair with G. This is the primary structure
of DNA, the only one of interest here. The secondary structure, the double helix,
and the ternary one, the complex folding, are not relevant for what it follows.

If we raise the temperature of the solution where the DNA molecules are placed,
the two strands are separated. If we decrease back the temperature, then the nu-
cleotides look for their Watson-Crick complementary pairs and the double stranded
structure is rebuilt. Then, the restriction enzymes — somebody called them the
most intelligent tools nature provided to the genetic engineers. They are proteins
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which recognize a short sequence of nucleotides, a pattern, a context, to come closer
to linguistics, and cut the DNA molecules, in most cases in the middle of this pat-
tern, in most cases, producing sticky ends, staggered strands: one of them is cut
in a point, the other one some nucleotides away; the single strands of nucleotides
are sticky, if they find their complements, then they get glued to them, completing
the double strand.

A lot of further biochemistry can be found around (for instance, ligase, other
enzymes, which help the reconstruction of the double strand, or the directional-
ity of the two strands, whose ends are marked with 3’ and 5, the biochemists
know why, opposite on the two strands and preserved by the strands after getting
separated), and still more computability. Also, similarly much linguistics — it was
underlined by Solomon Marcus already in 1974, in a paper which appeared too
early, so that it did not receive the audience it deserved.

Now, one first example — and the first surprise.

A result in formal language theory, published already in 1980 by Engelfriet
and Rozenberg, says that any language which can be recognized by a Turing
machine (equivalently: which can be generated by a Chomsky grammar; in the
usual terminology: recursively enumerable), hence of the most general type among
the computable languages, can be obtained starting from a certain fixed language,
that is, independent of the starting language, applying to it a sequential transducer,
the simplest type of a transducer, a finite automaton with output (one reads the
input string, from left to right, without returns, and for each read symbol one
outputs one or more symbols, also depending on a state from a finite set of states).
The unique language from which we start, the one in which there are “hidden” all
computable languages, is obtained as follows: consider the symbols 0, 1, consider
their “complements” 0’ and 1’; take a string over the symbols 0, 1 and consider its
twin, the string obtained by priming all symbols; mix the symbols of the string with
the symbols of its twin, in all possible ways, preserving the ordering of symbols in
each string — this operation is called shuffle. Finally, collect all strings obtained by
shuffling all strings over 0, 1 with their twin strings. This is the language we are
looking for — called the twin-shuffle language over 0, 1.

Four letters, 0,1,0’,1’. Maybe this was the coincidence which suggested to
Rozenberg and Salomaa the following operations: take a DNA molecule and “read”
it, from left to right, on each strand, with random speeds on the two strands,
writing 0 if we met A or T on the upper strand, 0’ if we met them on the lower
strand, 1 if we met C or G on the upper strand, and 1’ if we met them on the
lower strand. Doing this for all possible DNA molecules, we get... exactly the twin-
shuffle language over 0, 1! According to Engelfriet and Rozenberg theorem, if we
also apply a sequential transducer, then we obtain any computable language (and
all of them, by varying the transducer). Otherwise stated, everything which can
be computed is “codified” in the DNA molecule, what remains to do is to read the
molecules as sketched above and then to rewrite these readings with a sequential
transducer. A completely unexpected conclusion, difficult to be imagined (without
having at hand the theoretical result from 1980).
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In a DNA computing book written together with Rozenberg and Salomaa,
published by Springer-Verlag in 1998, there are two results which complete the
previous observation: on the one hand, we can consider only three nucleotide-
symbols, 0,0’,1, with the last one being its own “complement” (nature uses to
be redundant, nature also loves symmetries), and, on the other hand, we can also
take into account the opposite orientation of the two strands, that is, we can read
one strand in one direction and the second one in the opposite direction. In both
cases, the result is the same, the characterization of the computing power of the
Turing machine.

Later, Vincenzo Manca proved that, in a certain precise sense, the double
stranded structure of the DNA molecule is necessary in order to obtain the com-
putational universality.

We already have here a beautiful wonder — and a comforting example of using
an old “purely theoretical” result in a new framework, much closer to the reality.

4. Let us pass now to the splicing operation introduced by Tom Head (in 1987,
hence, at the theoretical level, DNA computing started several years before the
Adleman experiment, from 1994). Recombination, cut-and-paste, with a complete
formal, syntactic formulation. If two restriction enzymes, each one with its own
pattern, cut two molecules in such a way that the sticky ends they produce are
identical, then the obtained fragments can be recombined, the prefix of the one
molecule with the suffix of the other molecule. In this way, we pass from the two
starting molecules to two new molecules.

