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Figure 1: KYE is composed of three panes: (a) the interactive table view relates visualizations with original data values, (b) the
heatmap view supports both, investigating automatically detected problems and identifying additional data quality problems, and (c)
the statistics view provides additional information for an informed reasoning. Here we show how KYE helps to reason about possible
quality problems detected by automatic means. The heatmap (b) is configured (d) to relate different water measurement stations
(y-axis) with the hour the measurements were taken (x-axis). The color is mapped to the total amount of detected quality problems
for each heatmap cell. This reveals possible quality problems for measurements at station S18 at 12.00 noon. The tooltip shows that
most detected problems for this cell refer to missing values. By exploring these values in the table view (a) we reason that the sensor
which measures chlorophyll broke at 33 meter water depth, and thus, caused a big amount of missing values.

ABSTRACT

Sensible data analysis requires data quality control. An essential part
of this is data profiling, which is the identification and assessment of
data quality problems as a prerequisite for adequately handling these
problems. Differentiating between actual quality problems and un-
usual, but valid data values requires the “human-in-the-loop” through
the use of visual analytics. Unfortunately, existing approaches for
data profiling do not adequately support the special characteristics
of time, which is imperative to identify quality problems in time
series data – a data type prevalent in a multitude of disciplines. In
this design study paper, we outline the design, implementation, and
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evaluation of “Know Your Enemy” (KYE) – a visual analytics ap-
proach to assess the quality of time series data. KYE supports the
task of data profiling with (1) predefined data quality checks, (2)
user-definable, customized quality checks, (3) interactive visualiza-
tion to explore and reason about automatically detected problems,
and (4) the visual identification of hidden quality problems.

Index Terms: H.5.2 [Information Interfaces And Presentation]:
User Interfaces—User-centered design; I.3.6 [Computer Graphics]:
Methodology and Techniques—Graphics data structures and data
types

1 INTRODUCTION

The outcome of any automatic data processing or analysis can be
only as good as the quality of the data set that is processed. Real-
life data often contains quality problems which can be for instance
invalid, erroneous, or missing values, as well as outliers, or duplicate
records [7]. Some tasks may require perfectly accurate data, while
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others may be tolerant to some erroneous data entries. In any case,
the quality of the data at hand must be assessed to understand if the
data is fit for use. Data quality management includes data profiling,
data cleansing, and data transformation [12]. While data profiling
is concerned with identifying data quality problems in the data, data
cleansing deals with the correction of these problems, and data
transformation changes the data format to match given requirements.
Especially in data profiling, human judgment is needed because it
requires expert knowledge and reasoning about the data in its context
to understand if an unusual value presents an actual data error [13].
Again, other problems can be easily detected by automatic means.
Thus, a visual analytics (VA) approach lends itself to support the
task of data profiling by combining automatic quality checks with
visual exploration of the data.

A ubiquitous type of data are time series, which need to be ana-
lyzed and processed, for instance, in climate research or high-energy
physics. Time is a special data type that induces specific data quality
problems [9]. Moreover, time-dependent data values need to be
analyzed in their temporal context to be able to identify certain qual-
ity problems (e.g., too high numbers of produced items within an
hour, or huge velocity changes in very short time). In this paper we
present the design and evaluation of a VA prototype called “Know
Your Enemy” (KYE) which supports the task of data profiling – in
particular of time series data. In this context, our contributions are:

• the design and evaluation of a VA data profiling solution, with
special support for the characteristics of time series data which
is crucial to identify a number of data quality problems,

• a discussion of design choices and iterative design refinements,

• a discussion of lessons learned, and the derivation of further
research challenges.

2 RELATED WORK

Whereas data quality is a broad term, this paper specifically focuses
on data profiling for time series data. There are a number of VA
approaches tackling the problem of data quality. Profiler [14] is a
VA web application integrated with Wrangler’s [13] data transfor-
mation engine. It handles five categories of anomalies: missing,
erroneous and inconsistent data, extreme values, and key violations.
One key aspect of Profiler is that it automatically provides suitable
visualizations for different data types to give an overview of the
data and the automatically identified quality problems. It supports
date objects and the visualization of temporal bar charts. However,
Profiler does not specifically support quality problems induced by
time series data.

Talend Open Studio [28] is an open-source data profiling appli-
cation, which provides mainly statistics (minimum, maximum, and
missing values) about different data types of a data set (including
dates). However, finer temporal granularities such as hours, minutes,
and seconds, are not supported.

OpenRefine [30] is focused on the transformation of data sets
supported by statistics and visualizations. Temporal bar charts can
be used for detecting outliers, getting an overview about value distri-
bution, and filtering temporal ranges. The integrated GoogleRefine
Expression Language allows for user-defined transformation opera-
tions. While OpenRefine offers some implicit profiling means, it is
rather focused on supporting data transformations.

DataMatch [11] is specifically focused on the detection of du-
plicate data records. It provides simple statistics for different data
types, including dates. However, time of day is not supported and the
duplicate detection of dates is limited as it handles dates as Strings.

Other data quality tools that provide some profiling functionality
are DataManager [4], which provides profiling statistics, but does
not support temporal data types at all, and Datamartist [5], which
supports temporal data types as well as calculations such as day of

week, and whether the date is a weekday. It also supports value
distributions of years and months, but no finer granularities than
this.

