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ABSTRACT
When linked data applications communicate, they commonly use
messaging technologies in which the message exchange itself is not
represented as linked data, since it takes place on a different archi-
tectural level. When a message cannot be verified and traced on the
linked data level, trust in data is moved from message originators to
service providers. However, there are use cases in which the actual
message exchange and its verifiability are of importance. In such
situations, the separation between application data and communi-
cation data is not desirable. To address this, we propose messag-
ing based on linked data, where communicating entities and their
messages are represented as interconnected Web resources, and we
show how conversations can be made verifiable using digital signa-
tures.

CCS Concepts
•Information systems→World Wide Web; •Networks→Web
protocol security; •Human-centered computing → Collabora-
tive and social computing systems and tools;
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1. INTRODUCTION
Linked open data allows applications on the Web to make their

data publicly available in a standardized form. This approach ef-
fectively transforms the Web into a large, distributed resource de-
scription framework (RDF) database that can be shared by all ap-
plications. While managing data is an important aspect of any pro-
gram, so is communication between entities within the application
or across system boundaries. This, however, typically requires the
use of subsystems that do not operate on the linked data layer. If
any information about the communication is to be made accessible
as linked data, it has to be converted to that format, thereby dupli-
cating much, if not all, of the data in two different architectural lay-
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ers. Making communications available as linked data is beneficial
in situations that, for example, require provenance tracking, or in
which the conversation between two entities constitutes a contract:
third parties with the responsibility of auditing or settling conflicts
may access and analyze the whole conversation in an automated
manner and understand the factual situation quickly. Parties want-
ing to evaluate whether to trust a given Web entity may analyze its
past conversations if given access. In the context of business pro-
cess automation, it may be beneficial to have access to the state of
all processes, including their message history. It has been stated
as one of the challenges facing the semantic Web stack that linked
data applications interoperate only on the data level, but questions
of provenance are largely unsolved; so is semantic user manage-
ment and cross-linking semantic applications [5]. To that effect, it
might be beneficial for the interoperability and modularization of
lightweight, interconnected Web applications to build upon a uni-
fied interface to data and communication.

We propose to use linked data for both communication and ap-
plication data. The initial motivation for our design is derived from
our effort to build a demand-driven marketplace infrastructure we
call Web of Needs [11]. Our approach aims to prevent modification
of messages by using cryptographic signatures and the modification
of conversations by chaining signatures of subsequent messages.

To the best of our knowledge, no messaging system that uses
linked data as message format and persistence layer has been pro-
posed to date. Closely related systems extend existing communica-
tion frameworks to allow for the transmission of RDF datasets [16],
focus on message composition but not persistence or publishing [1,
7], or are designed more generally for expressing provenance but do
not specifically address messaging [3, 12]. Other work has focused
on providing a model that supports a wide range of messaging sys-
tems for the sake of seamless integration in applications, but did not
aim for a standalone semantic Web based messaging system [14].
Another work integrates messaging with semantic Web agents [4].

2. OUR APPROACH
Although our messaging approach is applied with a specific ap-

plication in mind [11], we strove to develop a generic linked data
based messaging platform. In our approach, both messages and
communicating entities are part of semantic web data: each com-
municating entity and each message, including its payload and meta-
data, is an RDF resource identified by a URI and accessible as
linked data. The communicating entities use publishing services
of their choice as communication relays. Both the publishing ser-
vices and the communicating entities use WebID [15] to make their
public keys available. These key pairs are used to create the cryp-



tographic signatures referred to in the following.
The purpose of sending a message is the transfer of a number of

RDF graphs (called content graphs) from the sender to the recip-
ient. In order to achieve this, the sender first constructs a dataset
containing the content graphs. This dataset is then signed by the
sender: for each named graph in the dataset, a signature graph is
added, containing a cryptographic signature of the content graph.
An additional envelope graph is added to the dataset containing
sender URI, recipient URI, and a reference to the signatures of the
content graphs. Then, the envelope graph is signed by the sender.