The definition can be simplified, without losing too much from the biochemical
significance. First, the Watson-Crick complementarity allows for passing from the
double stranded molecules of symbols to usual strings. In this framework, each
restriction enzyme recognizes a substring and cuts somewhere in its middle, in
a specified position. Two enzymes which produce identical sticky ends lead to a
splicing rule, which can be written as a quadruple of strings, with the first pair of
strings indicating the pattern recognized by the first enzyme and the place where it
cuts the string, and analogously the second pair of strings for the second enzyme.

This simplified version of the splicing operation was much investigated in DNA
computing. In theory, as the starting point of defining a computing model called,
in a paper written together with Rozenberg and Salomaa, H system, as a homage
to Tom Head. In short, one gives a finite set of string-axioms and a set of splicing
rules, one applies the rules to the axioms, then to the resulting strings, and so on,
iteratively, possibly also selecting only certain strings, and in this way we generate
a language. Like in a Chomsky grammar.

Two are the basic results of this area — and, between them the wonder!

On the one hand, we get a characterization of regular languages, those rec-
ognized by finite automata (the result got several proofs, the initial ones pretty
complex), on the other hand, a characterization of the computing power of Turing
machines (this result belongs to me and the proof, somewhat surprisingly, is sim-
pler than the proofs of the first result mentioned above). The difference is that in
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the first result we use a finite set of splicing rules, in the second one we use an infi-
nite set, but the set of rules is represented by a regular language. The universality
can be obtained also for a finite set of rules, but with the use of rules controlled
in various ways inspired by biology or by the formal language theory: promoters,
inhibitors, using a priority relation, imposing a dependence on the sequence of
rules used, and so on.

The technical details are not relevant, important is that we compute either at
the level of one pole of computability, or at the level of the other pole. Everything
or nothing, without equalizing any intermediate level — and there are several such
levels, defined in terms of automata or grammars. It is worth noting that also in
other frameworks, for instance, in MC, we obtain similar results. May we infer from
these results that the intermediate levels are not natural? In a certain sense, this
is the case, because, if we think to the classes of automata which characterize the
context-free and the context-sensitive languages in Chomsky hierarchy, the push-
down and the linear bounded automata, respectively, the former have a rather ad-
hoc definition, the latter are inspired by complexity theory, the family of languages
is defined by taking into consideration a property observed during the computation,
not with respect to a static property, belonging to the automata architecture.

5. The discussion can be generalized: what means to compute in a natural
way? Which data structures to use and which operations on them? Theoretical
computer science deals mainly with processing strings of symbols, especially us-
ing the rewriting operation, replacing a substring, short in comparison with the
whole string which it is processed, with another string, also short. On the tape
of automata of all types, from the Turing machine to the finite automaton, it
is written a string of symbols. The Chomsky grammars, Lindenmayer systems,
Marcus contextual grammars, Post systems, Markov algorithms, all these are pro-
cessing strings. The same for Thue iterated morphisms, actually equivalent with
Lindenmayer deterministic systems.

In comparison, what we find in biology? In the case of ADN, the double
stranded molecule, and, as operations, the recombination, Tom Head’s splicing,
the separation of strands and their annealing, only rarely the point mutations,
at the level of single nucleotides. Then, in the compartments of a cell, the multi-
set, the set with multiplicities associated with its elements. In biochemistry, like
in chemistry, the numbers matter. While the DNA molecule can be considered a
string, hence on the DNA string we have positional information, like in the case of
numbers written in the Arabic style, in the aqueous solution from the cell compart-
ments the numbers are expressed in unary. Base one is exponentially less efficient
than base two — and still this was chosen by nature/biology. A biochemical reac-
tion can be interpreted as a rewriting operation of a multiset: a sub-multiset is
replaced by another multiset. However, in the functioning of a cell there appear
many other operations, such that those of symport and antiport (I will return
to them, as they deserve a more detailed discussion), or operations by which the
membranes themselves evolve (division, dissolution, creation of membranes, exo-
and endo-cytosis, and so on). Similarly in what concerns the functioning of neurons
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and of neural nets. I am careful not to say “the functioning of the brain”, because,
in spite of the fact that the neurologists know “everything” about the physiology
of the brain, nobody can explain how the brain becomes mind, the organ where
thinking, sensing, sentiments, conscience is (supposed to be) placed. Hypotheses,
proposals, speculations there exist, significantly less certainty...