These approaches do not specifically focus on time series data,
and thus special quality problems with respect, for instance, to in-
terval lengths, evenly spaced time stamps, gaps and overlaps of
intervals, plausible temporal ranges, or plausible time-varying data
values are not supported. There are only selected approaches that
focus on the quality of time series data and its special characteris-
tics [1, 2, 8].

The visual-interactive preprocessing of time series data [2] pre-
sented by Bernard et al. is a system for preparing time series data for
further processing by means of data reduction, data normalization,
data segmentation, descriptors, and similarity measures. Thus, this
solution supports data cleansing operations of time series but no data
profiling.

TimeCleanser [8] is a VA prototype providing a number of auto-
matic checks with a special focus on time-induced quality problems.
Moreover, it provides visualizations such as line charts, bar charts,
and heatmaps that help to detect anomalies. However, these charts
provide predefined views on the data which cannot be configured
flexibly enough to allow for a detailed exploration of all aspects of
the data. In addition, it does not provide interactive visualizations
to explore and reason about the quality problems detected by the
provided checks.

Visplause [1], on the other hand, is a system for inspecting the
quality of many time series at once. It provides automatic data
quality checks, such as missing values, constraint violations, and
anomalies, as well as visualizations to communicate the number
of quality problems within each time series. Thus, it is rather spe-
cialized on communicating an overview to understand if the data
is ready to use. Another difference of Visplause compared to our
approach is that it mostly communicates the results of automatic
checks but does not provide means for the identification of additional
hidden quality problems.

Besides existing VA approaches, taxonomies of data quality prob-
lems provide valuable information to understand which tasks and
problems should be supported by a data profiling solution. There are
a number of taxonomies of general data quality problems [15,23,25],
while Gschwandtner et al. [9] provide a taxonomy including impor-
tant quality aspects for time series data. Thus, we use this taxonomy
of dirty time-oriented data as a basis for our work.

3 KYE
To fill these gaps, i.e., designing a VA solution which (1) runs
(predefined and user-defined) automatic checks to identify quality
problems, (2) communicates these problems to the user, (3) pro-
vides interactive visualizations to investigate them, and (4) provides
visualizations to identify additional quality problems, we have de-
veloped KYE. In this section we describe the requirements, the
iterative design process, the provided automatic quality checks, the
design choices, and the provided interaction functionality of our VA
solution.

3.1 Requirements
In a first step we identified desirable features of our prototype by
deriving open challenges from the works discussed in Section 2,
by reviewing related literature (in particular the taxonomy of dirty
time-oriented data [9]), and from our long-lasting experience with
data quality work from previous projects. In particular, this resulted
in the following list of requirements:

R1 Data quality checks: Our VA solution should provide prede-
fined, ready-to-use, automatic quality checks, as well as the
possibility to define customized quality checks, ensuring its
adaptability to a multitude of application domains. Providing



automatic means is essential to facilitate common laborious
profiling tasks.

R2 Exploration of quality problems: Our VA solution should com-
municate automatically detected data quality problems and
make them explorable, so that the user can investigate context
and possible causes of quality problems, and make informed
decisions how to best handle them.

R3 Identification of hidden problems: Our VA solution should,
in addition, provide means to explore the data at hand, and
identify further data quality problems that were not detected
by automatic means.

R4 Scalability: Our VA solution should provide a scalable
overview of quality problems of possibly huge data sets.

3.2 Iterative design
For the design and implementation of our prototype, we followed an
iterative design process. In a first step we analyzed the data, users,
and task [20] we were going to tackle: (1) As we cannot support all
data formats and types possible, we decided on some constraints
which will still be met by the data of a multitude of domains: our
prototype should support data tables containing ordinal, numerical,
and temporal data. (2) In addition, we defined our target users
as experts in their respective domains and data analysts, having
some experience with computer-supported data analysis, and (3)
we focused on the task of data profiling, i.e., identifying quality
problems of a given data set. Moreover, our design was guided by
the nested model for visualization design and validation [22].

Our first designs were sketches that illustrated how different
visualization techniques could be used to foster the identification of
specific data quality problems from Gschwandtner et al. [9]. Figure 2
(a) shows a time-line chart to identify abrupt changes of numerical
values over time and Figure 2 (b) shows a chart displaying intervals
as bars over time to identify irregularities in duration lengths. This
resulted in a number of chart types, each aimed at supporting the
identification of a specific quality problem. Thus, we shifted to more
flexible visualization methods that could be used to communicate
a multitude of problems. Figure 2 (c) shows a bar chart over time
stacking different types of quality problems. However, in further
design iterations we settled for a heatmap visualization (see Figure 2
(d)), as it best suited our needs (see Section 3.4). In a next step, we
implemented a first proof-of-concept prototype to get a better feeling
for our visualization design and for the interactions that are needed
to support data profiling (see Figure 2 (e)). Eventually, Figure 2 (f)
shows the final prototype including a statistics panel on the right and
various interactive features.

3.3 Automatic Checks
For an efficient profiling process KYE provides a number of pre-
defined quality checks (requirement R1). Each of these checks
tackles one or more quality problems specific to time series data
from Gschwandtner et al. [9]:

• Timing of values: checks if the time-stamps of data entries
are evenly spaced. Users must specify the column(s) to check
and the raster length. If the raster length is not provided, is
is guessed automatically from the data. The check identifies
entries that do not fit into this time raster as well as missing
time-stamps.

