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Abstract—Many high-precision motion systems are positioning
their mover close to the sample or target with a risk of collision in
a failure. In order to prevent damage, this paper proposes a fail-
safe system particularly for systems using flexure-guided Lorentz
(voice coil) actuators. In this paper, an atomic force microscope
(AFM) is used for demonstration. The flexures are deformed
during AFM imaging such that the mover with the probe can
be withdrawn from the sample by turning off the actuators in
a failure. To realize fast withdrawing motion without a sensor
for the protection of the probe and sample, this paper also
proposes to use the dynamic braking of the Lorentz actuators.
For an ideal braking force for fast settling, an optimal dynamic
braking resistance is derived to minimize the 2-norm of the mover
motion. Because the resulting optimal resistance is negative, it
is implemented by an operational amplifier. The experiments
demonstrate that the optimal dynamic braking reduces the
settling time of the mover by 86.7 %, and the fail-safe operation
is completed only within 54 ms.

I. INTRODUCTION

In many precision motion systems with nanometer resolu-
tion, a mover is suspended and actuated with respect to a
sample or target. Some examples are data storage devices,
such as hard disk drives [1] and optical disk drives [2]
having a read/write head positioning with respect to a disk. In
atomic force microscopes (AFMs), a sharp probe scans over a
sample surface for imaging its nanoscale features [3]. Certain
vibration isolation systems use Lorentz actuators (e.g. voice
coil actuators) to position an instrument (e.g. an AFM head
with the probe [4]) with respect to the sample, for high-quality
measurement without the influence of the floor vibrations [5].

In a failure of these motion systems, the mover can clash to
the target, due to gravity when the power is lost or due to an
external shock such as floor vibrations. For hard disk drives,
the recording media may be protected by hard materials such
as diamond-like carbon [6]. In the case of an AFM, however,
its probe is extremely fragile, and the samples can be soft
(e.g. photoresists and biological samples). Moreover, in the
case of on-site AFMs and the vibration isolation systems, the
floor vibrations can excite their mechanical resonances, signif-
icantly fluctuating the mover-sample distance, when feedback
control is turned off [4], [5]. Due to these factors, there is
a high risk of damage in a failure, and a fail-safe system is
desired for the motion systems.

This paper proposes a fail-safe system for AFMs using
Lorentz actuators as well as for vibration isolation systems

positioning an instrument. Fig. 1 illustrates the proposed prin-
ciple, using a Lorentz-actuated AFM as an example. The
mover with the probe is guided by flexures that are modeled
by the stiffness k and the damping coefficient c. During an
operation, the flexures are vertically deformed by ∆z with the
actuation force F such that the probe engages with the sample
(Fig. 1(a)). When the actuators are turned off in a failure,
F immediately becomes zero, and the flexures pull up the
probe, disengaging it from the sample to maintain the safety
distance ∆z for the protection of the probe and the sample
(Fig. 1(b)). Due to the simplicity, this fail-safe system is easy
to implement and reliable. However, it has a problem that c is
usually way smaller than the critical damping [7]. As a result,
the suspension mode resulting from the mover mass m and
k is strongly excited when the fail-safe system is triggered.
The probe oscillates and approaches the sample over and over
again, increasing the risk to clash. To solve the problem, the
dynamic braking of the Lorentz actuators is utilized for a fast
settling motion without oscillation in this paper.
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Fig. 1. Principle of fail-safe system. (a) The flexures symbolized by the spring
extends ∆z during AFM scanning. (b) The mover is lifted by the flexures,
disengaging the cantilever form the sample in failure.

Dynamic braking is available by using an electromagnetic
actuator as an electrical generator, where the kinetic energy
of the mover is dissipated by the resistance of the coil or
an additional resistor (i.e. dynamic braking resistor) [8]. The
use of dynamic braking force for the fail-safe system may
be regarded as an application of active damping with shunt
impedance [9]–[11]. Active damping using shunt impedance
is typically targeted to suppress externally excited vibrations
ideally by maximizing the damping dependent on the configu-
rations [12]–[14]. For the impedance design, active impedance
and admittance controllers allow to apply advanced control
methods, such as LQR or H2 control synthesis [12]. However,
the resulting controller is typically of high order, and hardware
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with sufficient power is required for the implementation [12].
In the case of the proposed fail-safe system, the objective is

to withdraw the mover from the sample for ensuring a safety
distance as quickly as possible, where an adequate braking
force, rather than the maximum, is required to suppress the
internally excited oscillation (cf. Section V-E). Additionally,
for high reliability, it is desired that the hardware implementing
the fail-safe system is simple and independent. In order to
satisfy these requirements, this paper further investigates the
fail-safe system with a dynamic braking resistor and presents
methods to determine an optimal resistor value. In the design
and implementation for experimental validation, special care is
taken to reduce the complexity and the number of components
of the fail-safe system, which is desirable to increase the
reliability and to decrease the cost.