With all these data supports and operations with them one can define comput-
ing models, most of them equivalent in power with Turing machines, hence com-
putationally complete, computing everything which can be computed (we take as
valid the Turing-Church thesis). The proofs are often, if not always, constructive:
we start from a Turing machine or from an equivalent model (normal forms for
Chomsky grammars, classes of regulated grammars with context-free rules, regis-
ter machines, other devices) and we construct an equivalent H system or, in MC,
an equivalent P system. Starting the construction from a universal Turing machine
(or an equivalent model), the biologically inspired computing model will implicitly
be universal, hence programmable.

In theory, everything is wonderful. In info. At the practical level, there how-
ever appear two problems: the effective implementation, in vitro, of the theoretical
model, and the question whether such a bio-computer can have also further moti-
vations than proving that it is possible to compute in this way. Is such a computer
useful, better than an existing electronic computer, at least from one point of
view? Possible points of view are many. The possibility to solve problems of NP
(or higher) complexity in a polynomial time is the first and the most attractive
goal, but there are other ones related to the energy efficiency, the possibility to
evolve in time, to learn, to self-repair, to deal with imprecise or incomplete data.
All these are dreams for computer science, difficult to achieve, but they are com-
mon realities in the life of a cell, in biology in general.

Let us consider only one aspect, the massive parallelism, met ubiquitously
in biology. The electronic engineers, even if they cannot equalize the biological
parallelism, could put together a large number of processors, but, on the one hand,
there would appear problems related to the heating of the computer, on the other
hand, problems related to the synchronization, the coordination of the processors.
It enters the stage the so-called communication complexity: the number of bits
needed for coordinating the processors becomes comparable with the number of
bits used in the computation itself. How the nature has solved these two problems
we do not know precisely. Still less we know about how to imitate the nature’s
solutions.

6. Let us return to the symport and antiport operations. The membranes which
provide the internal structure of the cell are constituted of so-called phospholipid
molecules, which have a polarized “head” and a non-polarized “tail”, consisting
of two fatty acids, hydrophobic. Thrown in water, such molecules self organize
spontaneously, forming a sphere with two layers, keeping the fatty acids separated
from the water, opposing to the internal and the external water molecules the po-
larized heads. The common “enemy” and the electrical charges keep the molecules
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together, in a structure called fluid-mosaic, a model proposed by Singer and Nicol-
son, fully accepted only in 1972. The phospholipid molecules can move with respect
to each other, but they do not allow to large molecules to pass between them from
a side to the other side of the membrane; neither the ions can pass, because of
their electrical charges. Nature has solved the problem of communication between
the interior and the exterior of a vesicle of this type in a rather ingenious way:
between the phospholipid molecules there are intercalated proteins which function
as transmembrane channels — important to stress, of a selective type. Channels for
water (the aquaporins of Gheorghe Benga, for which a Nobel Prize was awarded
in 2003, but not to him...), natrium-potassium and natrium-calcium pumps, and
so on and so forth.

Two special types of such channels are those which support the processes which
the biologists call symport and antiport. In the first case, two molecules, let us iden-
tify them by M; and Ms, cannot pass separately through the symporter channel,
but together they can do it, either entering the inner “reactor”, or exiting it. In the
second case, M7 and Ms, placed in separated regions, one inside and the other one
outside, cannot separately pass through the protein channel, but together they can
do it, one in a direction and the other one in the opposite direction. The protein
opens the channel until the molecules pass and then the channel is closed again.

In this manner, we obtain a way to “communicate” among the compartments
of a cell — with the mentioning that I call communication the passage of objects
(molecules, of any type) across a membrane. Starting from multisets of objects
placed in the compartments of a cell and using given symport and antiport rules
(pairs (M, Ms) associated with membranes, with specified directions to move each
molecule), we can compute: we iteratively apply the rules, until reaching a config-
uration where no rule can be applied. (Because the number of objects cannot be
modified by symport and antiport rules, we assume that the environment partici-
pates in the computation, as an exhaustible source of symbols.) Surprising at the
first sight, but not so much at the second sight, we again obtain a characterization
of the power of Turing machine.

Universal computation, by communication — here lies the surprise! We com-
pute not by rewriting strings or multisets, but by moving objects across borders
defined by means of membranes. Does it makes sense (to try) to construct a com-
puter based on the symport and antiport operations? No, in what it concerns
the computing power (Turing-Church Thesis), maybe, from the point of view of
efficiency (provided that we will succeed to implement a significant level of paral-
lelism), yes, from a point of view which is not so much taken into consideration by
the current technology, although it refers to an important detail: the consumption
of energy, heat dissipation. In computer science it is said that the dissipation of
heat appears because of erasing. Rewriting means first erasing and after that writ-
ing. The operations of symport and antiport do not assume erasing, we only have
moving, changing the place. Will these operations diminish/eliminate the energy
loss during a computation? This is an appealing hypothesis — but the biologists
warn us that, in order to function, many protein channels need chemical energy
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(obtained with the help of ATP, adenosine triphosphate, “the energy accumulator
of the cell”).