• Interval lengths: checks the length of intervals in the data set
defined by two points in time (start and end). An interval is
valid if it has a positive length (the start time is before the end
time). Optionally, it checks if the length of the interval is ei-
ther within certain bounds (user-defined bounds or statistically
derived from the data) or all intervals are of same lengths.

• Matching temporal ranges: checks if entries with different
keys lie within the same temporal range (with some tolerance),
to check, for instance, if the data set covers similar time ranges
for different departments.

• Plausibility of times and values: checks if time-stamps and val-
ues are plausible. For instance, outlying time-stamps (far away
from the majority of time-stamps or far away from their neigh-
boring time-stamps) or values on weekends or during the night
are identified as suspicious. The same applies to outlying quan-
titative and nominal values. The parameters for plausibility
are either defined by the user or derived by statistical methods.
We provide two outlier detection methods [24]: (1) for each
value we compute the distance to the kth nearest neighbour and
identify as outliers the n values with the largest distances, and
(2) we identify outliers with fewer than k neighbours (within a
given distance) in the data set.

• Plausibility of duration-dependent values: checks if numerical
values that are associated with a time interval and are expected
to vary with duration (e.g., the number of items produced for
different temporal aggregations: hour, day, etc.) are plausible,
for instance, higher quantities for longer time intervals or simi-
lar quantities per minute. Again, the plausible ranges can be
defined by the user or statistically computed.

• Valid sequences: checks if the temporal sequence of values
is correct (times and values), for instance, quantitative values
that are supposed to be rising or falling with time or nominal
values that should follow a given sequence.

• User-definable checks: users can define specialized checks by
entering regular expressions.

These checks are applied by choosing a check from the menu
and configuring its parameters. Invalid data entries are flagged to
be further explored with the heatmap and table view provided by
KYE. However, in the scope of this paper we focus on the interactive
visual exploration of these automatically detected problems and the
interactive visual detection of additional hidden problems.

3.4 Design Decisions
In addition to analyzing the works focusing on data quality (see
Section 2), we took a step back and analyzed the suitability of basic
visualization techniques to our needs. To this end, the TimeViz
Browser [29], a collection of more than hundred scientific visualiza-
tion techniques, was an important source of inspiration. We printed
all visualization techniques for a first brainstorming session and iden-
tified five different approaches potentially suitable to communicate,
explore, and identify data quality problems:

1. Stacked bar charts: This visualization could be used to stack
annotated data quality problems in a bar chart, each bar repre-
senting either an instance of a user defined temporal granularity
(e.g., each bar representing one day), or any parameter of the
underlying data set (e.g., each bar representing temperature).
The height of a bar would allow for the immediate identifica-
tion of accumulations of quality problems. However, the aspect
ratio of such a chart makes it a less ideal match for our needs
(i.e., providing an overview of huge amounts of data entries).
Moreover, specifics of time series data, such as calendrical
phenomena (e.g., a problem occurs each day at 10 am) cannot
be supported.

2. ThemeRiver [26]: Using a ThemeRiver-like visualization
would be an option to show the trend of different types of
quality problems over time. Again, this visualization has prob-
lems with scalability and the support of calendrical phenomena.



Figure 2: Iterative design process. The mockups and designs choices that finally led to the design of KYE range from simple sketches to high
fidelity prototypes. The sketches in (a) and (b) were among our first ideas to detect specific quality problems. We considered (a) a time-line chart
to identify abrupt changes of numerical values over time and (b) a chart displaying intervals as bars over time to identify irregularities in duration
lengths. The stacked temporal bar chart in (c) was designed to communicate a multitude of quality problems in one graph. In (d) we already
contemplated a heatmap visualization and sketched out the arrangement of different views. The first high fidelity prototype (e) was used to verify
the design choices and help to understand what interactions would be needed. (f) shows the final design of the prototype.

Investigating the data at different time granularities can also
not easily be solved with this type of visualization.

3. Spiral graphs: An interactive spiral graph [31] could be used to
address calendrically occurring data quality problems. Draw-
backs include the difference in visual saliency of phenomena of
the same magnitude, depending on their position in the spiral
(items close to the center are mapped to lesser space than items
at the outer rings). Moreover, the spiral graph only displays
time on the spiral axis, whereas we wanted to provide a solu-
tion flexible enough to contrast time with time (e.g., months
on x-axis and days on y-axis), time with a non-temporal data
type (i.e., a temporal data type on one axis and an ordinal or
numerical data type on the other axis), or two non-temporal
data types (non-temporal data on both axes).

4. Calendar-based visualizations: A Tile Map [21] or
GROOVE [17] could be used to display the amount of de-
tected data quality problems mapped to color or opacity and
grouped by temporal granularity. Therefore users might dis-
cover calendrically occuring data quality problems.

5. Heatmaps: Similar to the calendar-based visualization tech-
niques described above, conventional heatmaps could be used
to present the data grouped into smaller bins and a quanti-
tative value mapped to color or opacity. However, conven-
tional heatmaps do not necessarily support the grouping of the
data based on temporal granularities or calendrical structures.
However, by mapping the two available axes of conventional
heatmaps to non-temporal data types, it is possible to detect
interesting patterns and irregularities.

