CREST IDEALS: Gottfried Strasser, "Monolithic Integration of QC (Quantum Cascade) Lasers and Detectors to QC Systems"

Gottried Strasser, Institute of Solid State Electronics Center for Micro- and Nanostructures TU-Wien, Vienna, Austria

When
Nov 13, 2017
from 02:00 PM to 03:00 PM

Where
CDI - 4.352 (Seminar Room)

Contact Name
Maria Tamargo

Contact Phone
2126508402

Add event to calendar
vCal
iCal

"Monolithic Integration of QC (Quantum Cascade) Lasers and Detectors to QC Systems"

Abstract:
Optical sensors for mid-infrared spectroscopy are used widely in environmental and industrial process control and/or monitoring as well as medical and biochemical diagnostics. Conventional optical sensing setups include a light source, a light-analyte interaction region and a separate detector. We developed and improved a sensor concept based on a bi-functional quantum cascade heterostructure, for which the differentiation between laser and detector is eliminated. This enables mutual commutation of laser and detector, simplifies remote sensing setups and allows crucial miniaturization of sensing devices for further integration. Liquid sensing utilizing bi-functional quantum cascade lasers/detectors (QCLDs) can be realized on a single chip [1]. A QCL active region design with an additional detection capability at the laser emission wavelength allows a straightforward integration, where different areas on, the chip are used for lasers, and others for detectors. The performance of such bi-functional designs has been optimized [2] to reach a similar laser performance as conventional QCLs, allowing for high duty cycle operation at room-temperature. Special emphasis on the performance optimization of QC detectors lead to record values in single period QC devices [3]. Sensing liquids utilizes surface plasmon polaritons to allow a strong interaction within a short distance. Different distributed-feedback-laser/waveguide/detector units can be combined on a single chip, to use the inherent selectivity of the mid-infrared region. Typical analyte interaction lengths for gas sensing are in the range of tens of centimeters or more and exceed the common semiconductor chip sizes. Our gas sensing approach incorporates surface-active lasers and detectors [4]. The latest demonstrators consist of two concentric ring QCLDs with second order distributed feedback (DFB) gratings on top of the waveguides. These DFB gratings facilitate vertical light emission [5, 6] and detection in the biased lasing and unbiased detector configuration, respectively. The two rings emit at two different wavelengths, which provides room temperature lasing and detection of two wavelengths monolithically integrated on the same chip.

Host: Maria Tamargo