Why, at a closer examination, the universality of computing by means of sym-
port/antiport is not so surprising? Theoretical computer science, old results in
formal language theory, help us again. There are several characterizations of re-
cursively enumerable languages of the following type: every language which can be
recognized by a Turing machine can be obtained starting from a context-sensitive
language (recognized by a linearly bounded automaton) and applying to it an op-
eration which remove certain symbols (morphisms, left or right quotients, etc.). In
short, context sensitiveness and erasing. Two features which the symport and an-
tiport operations possess: the fact that two molecules evolve simultaneously means
context sensitivity, while by “throwing” molecules in the environment or by col-
lecting them in a corner of the cell and ignoring them there, we get the erasing.
The only difficulty, for the theoretician, is the proof, the simulation of a computing
mechanism equivalent with a Turing machine by means of certain symport and
antiport operations associated with the compartments of a given arrangement of
membranes. There are many proofs of this type in MC — that is, in info, but no
in vivo or in vitro implementation.

7. Remaining close to biology, let us have a look to the way the neurons
communicate to each other by means of electrical impulses of an identical shape,
the spikes. Like any cell, a neuron has a body (soma), from which a “wire” starts,
the axon, along which the spikes circulate. On the soma and in the end of the axon
there are filaments, by the contact of which one obtains synapses, the links between
neurons. We ignore here a lot of architecture and functioning details (some of them
were already captured in MC models): the axon is covered by a protecting myelin
layer, it is segmented by the so-called Ranvier nodes, a sort of relays amplifying the
electrical impulses, the synapses correspond to symport/antiport operations, there
also exists another class of cells, the astrocytes, which control/help the neurons
activity, depending on the flow of spikes along their axons, and so on. We only
keep in mind that we have only one type of “objects”, the spike, and that the
flow of spikes, their frequency, the distance in time between two consecutive spikes
are very important. Of course, the functioning of a neuron, the emission of spikes
depends on the neuron contents.

Abstracting all these details, one can define a computing model of the follow-
ing type. Neurons are placed in the nodes of a graph whose arcs represent the
axons/synapses. We start with a given number of spikes placed in each neuron.
The neurons also contain spiking rules: depending on its contents, a neuron con-
sumes a number of spikes and produces a number of spikes, which are sent to all
neurons reached by a synapse which starts in the neuron where the rule was used.
One obtains what is called in MC a spiking neural P system, in short, an SN P
system. In the ten years since these devices were introduced, about 300 papers
investigating them were published, from theory (computing power and efficiency)
to applications (even in technological decision making, for instance, in a combina-
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tion of these models with fuzzy reasoning models — the topic is mainly explored in
China).

Like in many other places in bio-computability, also in this framework one
obtains either a characterization of the power of finite automata, or of the power of
Turing machines. Again, the intermediate levels of computability are not “natural”.

Beyond the previous observation, two further reasons of wonder appear in this
context.

The first one refers to the way the information is encoded /represented by means
of spikes, in the distance between two consecutive electrical impulses. The time as
a support of information... Similar to the Morse alphabet, but the goal there is
only the transmission of information, here we deal with computations, even at the
maximal level, that of Turing machines.

Can we use this observation for constructing computers? If data are encoded
in time, using intervals, how will then function the classical time-space trade-off
in this framework? Polynomial solutions to NP-complete problems are obtained,
in theory and also in the DNA computing experiments and in MC theoretical
approaches, by using an exponential workspace; in the spiking neurons case, the
space and the time are “superposed”, the time efficiency seems to be lost.

The second wonder reason is related to a result which looks unexpected at
the first sight, namely, that there exist universal (in the universal Turing machine
sense) SN P systems which have a relatively small number of neurons, at most of
the order of hundreds. The result depends essentially on the type of spiking rules
used in neurons and on the number of rules present in each neuron. In short, the
number of neurons depends on their complexity, which is rather natural, but the
fact that we can obtain a “programmable universal computer” with only about one
hundred neurons is unexpected, at least with respect to the billions of neurons in
the human brain and even with respect to the algorithmic computability. Clearly,
the brain does not has as its goal (only) to compute at the algorithmic level
(using the brain as a model for computers and using the computer metaphor in
the study of the brain are useful strategies, but with soon to reach limits), but
equalizing so easy the computability upper limit is not similarly easy to explain.
Are the “neurons” of our models too complex, too powerful, or, on the other
hand, the Turing computability is not too comprehensive? It is highly probably
that both hypotheses are true. The second assumption is supported also by other
characterizations of Turing computability in bio-inspired frameworks, using models
which are simple “syntactically” or of small dimensions. The first hypothesis raises
the question how to simplify the neurons in such a way not to lose the universality,
even if this result is obtained by using a larger number of neurons. There are
research efforts in MC following this idea.