Considering these results, we decided to combine the strength
of both, calendar-based visualizations and heatmaps. Thus, we
settled for a two-dimensional heatmap visualization in combina-
tion with temporal/calendrical aggregation functions (e.g., aggregat-
ing all Mondays). When employing suitable aggregation methods,
heatmaps scale well to give an overview of large data sets (require-
ment R4), while on the other hand, when combined with zoom and
filter techniques, they are also suited to scrutinize the data on a fine
grained level. The two axes allow to relate two different temporal
granularities, for instance, weekdays on the x-axis and hours on the
y-axis, which is suited to visualize daily/weekly/monthly profiles.
Moreover, heatmaps allow for the visual identification of outliers
(see Figure 3a), trends, patterns (see Figure 3a and b), and seasonal
behavior (see Figure 3c) in time series data. Heatmaps can also be
configured to visualize cyclical patterns similar to spiral graphs, for
instance, by displaying days at the x-axis and years at the y-axis.

In addition, they are also suited to set into relation any other two
non-temporal data dimensions (quantitative or nominal) to investi-
gate dependencies and correlations, and thus, to find additional data
quality problems.

3.4.1 The Heatmap
Aiming for a flexible, domain-independent approach, we allow users
to configure the heatmap visualization to serve their specific needs
(see Figure 1b).

Binning A user can map any columns of the data set to the axes
of the heatmap, i.e. either quantitative data (e.g., price), nominal data
(e.g., category) or temporal data (e.g., time of purchase). Thus, users
have the ability to interactively change and combine axes regarding
to their needs. Moreover, the step-width of axis ticks can be modified.
This parametrization of axes defines the binning of data tuples. A cell
of the heatmap contains a subset (list of tuples) of the data which falls
into the ranges defined by the axes. Temporal axes (based on date
entries, time entries, or both) display data in the provided temporal
granularity. From, there the user can group the data into coarser
granularities by zooming out. Nominal axes render categorical data
sorted in alphabetical order. These categories represent the nominal
entries included in the selected data column, and thus, the amount of
categories depends on the amount of different nominal values within
this column. A huge number of different nominal values would
lead to a rather pixel-based representation. This can be used as a
starting point to zoom into selected categories for further exploration.
Quantitative axes represent a linear range of a column’s minimum
value to its maximum value. In contrast to temporal or nominal data,
quantitative data, in particular floating point data, has no natural
non-decomposable unit which can serve as the step-width of the axis.
Therefore, the user needs to define the step-width for quantitative
axes. Our visualization allows scrutinizing the data set at hand by
interactively mapping

• both axes to different time granularities, which fosters the iden-
tification of nested calendrical phenomena (e.g., accumulation
of problems on Mondays, 10 am),

• one axis to a time granularity and the other axis to a non-
temporal data column, which fosters the identification of cal-
endrical phenomena with other data parameters (e.g., accu-
mulations of problems on Mondays in a certain department),
or

• both axes to non-temporal parameters of the data set, which
allows for the detection of data relations and patterns, as well
as irregularities that might hint to data quality problems (e.g.,



accumulations of problems at low temperatures in combination
with certain materials).

Cell Coloring With flexible configuration of axes we offer dif-
ferent views on the data for data profiling. The color mapping of
the heatmap cells holds additional possibilities for the detection
of quality problems. We do not only strive to make detected data
quality problems explorable within their context, but also to foster
the identification of overlooked problems. Thus, our visualization
supports different ways of mapping data to cell color (see Figure 3):

• Number of detected problems: To communicate automati-
cally detected quality problems and make them explorable,
KYE provides mapping cell color to the number of detected
quality problems. Furthermore, users can choose to only show
specific types of quality problems or all quality problems at
once. Hence, users can explore and analyze the distribution
of detected quality problems (requirement R2) and identify
possible peculiarities.

• Tuple count: A straight-forward but essential way for iden-
tifying irregularities in the data is mapping cell color to the
amount of tuples within a bin. This helps to get an overview of
occurrences of tuples and their distribution, and thus, identify
potentially hidden quality problems (requirement R3).

• Calculated key figures: Another option is to color the cells
according to key figures calculated from parameter values. For
instance, a data of items sold in a museum’s shop may contain
a data row for each opening hour, and the amount of items sold
within this hour is given by a numeric value. A selected bin of
our visualization may represent sales on Monday, December
1st, 2016. Thus, it is not of interest to map the tuple count (i.e.
opening hours of this Monday) to cell color, but we need to
calculate the sum of sales during this period. KYE provides the
following key figures: count (of entries), distinct count (count
of distinct entries), median, sum, mean, standard deviation,
minimum, and maximum values. While sum, mean, standard
deviation, minimum, and maximum can only be applied to
numerical data, count, distinct count, and median can also
be used for ordinal and temporal data. This mode is also
aimed at identifying potentially hidden quality problems
(requirement R3).