Section II introduces an AFM system, for which the fail-safe
system is experimentally verified without dynamic braking in
Section III. To improve the fail-safe motion, the AFM system
is modeled in Section IV. An optimal dynamic braking resis-
tance is derived in Section V and implemented in Section VI.
Section VII presents the experimental results, and Section VIII
concludes the paper.

II. SYSTEM DESCRIPTION

For experiments, the fail-safe system is implemented for an
AFM capable of vibration isolation [15], the block diagram
of which is illustrated in Fig. 2. The mover is vertically
actuated by two identical flexure-guided Lorentz actuators
(AVA2-20, Akribis Systems, Singapore). Since the actuators’
Lorentz force is proportional to their coil current I , they are
individually driven by a custom-made current amplifier. On
the mover, a capacitive displacement sensor (6810(6504-01),
MicroSense, Lowell, USA) is installed to measure the distance
to the XY stage.

The AFM is intended for the use in vibrational environ-
ments, and the floor vibrations fluctuate the position of the
probe and the sample. To reject the vibrations, a feedback
controller generates the current amplifiers’ reference u, based
on the displacement sensor signal yd, such that the dis-
tance between the sample and the mover is maintained for
AFM imaging. An AFM probe (A-PROBE-10, Nanosensors,
Neuchatel, Switzerland) is attached to the mover and outputs
the deflection signal yp. Because the used AFM probe has
a relatively large measurement range of about ± 200 nm, the
deflection signal yp is directly used to generate an AFM image
(i.e. constant height mode [3]).

III. FAIL-SAFE SYSTEM WITHOUT DYNAMIC BRAKING

To evaluate the effectiveness of the fail-safe system pro-
posed with Fig. 1, the flexures are deformed downward ap-
proximately 20µm, and the feedback controller is turned on to
keep the distance between the mover and the sample constant.
The safety distance of 20µm is experimentally determined
by measuring the mover response to an impulse-like shock
applied to the floor when the feedback controller is turned off.
During AFM imaging, the amplifier reference u is set at zero
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Fig. 2. Block diagram of the AFM capable of vibration isolation [15] used
for the implementation of the fail-safe system.

to trigger the fail-safe system while the displacement sensor
signal yd, the AFM deflection signal yp and u are recorded.

Fig. 3 shows the results, where the fail-safe system is
triggered at time t= 0 s. Before t= 0 s, u varies approximately
between -50 mA and 100 mA to keep the tip-sample distance
constant against the floor vibrations (Fig. 3(c)). As a result,
the AFM probe images CD-ROM pits with a height of about
100 nm (Fig. 3(b)). When the fail-safe system is triggered at
t= 0 s, Fig. 3(c) shows that u is fixed at zero. The AFM
probe disengages from the sample, and yp immediately gets
out of the measurement range in Fig. 3(b). Fig. 3(a) shows
that the mover is eventually lifted about 20µm. After this
experiment, it is confirmed that the AFM probe is protected
and still operational. To check the reliability, this experiment
is repeated multiple times. In all the cases, the AFM probe
is protected under the vibrational environments, successfully
demonstrating the fail-safe system.

Although the experiments validate the effectiveness of the
proposed fail-safe system, yd shows a strong oscillation, and
it takes a long time until the mover settles down to ensure the
20µm safety distance. Particularly at the first swing back, if
impulse-like shocks are given to the floor, the probe may break
due to a lack of the safety distance. In order to shorten the
settling time for the suppression of the swing backs, dynamic
braking is utilized in the next sections. As the first step, the
AFM system with dynamic braking is modeled.