8. While it is so easy, in DNA and cellular computing, to reach the level of
algorithmic/Turing computability, it is much more difficult to pass beyond “the
Turing barrier”. This goal pertains to a branch of computability theory called hy-
percomputability, with publications, conferences, dedicated authors and also with
skeptical or even acid comments. On the one hand, it is said/hoped that passing
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beyond “the Turing barrier” would have much more important practical conse-
quences than a possible proof, even a constructive one, of the equality P = NP
(a result with a rather low plausibility). On the other hand, up to now, the ideas
on which the models able of hypercomutability are based are not too many and
not too realistic. In the domain literature there are about one dozen such ideas,
but Martin Davis considers all of them tricks, supporting a myth.

Actually, Turing himself has proposed a version of his machine able of com-
puting more than the Turing machine, by adding an oracle, which can answer (for
free) questions, maybe questions which pass beyond the competence of the Turing
machines. Several other ideas are based on squeezing infinity or real numbers in
the construction or in the functioning of the machine. Because real numbers “are
more than computable numbers” (more precisely: the set of computable numbers
has a denumerable cardinality, while the cardinality of the set of real numbers is
strictly larger), something uncomputable is introduced in advance in the model,
hence there is no surprise to get a model which is more powerful than a usual
Turing machine.

The same with the introduction of the infinity, even a denumerable one, with
the following remark of interest for our discussion. Adleman experiment, of solving
the problem whether a Hamiltonian path there exists in a graph, proceeds along the
following main steps: one first generates all paths in the graph, then one eliminates
all paths which do not pass through a number of nodes equal with the number of
nodes in the graph (a selection according to the length of DNA molecules), then
one removes the paths which are not passing through node 1, node 2, etc. What
remains in the end are the DNA molecules which encode Hamiltonian paths. If
no molecule survives, then this means that no Hamiltonian path exists. Also in
other experiments one proceeds in a similar manner, that is, one starts with a
large set, easy to be generated, and one removes iteratively elements which cannot
be solutions. Otherwise stated, it is not constructed a solution, but one eliminates
non-solutions. “Sculpturing!” Computing by carving! In terms of languages, we
start from a general set of strings, maybe the total language over a given alphabet,
and we eliminate repeatedly strings. We remove the complement of the language
we want to identify. Not generating a language, as the grammars are doing, not
accepting, as the automata are doing, but rejecting the strings which we do not
want.

The family of Turing computable languages is not closed under the operation
of taking the complement. Therefore, by “carving” we can “compute” languages
which are not Turing computable. To this aim we need to eliminate an infinite set
of strings. If in each step we remove a finite set of strings or even an infinite but
regular one, in a finite number of steps we do not get out of the family of regular
languages. Thus, either there is a step when we remove a complex language, or
the “computation” lasts an infinite number of steps. Hypercomputability, but,
agreeing with Martin Davis, the procedure does not look as an implementable
(hyper)algorithm...
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It is worth noting that the physicists are not refuting as totally infeasible the
hypotheses on which the hypercomputability is grounded. Here is an SF scenario
from which the physicists are not removing the S: let us assume that time has a
2-dimensional description, in spite of the fact that we, the humans, perceive only
one dimension of it; let us assume that a human uses a computer which, after
performing a number of steps along the dimension of the time which can be sensed
by the user, starts to work on the orthogonal direction of time, performing an
arbitrary number of steps, all of them invisible to the user, and then comes back
and continues on the human visible dimension. Irrespective how many steps were
made on the orthogonal direction of time, the user receives the result in a time
which is essentially shorter for him.