Moreover, we provide a variety of color scales (from Color-
Brewer [10]), since there is no single color scale that would fit
any need. For instance, depending on the user’s culture and social
background, it could be confusing to map hot temperatures to blue
values. As most color palettes map low values as a very light color,
it can be difficult to differentiate between heatmap cells that contain
low values and empty heatmap cells. In many cases this might not
be a problem, however, we are especially interested in identifying
bins containing a very small number of values, as they may indicate
quality problems. Thus, we introduced a dotted background pattern
to the heatmap to make these cases visually distinguishable. Another
way to emphasize outliers on each side of the spectrum is to choose
a diverging color scale.

3.4.2 Table View
For being able to reason about suspicious data or data with auto-
matically detected quality problems, it is essential that the user can
connect the visual representations that point to these patterns to the
original data values. Thus, we provide a table view showing the raw
data table (see Figure 1a). Table cells that contain data for which a
problem was detected have colored backgrounds, using a qualitative
color scale to encode different types of data problems by different
colors hues. A blue border is added to the table cell if it contains
data that was selected in the heatmap. On the right side of the table’s

scroll bar, we place a summary view of table entries selected in the
heatmap, and their position within the table. As these entries can
be spread across the table, an automatic navigation to one table row
after selecting a heatmap cell does not make sense. Thus, we provide
these visual markers as interactive navigation aids. When the user
selects a marker, the table is automatically scrolled to the respective
position.

3.4.3 Statistics View

The statistics view (see Figure 1c) consists of three box-plots and
two histograms. The three box-plots summarize different aspects
of the data in a selected heatmap cell: distribution of values on the
x-axis, distribution of values on the y-axis, and distribution of values
mapped to color (given that these are numerical values). The two
histograms show the values that are mapped to the color of heatmap
cells (i.e., number of detected problems, tuple count, or calculated
key figures) for each axis, to offer a different perspective on these
numbers.

3.5 Interactions

For the design of the interactive functionality provided by KYE we
implemented the Visual Information Seeking Mantra by Shneider-
man [27]:
Overview: A good overview of the data and existing quality prob-
lems is realized by the heatmap visualization and the possibilities
to configure the mapping of data to axes and cell color. Further
interaction means to configure the overview to the user’s needs are
step-width and the computation of key figures about the data and
subsequently mapping these to cell color (see Section 3.4).
Zoom & filter: We provide zooming into a heatmap cell. To this
end, we need to consider three different ways of zooming: (1) If a
heatmap axis represents numerical data, we zoom into the numerical
interval associated with the cell. (2) If an axis represents temporal
data, we zoom into the respective temporal interval and switch to the
next finest temporal granularity to be represented by that axis. For
instance, zooming into a heatmap cell representing the year 1999
would change the axis granularity to represent months of the year
1999. (3) Nominal data can be zoomed in until the axis represents
only one nominal bin. We provide zooming into heatmap row, col-
umn, or both, and zoom levels also affect the data displayed in the
statistics view. Moreover, it is possible to perform nested zooms
(e.g., first zooming into a selected range on the x-axis, and from
there, zooming into a selected range on the y-axis). For orientation,
we provide breadcrumb-like filter levels below the heatmap, which
work as interactive buttons to easily clear selected zoom levels.
Details-on-demand: We implemented different ways to explore
details. On the one hand, tooltip texts give further information on
hovered heatmap cells. For instance, if the heatmap color is mapped
to the number of detected quality problems, the tooltip shows a
textual description of the number of prevalent data quality types. On
the other hand, the data table (original data entries) and the statistics
view (box plots, histograms, and statistics figures) give further de-
tails about the selected data from a different perspective.
Relate: We link the representation of detected quality problems
to the original data entries in the table. Selecting a heatmap cell
not only brushes the corresponding table elements, but also causes
the appearance of interactive markers next to the table’s scroll bar
(similar to TODO-markers implemented in Eclipse IDE [6]), that in-
dicate the location of all corresponding data entries within the table.
Clicking on such a marker causes the table to scroll automatically to
the clicked table element.
History: We provide a breadcrumb-like history of zoom actions.
With this, each zoom level (and filter operation) can be undone.
Extract: The extraction of user-defined quality checks would be a
good addition to the functionality of the prototype and is planned in
future work.



Figure 3: Different ways of color mapping provide different views on the data, relevant to understand possible data quality problems. The data
and axes configuration of the heatmap are the same in each picture: months on the x-axis and stations on the y-axis. The color mapping in
(a) encodes the amount of detected quality problems for the data in each heatmap cell. This reveals that February, August, and December are
especially error-prone for almost all stations. Moreover, there was an unusual amount of errors detected for station S18 in April. In (b) we map the
tuple count to color. There are more measurements taken at station S18 than at other stations. (c) shows mapping a calculated key figure, i.e. the
mean temperature for each heatmap cell. This points to an outlying high mean temperature in December.

4 USE CASES

In this section we give two examples to illustrate how KYE can
be used for different profiling tasks. The first example shows how
KYE can visualize already annotated data entries to identify pos-
sible causes and relations. The second example illustrates KYE’s
support for visually detecting additional quality problems that might
have been overlooked by automatic means. To this end, we use an
adapted data set from U.S. Geological Survey containing measure-
ments about water quality of San Francisco Bay [3]. It contains
measurements at specific times, depths and stations providing infor-
mation about temperature, salinity and oxygen.