As we want the message to be available as linked data, it must be
possible to de-reference its URI. It therefore must be transferred1

to an online service (the publishing service) that will provide the
data upon request. In order to defend against unauthorized copying
of the message, its URI is minted by the original sender within the
URI space controlled by the publishing service and is used within
the message itself.2 The sender’s publishing service creates an ad-
ditional envelope graph in the message dataset, adds a reference
to the previously outermost signature and a triple pointing to an-
other newly minted URI in the URI space controlled by the recip-
ient’s publishing service. The envelope graph is then signed by
the publishing service. This dataset is made available at the URI
that was minted by the original sender. With the addition of an-
other envelope and signature graph, reflecting the change of URI
from the sender’s to the recipient’s URI space, the message is then
transferred to the recipient’s publishing service under the new URI.
Upon receiving the message, that publishing service adds another
envelope, a reference to the previously outermost signature, and
signs the envelope by adding another signature graph. The result is
transferred to the recipient and made available at the new URI.

Communicating entities and publishing services send and re-
ceive messages using their URIs for addressing, messages them-
selves reference other messages or related linked data resources.
Messages are signed using the entity’s or publishing service’s pri-
vate keys and verified with the respective public keys. Authentica-
tion and access to participation in the conversation is based on dig-
ital signatures of the messages. Verifiability and traceability of the
communication during or after the conversation is achieved through
referencing signatures of previous messages or of the descriptions
of communicating entities in the innermost envelope graph.

2.1 Message composition
1 @prefix msg: <http://purl.org/webofneeds/message#> .
2 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
3 @prefix rdfg: <http://www.w3.org/2004/03/trix/rdfg-1/> .
4 @prefix sig: <http://icp.it-risk.iwvi.uni-koblenz.de/ontologies/

signature.owl#> .
5 <URI2/S/m2#c1> { # the content graph
6 <URI2/S/m2>
7 msg:hasTextMessage "Hey there!"^^xsd:string . }
8 <URI2/S/m2#c1s> { # signature of the content graph
9 <URI2/S/m2#c1s>

10 a sig:Signature ;
11 # some signature triples left out indicating algorithm and parameters
12 sig:hasSignatureValue "MGQCMDRsm4n77svH+hDK2CBkXJeLDRky..." ;
13 sig:hasVerificationCertificate <URI2/S/> ;
14 msg:hasSignedGraph <URI2/S/m2#c1> . }
15 <URI2/S/m2#e1> { # the inner envelope (added by the sender S)
16 <URI2/S/m2#e1>
17 a msg:EnvelopeGraph ;
18 rdfg:subGraphOf <URI2/S/m2> .

1The concrete way of transferring is not prescribed by our ap-
proach, be it an HTTP Post Request (or Get for the reverse direc-
tion), as a Websocket message or as the payload in another com-
munication system like e-mail or message-oriented middleware.
2The handling of URI clashes that may happen is beyond the scope
of this paper.