IV. MODELING

The flexure-guided AFM system can be modeled as a
damped mass-spring system, as shown in Fig. 1, where k and
c are the stiffness and damping of the flexures, as well as the
mover mass m. By using the vertical mover position z and the
sum of the Lorentz actuator force F , an equation of motion
is given by

F = m
d2z

dt2
+ c

dz

dt
+ kz. (1)

When the fail-safe system is triggered at t= 0, the Lorentz
actuators are individually connected to a dynamic braking
resistor Rb for the dynamic braking force. In this case, the
electric system can be modeled as shown in Fig. 4, resulting
in

VEMF = (Rb +R)I + L
dI

dt
, (2)
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Fig. 3. Recorded signals when the fail-safe system without dynamic braking
is triggered at 0 s: (a) displacement sensor signal yd, (b) AFM deflection
signal yp and (c) amplifier reference u.
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Fig. 4. Electrical model of the AFM system when the fail-safe system is
triggered with dynamic braking resistor Rb.

where I and VEMF are the coil current and the back electro-
motive force (EMF), as well as the resistance R and inductance
L of the Lorentz coil. The total Lorentz force F is

F = nKaI, (3)

where n and Ka are the number of the Lorentz actuators
and their motor constant, respectively. The back EMF is
proportional to the velocity of the mover

VEMF = −Ke
dz

dt
, (4)

where Ke is the back EMF constant. Note that Ka and Ke

take the same value in the case of Lorentz actuators [16].
From (1)-(4), a differential equation can be derived as

Lm
...
z+(Rtm+Lc)z̈+(Rtc+Lk+nKeKa)ż+Rtkz = 0, (5)

where Rt is defined as the total resistance of the electric circuit

Rt = R+Rb. (6)

The mover position during the fail-safe action can be obtained
by solving (5) with the following initial condition at t= 0

z(0) = ∆z,
dz

dt

∣∣∣∣
t=0

= 0,
d2z

dt2

∣∣∣∣
t=0

= 0, (7)

under an assumption that the mover motion during the AFM
imaging is far smaller than the safety distance ∆z. The
nominal values of the parameters are listed in Table I.

TABLE I
SYSTEM PARAMETERS

Parameter Value Unit Parameter Value Unit
m 0.86 kg R 3.4 Ω
k 13.8 kN/m Ka 7.20 N/A
c 15.3 N/(m/s) Ke 7.20 V/(m/s)
L 1.60 mH n 2 -

V. OPTIMAL DYNAMIC BRAKING AND RESISTOR

A. Boundary condition of resistor
The objective of the fail-safe system is to remove all the

energy stored in the system in a failure, such that the mover
stays at its equilibrium point z = 0. From the lumped models
(Fig. 1 and 4), the total energy E(t) of the system is given by

E(t) = {mż2(t) + kz2(t) + nLI2(t)}/2. (8)

The time derivative of the above equation can be arranged by
using (1)-(4) with Ka =Ke as follows

Ė(t) = −cż2(t)− nRtI
2(t). (9)

To keep removing the energy after triggering the fail-safe
system, the above equation needs to be negative for all the
time (i.e. Ė < 0). This requirement gives the lower bound of
Rt as follows

Rt > − cż2(t)

nI2(t)
, for t > 0. (10)

The problem of (10) is that the lower bound depends on
ż(t) and I(t), which are the solution of (5). For simplicity,
a sufficient condition Rt > 0 is used as the lower bound
instead. Notice that the above discussion complies with the
Lyapunov’s stability theorem [17] using E(t) as the Lyapunov
function. Thus, with the above sufficient condition, the system
is asymptotically stable.

B. Formulation of optimization
Because it can be a measure of the convergence speed of

the mover motion, a 2-norm is selected to evaluate a response
of the fail-safe system. Additionally, to eliminate the initial
condition dependency, the norm is normalized as follows

J(Rt) =
||z||2
|∆z| =

1

|∆z|

√∫ ∞

0

z2(t)dt. (11)

Using (11) as the objective function, the problem to derive
the optimal total resistance Rt,opt is formulated for fast
withdrawal of the mover as follows

Rt,opt = argmin
Rt

J(Rt). (12)
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C. Optimal solution

To find the optimal resistance, the objective function J(Rt)
needs to be evaluated iteratively. While it is possible to directly
compute the solution of the differential equation (5) for a given
value of Rt, a method to obtain J(Rt) without solving (5)
is desired to reduce the computation time and the numerical
errors. In order to do so, Equation (5) with the initial condition
(7) is expressed in the form of a state-space model