We departed from biology, let us return to the cell. Nature creates membranes
with two main goals: to localize the reactions and the reactants (enclosing them in
“protected reactors”), and for creating reactors of a small size, where the reactants
are sufficiently close to each other in order to collide and react, helped by the
Brownian movement. Thus, smaller means faster. Let us generalize, exaggerating
“a little bit”, and assume that in a membrane placed inside another membrane the
reactions are twice faster than the reactions in the membrane above. Let us create
membranes inside membranes, repeatedly. (In MC there are rules of this type,
for increasing the membrane architecture.) The reactions are accelerated from top
down in an exponential way. This corresponds to the accelerated automata, already
investigated in computer science since many years: the first step of a computation
is performed in one time unit, the second one in half of a time unit, each step which
follows in a time which is half of the time the previous step was performed. In this
way, in two time units marked on a clock external with respect to the automaton,
one performs an infinity of steps of the computation. The whole computation ends
in at most two external time units. Accelerated automata of this type can solve
problems beyond the power of Turing machines (such as, the halting problem,
provided already by Turing as an example of a problem without an algorithmic
solution). Exactly this can be done also by an accelerated P system — the result
appears in a paper written together with Cristian Calude, now in New Zealand.
Biological motivation, hypercomputability, but Martin Davis is again right: the
membrane hierarchy should be arbitrarily deep in order to achieve an arbitrarily
powerful acceleration...

9. Let us quit the hypercomputability and pass to... fypercomputability! This
term occurred, as a game with letters-words, replacing the front A of hypercom-
putability with f, from fast. This is the main expectation from bio-computability,
because it is one of the main “barriers” facing the “Turing-von Neumann” com-
puters: the impossibility to solve NP-hard problems in a feasible (polynomial)
time, not to speak also about NP-complete problems (a problem is NP-complete
if each NP-hard problem can be reduced to it in a polynomial time; therefore, if
an NP-complete problem could be solved in polynomial time, then all NP-hard
problems would be solved in polynomial time, that is, P = NP).
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However, the exponentials are not at all easy to handle... Here is a simple
example, but with a strong didactic impact. Let us assume that we have a problem,
for instance, dealing with graphs, of an exponential complexity, say, of the order of
3"; let us assume that the existing computers can solve the problem in a reasonable
time for graphs with 100 nodes. Assume now that the technology promises us or
even offers us new computers which are 1000 times faster than the current ones.
A spectacular progress, not at all easy to be obtained. A problem which is now
solved in 1000 seconds will be solved with the new technology in one second.
Good, but if now we can deal with graphs of 100 nodes, which will be the size
of graphs which can be handled with the improved computers? The answer is
disappointing — graphs with only 106-107 nodes — for the simple reason that 37 is
greater than 1000. A great technological progress leads to a derisory advance in
what concerns the size of the problems which can be solved. Not the technology is
the way to cope with the exponential complexity, we need to look for something
else, basically new. The parallelism is a path towards fypercomputability, and there
are two main strategies: starting from the beginning of the computation with an
exponential space (as in the Adleman experiment), or creating such an exponential
space during the computation.

In MC, in most cases one follows the second strategy: using biological oper-
ations, such as the membrane division or the string replication, one creates an
exponential workspace in a linear time, then, using this workspace, one solves in
a polynomial time NP-complete problems. However, an exponential number of
objects can also be obtained without involving the membrane division, but using
only rules of the form a — aa, repeatedly, in a parallel manner. Starting from one
copy of a, in n steps we get 2" copies of a. It is rather interesting to see that this
manner of obtaining an exponential workspace is not sufficient in order to reach
the desired efficiency: the so-called Milano Theorem, proved by Claudio Zandron
in his PhD thesis (the first European PhD thesis in MC, presented in 2001; the
first one in the world was presented one year before, in India), says that any P
system, even using rules of the form of ¢ — aa, can be simulated in polynomial
time by a Turing machine. Therefore, if such a system would solve NP-complete
problems in polynomial time, then also the Turing machine would do it, which will
imply that P = NP. Consequently (unless P = NP), the membrane division is
necessary for fypercomputability.

Again, we have encountered here a subtle and surprising aspect. An exponential
number of objects, placed in a single membrane, are not sufficient for exponentially
speeding up the computation (in P systems), but if we separate these objects
in different membranes, also exponentially many, the fypercomputation jump is
obtained. The difference is made by the localization, the use of different rules in
different membranes. In this way, there appears a parallelism of a more complex
nature, with compartments which evolve in parallel, each of them processing, also
in parallel, its own objects. I do not know whether this difference/phenomenon has
appeared also in other frameworks — anyway not in the classic complexity theory,
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where the parallelism is not present, because the working model is the Turing
machine, a sequential model.