4.1 Communicating Automatically Detected Problems
We outline how to use KYE to explore and reason about the data
quality problems detected by automatic checks. In Figure 1b we
configure the heatmap axes to show the different stations (y-axis) in
relation to the time of measurement (x-axis). This reveals an x-shape
which indicates that measurements start at station S1 and end at
station S38 (or the other way around) and are taken in sequence. As
we are interested in identifying error-prone measurement stations,
we map the color to the amount of quality problems detected for
each heatmap cell. This reveals prominent dark colors for measure-
ments at station S18 taken around 12.00 noon which means that the
vast majority of automatically detected errors happen at this station.
When hovering this cell, the tooltip shows that most of these prob-
lems are caused by missing values (see Figure 1b). By brushing this
cell the corresponding raw data values are highlighted in the linked
table view (Figure 1a) and interactive markers next to the scroll bar
indicate their position. Clicking on these markers facilitates the
navigation to the respective table rows. We investigate the raw data
values in the table view and reason that the sensor that measures
chlorophyll values must have broken at this day at 33 meter water
depth, which caused missing values for the subsequent measure-
ments at deeper water levels. Moreover, the heatmap shows that
data quality problems accumulate also for station S19 at 12.00 noon.
This might indicated that the failure of the sensor was not noticed
immediately and also led to some missing values for measurements
at station S19. This visual exploration of automatically detected
problems and relating them with the raw data values allow the user
to make informed decisions if these detected quality problems are
actually wrong data entries or if they are extreme but still valid.

4.2 Identifying Additional Data Quality Problems
After exploring and verifying problems detected by automatic
checks, we now freely explore the data to see if there are other
problems that were overlooked by the automatic checks. A domain

expert might have some guesses where to look for such problems.
Another possibility is to explore the data set step by step by trying
different axis configurations with different (temporal) granularities
and mapping the color to different data values. Figure 4 shows such
a setting, mapping day of month and water temperature to axes and
chlorophyll values to color. This reveals a suspicious non-empty
heatmap cell with salinity values for very low temperatures at the
eights day of month (Figure 4a). When selecting this heatmap cell
and highlighting the corresponding data entries in the table view,
we see that salinity values, as well as oxygen and oxygen saturation
[%] were flagged as missing values by automatic checks (yellow
background in the table view). However the unusual low tempera-
ture values were not detected (Figure 4b). Adjacent table rows show
temperatures about 10 Celsius, so this is likely to be a data quality
problem. Moreover, we spot a non-empty heatmap cell of unusual
high temperatures about 27 Celsius on the third day of month (Fig-
ure 4c). The histogram in the statistics view reveals another anomaly,
which we can also find in the heatmap. There are no measurements
at the second day of month (Figure 4d). A side effect of exploring
data quality problems with KYE is that an inexperienced user auto-
matically gains a deeper understanding of the data set. For instance,
from the given heatmap configuration we learn that temperature and
chlorophyll do not correlate – otherwise the coloring of the heatmap
would result in a gradient pattern. The very dark colors of single
cells (Figure 4e) give additional hints to outlying chlorophyll values
which should be further investigated to understand if these values
are valid or if they result from data quality problems.

5 EVALUATION

To evaluate the usefulness of our prototype and to gain answers
to our research questions, we performed a qualitative study with a
special focus on revealing insights. To this end, we let six target
users execute five tasks covering the different profiling tasks we
wanted to support with KYE.

Sample For our evaluation we recruited six target users without
any knowledge of our prototype. They qualify as target users as
they are all working in IT, they all had to assess the fitness-for-
use of data sets before, and they all have some experience with
computer-supported data analysis. For data analysis they mainly
used Microsoft Excel [19] to identify quality problems or to filter
data for management needs.

Data We used the U.S. Geological Survey containing measure-
ments about water quality of San Francisco Bay [3] also for eval-
uating our prototype. We provided our participants with a subset
of the data set, containing the columns: timestamp, station number,
depth, chlorophyll, oxygen saturation [%], oxygen, salinity, and



Figure 4: An example of how KYE can be used to detect quality problems that were not detected by automatic checks. The x-axis of the heatmap
shows day of month and the y-axis shows water temperature, while chlorophyll values are represented by color. We can identify two suspicious
heatmap cells with unusual high (c) and unusual low temperatures (a). When selecting the cell with low temperatures (a), the linked table view
shows the raw temperature values (b). Considering the neighbouring temperature values we reason that these unusual low temperatures must be
a data quality problem. Moreover, there are no measurements on the 2nd day of month (d). And dark colors in the heatmap point to outlying mean
chlorophyll values that might also present quality problems (e).

temperature, as well as measurements from a period of five years
(2012–2016), so that users were able to get familiar with the data
set in the limited time of our study. As we were rather interested
in evaluating the interactive visualization and exploration means
of KYE and not how well participants could manage to choose au-
tomatic tests from the menu and to configure their parameters to
their needs, we provided them with a pre-processed data set (i.e.,
automatic methods were already applied and detected problems were
flagged, such as missing value, value too high, or unexpected value.