ẋ = Ax, (13)

using the following system matrix A

A =




0 1 0
0 0 1

−Rtk
Lm −

(
Rtc+nKaKe

Lm + k
m

)
−
(
Rt

L + c
m

)


 ,

(14)
and the state vector x with its initial condition x0

x =
[
z ż z̈

]T
, x0 =

[
∆z 0 0

]T
. (15)

The objective function is rewritten with the model as

J(Rt) =
1

|∆z|

√∫ ∞

0

xTQxdt, (16)

where Q is a matrix given by

Q =




1 0 0
0 0 0
0 0 0


 . (17)

Using this matrix, the Lyapunov equation [17] is introduced
as follows

ATP+PA = −Q, (18)

where P is a 3×3 matrix. Since the system is stable within
Rt > 0, Equation (18) can be solved for P, and J(Rt) can
be rewritten by replacing Q in (16) as follows [18]

J(Rt) = − 1

|∆z|

√∫ ∞

0

d

dt
(xTPx) dt =

√
p11, (19)

where p11 is the first element in the first column of P.
To obtain p11, (18) is solved by using the MATLAB

command lyap, and Fig. 5 shows the computed J(Rt) by
varying Rt. It can be seen that J(Rt) has the global minimum
at Rt = 1.24Ω, which is defined as the optimal total resistance
Rt,opt.

D. Analytical solution with L = 0

Although the above optimal total resistance required compu-
tation, it may be analytically obtained dependent on the system
design. Particularly when L is sufficiently small dependent on
the Lorentz actuator design, (5) can be approximated by a
second-order equation

mz̈ + ctż + kz = 0 (20)

using the total damping ct of the mechatronic system [19]

ct = c+ nKeKa/Rt, (21)
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Fig. 5. Computed objective function J(Rt), where Rt,opt and R indicate
the optimal total resistance and the Lorentz coil resistance, respectively.

which is tunable by Rt. A state-space model of (20) is given
with the following state vector and system matrix

x =

[
z
ż

]
, A =

[
0 1

−k/m −ct/m

]
for L = 0. (22)

By using the above A for (18) with

Q =

[
1 0
0 0

]
, (23)

to derive P, (19) analytically gives the objective function

J(Rt) =

√
c2t + km

2ctk
for L = 0. (24)

The derivative of the above function provides the optimal
damping ct =

√
km that minimizes J(Rt), which corre-

sponds to a damping ratio of 0.5.
The damping ratio of a second-order system is used for

design in many applications. In the case of Butterworth filters,
the damping ratio is set to 0.70 for the flatness of the pass-
band gain [20]. For typical converters, an overshoot of a step
response is forbidden, and they are designed to have a damping
ratio of one or larger [21]. In comparison with those, the
optimal damping of the fail-safe system is smaller, which is
beneficial to shorten the rise time of the fail-safe motion. The
resulting overshoot is not problematic since the mover goes
away from the sample, which justifies the use of the 2-norm
in the objective function (11).

From the optimal damping and (21), Rt,opt for L = 0 is
given by

Rt,opt = nKeKa/(
√
km− c) for L = 0. (25)

In the case of the used AFM, the above value is 1.11Ω,
which is 10 % smaller than the computationally obtained value
1.24Ω. Since this implies that L is too large to ignore for the
AFM, Rt,opt = 1.24Ω is used for the rest of the paper.

E. Simulation

To analyze the influence of Rt, the position z(t) is simulated
for ∆z = -20µm when Rt is set to 10Rt,opt, R, Rt,opt and
Rt,opt/10. The simulated results are shown in Fig. 6. With
10Rt,opt, a long lasting oscillation is visible due to a lack of
the dynamic braking force. Even if the actuator terminals are
shorted for Rt =R, the dynamic braking force is insufficient,
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resulting in swing backs. When Rt,opt/10 is selected as Rt,
the response is slow due to the excessive braking force.
In the case of the optimal resistance Rt,opt, the simulation
shows a fast response without an oscillation, demonstrating
the effectiveness of the optimal value.