19 <URI2/S/m2>
20 a msg:FromOwner ;
21 msg:hasContent <URI2/S/m2#c1> ;
22 msg:hasMessageType msg:ConnectionMessage ;
23 msg:hasRecipient <URI1/R/> ;
24 msg:hasRecipientService <URI1/P/> ;
25 msg:hasSender <URI2/S/> ;
26 msg:hasSenderService <URI2/P/> ;
27 msg:hasSentTimestamp "1431964656854"^^xsd:long ;
28 msg:hasPreviousMessage [ msg:hasSignatureGraph <URI2/S/m1#e2s> ;
29 sig:hasSignatureValue "MGQCMG5Kw6kGjGTwJ1zjmLCJeICqCg23..." ;
30 msg:hasSignedGraph <URI2/S/m1#e2> ];
31 msg:referencesSignature [ msg:hasSignatureGraph <URI2/S/m2#c1s> ;
32 sig:hasSignatureValue "MGQCMDRsm4n77svH+hDK2CBkXJeLDRky..." ;
33 msg:hasSignedGraph <URI2/S/m2#c1> ] . }
34 <URI2/S/m2#e1s> { # signature of the inner envelope
35 <URI2/S/m2#e1s> a sig:Signature ; # some signature triples left out
36 sig:hasSignatureValue "MGQCMHFU3s0jbDNtRBYCXEJEehx3SAaO2..." ;
37 sig:hasVerificationCertificate <URI2/S/> ;
38 msg:hasSignedGraph <URI2/S/m2#e1> . }
39 <URI1/R/m2#e2> { # the outer envelope (added by the sender’s publishing service)
40 <URI1/R/m2#e2>
41 a msg:EnvelopeGraph ;
42 msg:containsEnvelope <URI2/S/m2#e1> ;
43 rdfg:subGraphOf <URI1/R/m2> .
44 <URI1/R/m2>
45 a msg:FromExternal ;
46 msg:hasRemoteMessage <URI2/S/m2> ;
47 msg:hasSentTimestamp "1431964657038"^^xsd:long ;
48 msg:referencesSignature [ msg:hasSignatureGraph <URI2/S/m2#e1s> ;
49 sig:hasSignatureValue "MGQCMHFU3s0jbDNtRBYCXEJEehx3SAaO2..." ;
50 msg:hasSignedGraph <URI2/S/m2#e1> ] . }
51 <URI1/R/m2#e2s> { # signature of the outer envelope
52 <URI1/R/m2#e2s> a sig:Signature ; # some signature triples left out
53 sig:hasSignatureValue "MGUCMQCGPBxuqFHo83rD6v7EF9tZIsaNo..." ;
54 sig:hasVerificationCertificate <URI1/P/> ;
55 msg:hasSignedGraph <URI1/R/m2#e2> . }

Listing 1: The message URI1/R/m2, as it is received by the
recipient’s publishing service, serialized in TriG.

In the following, we describe main aspects of message composi-
tion, illustrating them with Listing 1, an example message sent by
sender S to recipient R as it is received by R’s publishing service.

Message addressing. Each of the communicating entities and
the publishing services are addressed by their URIs. In our exam-
ple message R and S have the URIs URI1/R/ and URI2/S/, using
publishing services URI1/P/ and URI2/P/ (see lines 23–26).

Message URI. A message between communicating entities is
represented by two URIs: namely the URI it has on the sender side
and the URI it has on the recipient’s side. The message in the ex-
ample in Listing 1 is identified by URI1/R/m2 (line 44). It is the
recipient’s message URI and it is linked to its remote counterpart
URI2/S/m2 via msg:hasRemoteMessage relation (line 46). Each
message is also linked either to at least one previous message via
msg:hasPreviousMessage, or, if it is the first message in the conver-
sation, to both communicating entities via the msg:hasOrigin rela-
tion. In our example, the message specifies (lines 28–30) that its
previous message is a message with outer envelope URI2/S/m1#e2.

Message Graphs. The message is an RDF dataset identified
by the message URI. Content graphs, envelope graphs and signa-
ture graphs are named graphs whose names are composed of the
message URI and a fragment identifier. In order for messages to
remain verifiable after having been imported into a triple store, it
is required that there be no default graph in any dataset represent-
ing a message. Moreover, all envelopes are explicitly marked as
subgraphs of the message resource so that they can be collected in
an RDF store. In the example in Listing 1, the content part of the
message expressing the text message from R to S is represented as
a named graph with URI URI2/S/m2#c1 (lines 5–7), the envelope
parts are represented as named graphs with URIs URI2/S/m2#e1
and URI1/R/m2#e2 (lines 15–33 and 39–50), and the signatures



as named graphs with URIs URI2/S/m2#c1s , URI2/S/m2#e1s and
URI1/R/m2#e2s (lines 8–14, 34–38, 51–55).