Tasks For the study we prepared five typical tasks to evaluate
the strengths and weaknesses of KYE for profiling of time series
data:
T1: Explore automatically detected quality problems. Identify
and explore flagged quality problems. Can you identify patterns
where or when specific problems occur?
T2. Identify additional quality problems. Identify measurement
stations which are most error-prone. Which stations improved or
decreased their measurement quality over the last years?
T3. Identifying possible causes. There is a significant amount
of data quality problems within some of the stations. Identify the
exact time when these problems occur (hint: zoom). Can you find
correlations of data quality problems across different stations?
T4. Statistics view. Configure the x-axis to encode the column
timestamp, as temporal data type with granularity day of month and

a step-width of 1. Set the y-axis to encode the column temperature,
with a step-width of 5. What can you tell about the measurement
distribution when you look at the heatmap in the statistics view?
T5. Statistics.
T5a. Identify the coldest and hottest month.
T5b. Identify the following statistics of temperature and salinity:
minimum, maximum, mean, median, and standard deviation.

Task 1 is designed to evaluate the visualization techniques of
already annotated data entries. Task 2 and 3 are designed to evaluate
KYE’s means to identify further data quality problems and explore
possible causes. Task 4 and 5 cover the statistical information pro-
vided by KYE. Moreover, we encouraged participants to take their
time for freely exploring the data between or during tasks.

Sessions The sessions were conducted by one developer and
one respective study participant in a quiet meeting room. The devel-
oper acted as observer for taking notes and supporting the participant
if he/she had any logical or technical questions. The test sessions
started with an introduction of the prototype and the test data set.
Moreover, we conducted semi-structured interviews to learn about
their previous experiences with visualization techniques and data
analysis. Subsequently, the participants were asked to solve the given
tasks using the thinking aloud protocol [18] to phrase whatever they
encountered or thought while they were working with KYE. After
they completed the tasks, we interviewed them about their impres-



sion of the prototype, and how they would rate the usefulness of its
visualizations and interaction features. We also asked for possible
improvements, missing features, and missing visualizations.

5.1 Results

The data collected from the evaluation study consists of notes of
observations, audio recordings of the thinking aloud, and answers
to interview questions. We analyzed it to understand strengths and
shortcomings of KYE and what kind of findings are fostered by
working with the interactive visualization. To analyze these findings,
we adapted five categories from Klein [16] for gaining insights, and
categorized our evaluation results accordingly:
Connection findings result from the identification of a connection
between two or more events.
Coincidence findings result from the identification of unexpected
relations between events, which results from repetition and not from
detail information.
Curiosity findings are findings gained from the exploration of a
single event that caused the user’s curiosity.
Contradiction findings occur if there is discrepancy between events
which causes doubts.
Creative desperation findings result from explorations that lead
into dead-ends and requires the user to find new ways.

All tasks have been solved by all participants with an average
duration of 60 minutes, while the pre- and post-interviews together
took about 50 minutes. In total, we identified 91 findings that were
gained by our participants (between 6 and 24 per user). Users who
spent more time exploring the data set with KYE gained more find-
ings about the data and its quality problems. We also observed
differences in our study participants. One participant was mainly
concerned with solving the tasks without much additional explo-
ration, which resulted in the lowest amount of findings. Another
participant understood each task as a starting point to dig into the
data set, which resulted in the highest amount of findings.

5.1.1 Types of Findings

Most of the findings were curiosity findings (31.8%) and contradic-
tion findings (29.7%). Less often we could attribute the findings to
connection (18.7%) or coincidence (15.4%). Creative desperation
was the cause of only 4.4% of findings gained. Moreover, we an-
alyzed which of KYE’s features caused how many findings. The
heatmap visualization led to the majority of findings (65,9%), the
interactive table resulted in 30.8% of all findings, and the statistics
view only led to 7.7% of findings (percentages do not sum up to
100% because some findings were gained by using more than one
visualization type).

Curiosity (31.8%). The majority of curiosity findings were
derived from color differences in heatmap cells. For instance, a
participant correctly identified that “Station S18 is most error-prone
due to its dark coloring” ore “there seams to be a problem in April”.
Another participant reasoned: “due to the missing cells, we can see
that there is no single measurement for the second day of month”.
Other curiosity findings were gained from exploring the table view
discovering colored (flagged with a data quality problem) table en-
tries (e.g., finding missing values while scrolling), or from inspecting
the histogram visualization.

Contradiction (29.7%). Again most contradiction findings re-
sulted from color differences in the heatmap. One participant rea-
soned: “temperatures more than 20C in December seem like a mea-
surement error”. Another participant noted: “there are measurements
with more than 100% of oxygen saturation, which seems unrealis-
tic”. Other contradiction findings resulted from the table view. One
participant noticed: “it seems odd that there are 7 measurements
about 0 Celsius between regular 10 Celsius measurements”.

Connection (18.7%). We could identify two types of frequent
connection findings: The first one is finding a pattern by connecting
different views, for instance, selecting a heatmap cell and cross-
checking related data table entries (“the sensor must have been
broken at 33 meter depth”) or the histogram view. The second
type resulted from connections between values. One participant
noticed: “station S18 only measures exactly 27.0 Celsius for each
measurement at that specific day”.

Coincidence (15.4%). Coincidence findings included, for
instance, this observation of one participant: “[...] it seems that the
measurement sensor was stuck because there are so many following
measurements with 17.1 Celsius temperature”. Other coincidence
finding resulted from reoccurring types of specific quality problems
detected by automatic checks. For instance, users figured that a
specific station was generally error-prone.