VI. RESISTANCE IMPLEMENTATION

A. Design

When it is smaller than R, Rt cannot be implemented by a
passive component as indicated in Fig. 5, because the dynamic
braking resistor Rb takes a negative value due to (6). Thus, the
optimal resistance Rt,opt is realized by an operational amplifier
using the circuit in Fig. 7 [22]. To minimize the number of
the components, the Lorentz actuators are connected in series
with a negative resistor by a relay when the fail-safe system
is triggered. The 10 kΩ resistor in the circuit prevents the
operational amplifier’s input from floating while the Lorentz
actuators are disconnected for AFM imaging. Because its
value is way larger than the desired total resistance, the 10 kΩ
resistor is neglected in the circuit analysis.

By considering the virtual short, the negative resistance Rn

of the operational amplifier circuit is given by

Rn = Vin/Iin = −R1R3/R2, (26)

where Iin and Vin are the input current and voltage, respec-
tively. Since most of Iin goes through R1 to the operational
amplifier’s output, a low cement resistor of 4.7Ω is selected
as R1 to reduce its thermal dissipation. Since the actuators are
connected in series, and Rt,opt includes the coil resistance R,
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Fig. 8. Test circuit to validate the negative resistor Rn.

R2 and R3 are tuned according to (26) to take the following
value for the optimal dynamic braking force.

Rn = n(Rt,opt − r) = −4.32Ω. (27)

B. Validation

For the circuit validation, the relation of the input voltage
and current is investigated. The test circuit is shown in Fig. 8.
Because a power supply used as the variable voltage source
cannot absorb power, Rn is connected with an 8.2Ω cement
resistor in series, such that the total resistance of the test
circuit is positive to dissipate power. While the input voltage
Vin is changed, the input current Iin is measured by an
oscilloscope (DSO-X 4024A, Keysight, Santa Rosa, USA)
with a current probe (1147B, Keysight). From the results, the
implemented resistance is determined as -4.48Ω with a slight
implementation mismatch of 3.70 %, which would be due to
the tolerance of R1 (± 5%).

VII. EXPERIMENTAL RESULTS

For the experimental validation of the fail-safe system, it is
triggered at time t= 0 s while the mover is positioning with
feedback control. The measured mover position z in Fig. 9(a)
shows a delay of about 10 ms due to the reaction time of
the relay. When the Lorentz actuators’ terminals are open
(i.e. Rt =∞), the position shows a long lasting oscillation
without the dynamic braking force. However, by using the
implemented negative resistance Rn, a fast response is realized
without an oscillation. For a comparison, the settling time with
the ± 5 % band is calculated. When the actuators’ terminals
are open, the settling time is 406 ms. This long settling time is
decreased by 86.7 % to 54.0 ms by implementing the optimal
dynamic braking force with the negative resistance.

Fig. 9(b)(c) shows the coil current measured by the cur-
rent probe (1147B, Keysight) with the nominal noise up to
2.5 mArms. After the fail-safe system is triggered, the current
becomes zero in the case that the actuator terminals are open.
When the optimal negative resistance is used in Fig. 9(c), the
current shows a peak value of about 10 mA to generate the
dynamic braking force. Due to the small current and the short
settling time, only a small power is necessary to trigger the
fail-safe system (cf. [11]), and a battery or charged capacitor
may be used as the power supply, for example in case of
a power failure. Overall, the experiments demonstrate that
the optimized dynamic braking realizes a fast settling motion
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Fig. 9. Measured response with the trigger of the fail-safe system at t= 0 s
when the actuators’ terminals are open (i.e. Rt =∞) and when the optimal
total resistance is implemented (i.e. Rt = Rt,opt): (a) the mover position
and (b)(c) the coil current.

withdrawing the mover from the sample for the protection
without any sensor as a reliable fail-safe system.

VIII. CONCLUSION

This paper proposes the fail-safe system that disengages the
mover of Lorentz-actuated systems from the sample in case
of a failure in a time-optimal way, and an AFM is used for
the experiments. While the first experiments demonstrate the
protection of the probe attached to the mover, its motion has
a long-lasting oscillation, by which the probe approaches the
sample over and over again to increase a risk of collision.
This problem is solved by introducing the dynamic braking
of the Lorentz actuators. For the fast settling of the probe at
the safety position, the dynamic braking resistance has been
optimized and implemented by means of an operational am-
plifier for the experiments. The experimental results confirm
the effectiveness of the optimal braking force, decreasing the
settling time of the mover mounting the probe by 86.7 %
without oscillation.
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