10. Actually, the computational complexity theory, in its classic form, has
several “gaps” from the point of view of bio-computability. I return to the way
Adleman has solved the Hamiltonian path problem: he started from a given graph,
hence from an instance of the problem, has constructed an ad-hoc “computer”,
using DNA molecules directly depending on the chosen graph, test tubes and other
lab instruments, and he has found the solution (in a linear time, as the number of
biochemical operations, some of them of a massive parallelism). In the complexity
theory, such an approach is not allowed, it is required to start from the problem
itself, and the algorithm/program should be written in a polynomial time, taking
as parameters the size of the instances, not the instances themselves. In the general
algorithm obtained in this way (one says that it is uniform) one introduces the
instance to be solved. The idea is to prevent introducing the solution of an instance
in the algorithm which pretends to solve the problem, but it simply provides the
answer. Then, even for an uniform algorithm, one requests that the time of writing
it is polynomial, so that it is not possible to work on solving the problem during
the programming phase.

At the beginning of MC, a compromise between the two alternatives was cho-
sen in the papers which proposed polynomial solutions to NP-complete problems:
solutions which were not necessarily uniform, but at least “honest”, starting from
instances, but with the algorithm constructed in a polynomial time. They have
been called semi-uniform solutions. And now the problems appear. How the com-
plexity classes with respect to semi-uniform solutions look like and, more inter-
esting, which are their relations with respect to the classic complexity classes? Of
course, the semi-uniform classes are larger than the uniform ones. Are they strictly
larger? Interesting enough, there were obtained results of both types, equality as
well as strict inclusion, depending on the definition of the considered classes. I do
not enter into further details, they become soon too technical.

Still further questions appear.

The brain (and the liver, and other organs and tissues) has a huge number of
cells, not all of them working in each moment (at least this is what it was said
some years ago). When a task appears, a problem for the brain, a food/beverage
difficult to process for the liver, further cells are called to work. Can we use such
a strategy in computer science, that is, to start from pre-computed resources, of
an arbitrary size, without containing “too much” information, so that one cannot
hide there a pre-computed solution of the problem, then to activate the “com-
puter” according to the difficulty of the problem? This idea was followed in the
framework of SN P systems, where the cell/neuron division does not seem to be
biologically realistic, but it is natural to start from an arbitrarily large network
of neurons, provided in advance, without containing spikes, and to introduce the
problem to be solved, suitably encoded, in a small number of neurons, such that
the network is activated as much as necessary, and it provides then the answer.
Also in this area the theoretical developments are missing. When can we say that
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the initial resources are pre-computed in a honest way, they do not contain too
much information? How the associated complexity classes can look like, which is
their relation with the existing complexity classes?

Maybe even more interesting: can the internet be used as a pre-computed
support for computations, of an arbitrary size? In a certain sense, internet has
been already used in this way — it was the case of the SETI project, maybe of
other projects, known or not.

Something more: the algorithms considered in the complexity theory are deter-
ministic, what it is happening in a test tube or in a cell is far from that. However,
the result is either “reliable”, in the sense that it is obtained with a probability
close to 1 (Adleman has used sufficiently many DNA molecules so that he was
“sure” that all paths in the graph were constructed in the first phase of the exper-
iment), either the computation, even if it is non-deterministic, is confluent, with
two possibilities: strongly confluent, that is, after a non-deterministic phase, the
computation converges to a unique configuration, and after that the continuation
is deterministic, or weakly/logically confluent, that is, irrespective which was the
followed path, the answer is the same. In MC, most of the solutions were initially
semi-uniform and (strongly or weakly) confluent, after that for a while the solu-
tions were uniform and confluent, while in the last time most of the considered
solutions are uniform and deterministic. Once again, there appears here a chal-
lenge for the complexity theory, to clarify the relationships between complexity
classes defined using non-deterministic solutions, confluent solutions (in the two
versions), and the deterministic solutions.

11. All these are challenges for the theory — also having some practical inter-
pretations and consequences. However, let us refer also to some much more specific
aspects, at least at the fist sight closer to applicative computer science. Let us com-
pare the computer programs, as they are usually conceived, as precise sequences
of instructions, with a well specified order in which they are executed, maybe with
the ordering controlled by using labels, go to instructions, conditional instructions,
cycles, with the “programs” in a cell and the completely different way they are
executed. In a cell, the molecules, present in the form of multisets, react/evolve
by the means of possible reactions. Instead of a sequence of instructions, we have
a set of reactions, a non-ordered set, without any organization, which are applied
to “data” (to the molecules) in a concurrent manner, each possible reaction in
competition with other possible reactions in finding molecules to process, with
many reactions developing concomitantly if sufficient reactants are available and
if the necessary conditions are met for the reactions to take place (temperature,
salinity, acidity, the presence of certain catalysts and promoters, the absence of
inhibitors, and so on). There appear probabilities, stoichiometric coefficients which
predict-control the frequency of applying the reactions, depending on the popu-
lation of reactants and the reaction conditions, there appears the dependence on
promoters and inhibitors, but not the precise chain of instruction from a program
in Algol-Fortran-Pascal-Basic or in any programming language closer to our days.
In a large extent, the functioning of a cell is much more similar to the functioning
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of a Chomsky grammar than to the functioning of an automaton, of a Turing ma-
chine, where the states control the used instructions, maybe uniquely identifying
them, in the case of deterministic automata.