Envelope Chaining. A message received by a publishing ser-
vice may need to be passed on, possibly after adding additional
data. When adding data, the message is composed in a chained
manner: previous messages and data are referenced from the newly
added data. This is implemented by creating a new envelope graph
each time new data is added, and by referencing the previous mes-
sage envelope and content graphs and their signatures from that
new envelope. The outermost envelope graph is the one that must
be processed first by the recipient to determine how to process the
message, working inward from there. Therefore, a message enve-
lope includes references to a content graph and/or to a preceding
envelope. In the example in Listing 1, the envelope URI2/S/m2#e1
references the message content URI2/S/m2#c1 by msg:hasContent
relation (line 21). When S’s publishing service prepares the mes-
sage for sending to R’s publishing service, it adds a new enve-
lope URI1/R/m2#e2. This new envelope references the envelope
URI2/S/m2#e1 by msg:containsEnvelope relation (line 42), build-
ing a chain. The signatures are referenced by the relation msg:
referencesSignature (lines 31–33, 48–50).

Message Signatures. Our approach is based on solutions for
cryptographic signing of RDF graphs [3, 10] and on approaches to
securing provenance information in distributed networks [8, 17].

We define a message to be signed when each envelope graph and
each content graph of the message is signed. The triples defin-
ing the signatures are placed in separate named graphs that are
part of the message. The example in Listing 1 demonstrates sig-
nature graphs URI1/R/m3#c1s, URI1/R/m3#e1s, and URI2/S/m3#
e2s (lines 8–14, 34–38, 51–55). The signature is defined by the
signature name (URI of the signature graph), by the URI of the
graph signed by this signature, by the resolvable signer URI (We-
bID) by which the signer’s public key can be obtained, and by the
signature value. Additionally, the signature contains the triples de-
scribing the signing algorithm (not shown in the example for the
sake of brevity). These triples are necessary in order to calculate
the hash for the signature verification in exactly the same way as
it was calculated during signing, and apply the same cryptographic
algorithm for verification as was used for signing.

We use the Signingframework library [9] for signing or verifying
RDF graphs, applying the algorithm developed by Fisteus et al. [6]
due to its minimum signature overhead in comparison to other al-
gorithms, as suggested by Kasten et al. [10]. Elliptic Curve Digital
Signature Algorithm (ECDSA) with 384-Bit curves is used as the
signature generation and verification algorithm.

Assigning a URI to a signature makes it possible to refer to sig-
natures. Such references allow for iterative signing by chaining the
signatures just like content and envelopes are chained, forming a
merkle tree [13]. Whenever a content graph or an envelope graph
is referenced from another envelope graph, a reference to the re-
spective signature graph is added. The signature reference includes
the signature graph name, the signed graph name, and the signature
value (lines 31–33, 48–50). For example, in Listing 1 the signature
URI1/R/m3#e1s is referenced from the envelope URI2/S/m3#e2.
Additionally, references to external document’s signatures serve as
a means to derive and verify message history. In the example in
Listing 1, the envelope URI2/S/m3#e2 references the signature of
the previous message, creating a verifiable sequence (lines 28–30).

2.2 Signing and Verification
Here, well-formedness, signing, and verification are defined.
Well-formedness. A message dataset D is said to be well-formed

if it satisfies the following conditions: 1. The default graph is empty.

2. It contains at least one envelope graph. 3. All graphs are either
signature graphs or a signed graphs. 4. The reference structure of
envelopes is a chain. 5. All values in signature references must be
identical to the values in the respective signatures. 6. There must
be exactly one envelope graph that is not referenced from within
any other envelope graph. 7. There must be exactly one signature
graph that is not referenced from within any other envelope graph.
8. Any signature graph references exactly one envelope graph or
one content graph. 9. Each envelope must be signed according to
sender/recipient information. 10. Any graph name must be a hash
URI based on its message URI. 11. Any message URI used must
conform to a pattern specified by the respective publishing service.3

Signing. This is defined as the process of adding a signature
graph for each unsigned named graph in the input dataset and col-
lecting the new signature information in an envelope graph that
eventually is also signed. Let K be the private key of the signer,
uK the URL for downloading that key; D = M∪E ∪C denote the
dataset constituting a message ready for signing, where E is the
newly added envelope graph, C denotes a set of newly added con-
tent graphs, and M is an RDF dataset that is either empty or well-
formed. It follows that if D is non-empty, it includes top-level sig-
nature graph St and top-level envelope graph Et that are both not
referenced from within the dataset. Then, Algorithm 1 defines how
messages are signed.