Can we learn something at least interesting if not even useful for computability
from these aspects?

Similarly in a tissue or in an organ, and still more in a colony of bacteria,
there appears a functioning “in a community” which is not at all similar to the
functioning of a set of processors put to work together. In biology, the parallelism
is not total, the processes are not perfectly synchronized, in spite of the fact that
there are rather precise “biological clocks”, circadian cycles, annual seasons. For
instance, the bacteriologists do not fully understand the way in which the bacteria
realize the so-called quorum sensing, the “silent communication” before reaching
a threshold after which the bacteria become aggressive. One discusses also in com-
puter science about asynchronous computing, about amorphous computing, but
nature is much ahead along these directions.

I end with another aspect of a practical interest: who is computing in Adleman
experiment (and in many other similar experiments), who is the computer? The
DNA molecules or... Adleman itself, the biochemist, the human? Without the
human control, the molecules will not do what we expect from them to do, they
will do almost nothing useful for us. It is true, a robotic system can replace the
human operator. In this framework, “the computer” is a hybrid, and this is the
plausible form of the computer of the future.

12. Of course, there are many other wonders-questions which are worth men-
tioning. In what concerns the DNA, we have remained at the level of the primary
structure, while neither for the protein channels we have mentioned the fact that
the shape plays a fundamental role, the coupling between surfaces is crucial for the
execution of the symport/antiport operations.

Actually, one can imagine computations based on the matching of certain
shapes (computing by shapes), a sort of puzzle game with specific rules and re-
strictions, which is again universal and which can get (purely theoretical for the
time being) “implementations” in terms of DNA biochemistry.

Similarly, at the level of the brain there are many things to be discussed. An
old hypothesis claims that there are two parts of the brain, one which is conscious,
controllable, and one which is sub/inconscious; the first one sends problems to
the latter one, which proposes solutions, which are evaluated by the cortex and,
if they are real solutions, then the problem is solved, otherwise the problem is
pushed once again to the subconscious part — and the process is iterated. There is
here a dialogue between a deterministic component and a non-deterministic one,
again something new for computer science. Can such a process be modeled, for
instance, in terms of SN P systems? Has computer science something to learn from
this supposed functioning of the brain? (Let us remember that NP is the class of
problems for which a solution proposed non-deterministically can be determinis-
tically checked in polynomial time, without counting any time for the “guessing”
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of the solution, therefore a “bi-automaton, with one deterministic and one non-
deterministic module”, with the non-deterministic component working in no time,
could be of a real practical interest.)

Then, concerning the learning: adaptation, evolution, learnability are common
facts in biology, almost absent in the electronic technology, with the learning, at
least, intimately present in the neural computing, a branch of bio-computing. Even
if the type of learning here looks reductionistic, limited to the tuning of certain
numerical coefficients (weights) on synapses linking “neurons” of a rather abstract
form, this approach proves to be surprisingly efficient, having unexpectedly good
results, comparable with the results which another area of bio-computing has, the
evolutionary computing — without escaping the so-called no free lunch theorems.
Recently, the neural computing has obtained a performance of a historical impor-
tance: one of the best GO players in the world was defeated, in March 2016, by
AlphaGO, a..., a..., there is a problem here, as AlphaGO is not a program, it is not
a computer (of the kind it was used twenty years ago in the game of chess, when
Kasparov was defeated by Deep Blue computer). This time, billions of GO games
among human players were stored on some thousands of computers, and a program
based on neural computing has learned from these games and then from games
played alone, the program against itself, so that, in the end, the South Korean
GO player Lee Sedol, 9-dan, was defeated. The achievement belongs to a Google
team, a detail of importance, because a routine to efficiently search through the
thousand computers was also important.

The result is remarkable. For many years it was said that GO is the ultimate
challenge for the artificial intelligence. Now, this frontier is already behind us. I
confess that I have expected a bigger enthusiasm in the bio-computing community
after this event.

Of course, now the challenge is to extend the strategy used by AlphaGO to
other domains than GO, and I am sure that there are works in this direction.

I stop here, confident that the reader has his/her own wonders-questions in
front of biology and in front of biology relations with other disciplines, from engi-
neering to computer science. Anyway, the progresses in this area, of the collabo-
ration of biology with computer science, should not be underestimated...
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