Algorithm 1: Signing a message dataset
input: K, uK , D
Result: RDF Dataset D contains the signed message

1 if D 6= /0 :
2 add reference to Et to E
3 add reference to St and its signature value to E
4 foreach c ∈C do
5 compute signature graph Sc for c using K and uK
6 add Sc to message dataset
7 add reference to c to envelope graph E
8 add reference to Sc and its signature value to E
9 compute signature graph SE for E using K and uK

10 add SE to D

Verification. The verification algorithm checks the message by
ensuring there are no unsigned graphs, verifying all signed graphs
against their signature and the signer’s public key, and makes sure
that the signature value of the signature graph references are cor-
rect. Let D denote a well-formed message dataset, the boolean-
valued function isSignatureGraph(G) test if a given named graph
is a signature graph, and the boolean valued function verify(g,s,K)
determines if the private key of K was used to create signature
graph s for graph g. Then, Algorithm 2 defines how messages are
verified.

3. EVALUATION
We evaluate the applicability of the proposed approach by mea-

suring performance during messaging. The time of a messaging
action is evaluated empirically by simulating a conversation in the
Web of Needs prototype [2]. Here, publishing services react to
messages with additional SUCCESS or FAILURE responses, con-
structed according to the same principles as the messages. Time
measurements were taken at different stages in this process: SENT

3The mechanism for obtaining and checking this pattern is covered
by a different part of our protocols and is not discussed further in
this work.



Algorithm 2: Verifying a message dataset
input : D
output: b:boolean indicating success

1 V ←− /0 /* set of verified graphs */
2 foreach s ∈ D do
3 if isSignatureGraph (s) :
4 K ←− public key referenced by s
5 g←− graph in D that is signed by s
6 if not verify (g,s,K) :
7 return false
8 V ←−V ∪{g,s}
9 return |V |= |D|

Stage Without signatures With signatures
SENT 11 21
SENDINGCONFIRMED 98 268
RECEIVED 106 341
RECEPTIONCONFIRMED 183 520

Table 1: Mean duration until stage reached (milliseconds)

– the sender has sent the message to its publishing service; SEND-
INGCONFIRMED – the sender has received the success response
from her own publishing service; RECEIVED – the recipient has
received the message; RECEPTIONCONFIRMED – the sender has
received the success response of the recipient’s publishing service.
The average duration over 500 chat messages is stated per stage in
Table 1. Each message contains a short chat text (about 30 char-
acters long) as its payload. The time measured depends on the
implementation as well as network and hardware characteristics.
For comparison, we provide time required for the same actions, but
excluding processing related to message signing, verification and
wellformedness checks.

Memory requirements are presented in Table 2. Here, we con-
sider the data generated at stage RECEPTIONCONFIRMED. The
numbers in brackets are sizes without signatures, documenting the
additional space requirements for traceability and publishing of
messaging metadata.

4. CONCLUSION
In this work we present a messaging framework based on linked

data and public-key cryptography. The cost of this approach is mea-
sured as additional execution time and storage space required for
the use of cryptographic signatures in our reference implementa-
tion. Future work will tackle end-to-end encryption of message
content and parts of the metadata, integration with existing key
management systems, and an approach to key revocation.
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originator datasets graphs quads size as TriG
user 2 20 (10) 200 (58) 26.5 kB (8.7 kB)
system 3 18 (9) 192 (69) 25.8 kB (10.4 kB)
total 5 38 (19) 392 (127) 52.4.kB (19.1 kB)

Table 2: Space per message at stage RECEPTIONCONFIRMED
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