Creative Desperation (4.4%) Creative desperation findings
occurred less often. One participant randomly scrolled through the
table and found annotated values, after not being able to investigate
these numbers with the current heatmap configuration. Other cre-
ative desperation findings happened while randomly configuring the
heatmap, which lead to the identification of implausible negative
salinity values.

5.1.2 Feedback from Post-Interviews
In post-interviews, participants mentioned a number of positive as-
pects about KYE. They especially liked the flexible configuration
of the heatmap, which allows to set any data dimensions into rela-
tion and they found it well suited to identify possible data quality
problems. Moreover, they thought the heatmap was well suited to
give an overview of the data and it allows for the identification of
temporal patterns, for instance, temperature changes over years. The
combination of the heatmap with the table view was appraised as
very useful. Brushing and linking between the heatmap and the table
facilitated the verification of possible quality problems.

When asking for possible improvements, they mentioned a func-
tionality to zoom back out after zooming into a heatmap cell, a
possibility to map the number of identified quality problems on
heatmap axes (not only on color), making histograms more inter-
active, as well as means to apply filters before even starting the
exploration (e.g., filter by a specific station). Problems included the
necessity to frequently switch between the heatmap visualization
and the configuration panel. Moreover, the flexible mapping of
different data aspects to color might lead to confusion of what is
currently displayed be the heatmap. A possible solution is to use
different color scales for different data aspects.

6 DISCUSSION AND LESSONS LEARNED

In this section we discuss how we met our design requirements
defined in Section 3.1 and contemplate on lessons learned from
designing and evaluating KYE. We carefully considered and ana-
lyzed the results from the evaluation as well as the feedback from
post-interviews, which led to the identification of positive but also
negative issues. While we appreciate the positive feedback from
study participants and the number of findings gained with KYE,
which suggests its suitability for data profiling tasks, we also identi-
fied possibilities for improvement. From this experience we derive
further research challenges in the field of VA for data quality.

6.1 Meeting Design Requirements
In Section 3.1 we defined four requirements that should be met by
the design of KYE.

R1 Data quality checks: KYE provides a number of predefined,
ready-to-use, automatic quality checks as well as the possibility
to define customized quality checks (see Section 3.3).



R2 Exploration of quality problems: Figure 1 shows how KYE
supports the exploration of automatically detected data quality
problems by highlighting these problems in the heatmap and
investigating the problematic data entries in the linked table.

R3 Identification of hidden problems: Figure 4 shows an example
of how KYE supports the identification of hidden problems.
Problems that are usually better detected with visual means
than with automatic checks include any data entries that are
not out of bounds but seam implausible due to their position in
the time series or their neighboring values.

R4 Scalability: KYE’s heatmap provides visual and logical aggre-
gation of the data as well as mapping calculated key figures
to the color of heatmap cells (see Section 3.4.1). These pos-
sibilities for aggregation in combination with the possibility
to zoom into heatmap cells and providing details on demand
guarantee a salable overview of possible huge data sets.

6.2 Lessons Learned
One lesson we derived from our observations is that designing a
flexible approach applicable in many data domains comes with the
drawback of additional user burden. Users need to learn how to
configure the visualization to serve their needs. This configuration
could be built in if the approach needs to serve only one domain with
well-defined tasks. However, for a general approach, this trade-off
between flexibility and the user’s learning costs needs to be carefully
weighted. The approach presented by KYE has the advantage that
it provides one main visualization that works for many data types
and tasks. Thus, the user does not have to learn how to configure
a multitude of different visualization types. Moreover, in the case
of data profiling, trial-and-error configurations may also lead to
interesting findings (see Section 5.1).

Another thing we learned from the evaluation of KYE is that
we cannot expect our target users (i.e., anyone who needs to assess
if the quality of a given data set is sufficient for his/her needs)
to benefit from basic statistics information. The statistics view
was not as helpful as the other visualizations provided. It only
had an effect on 7.7% of all findings (see Section 5.1). One test
participant considered the statistics view so irrelevant, he suggested
a functionality to minimize it. It is evident from our evaluation that
KYE’s heatmap visualization in combination with the interactive raw
data table is sufficient to solve the given tasks and gain a majority of
findings.

Considering the identification of data quality problems it became
apparent that the combination of visualizations with raw data values
is imperative. Visualizations are essential to understand big data sets
and find peculiarities in the data that require further investigation.
However, at a certain level all study participants used the table view
to look at the raw data values to understand if something represents
an actual data quality problem or not. One does not work without
the other for the task of data profiling: it is no surprise that huge
data tables are not well suited to identify peculiarities, but on the
other hand, visualizations alone are not sufficient to decide about
data errors. However, suitable visualizations are essential to find
hints and to formulate hypotheses.

For the identification of data quality problems in particular in
time series data, the neighbouring values in the data table, i.e. the
sequence of values at the finest possible granularity, was a major fac-
tor for deciding about value validity. While aggregation is essential
to visualize big data sets, it might also obfuscate small differences at
the level of individual data entries. Thus, it is important to enable a
visual exploration at different (temporal) granularities and different
viewpoints (i.e., let the user explore different aspects of the data,
different key figures, at different aggregations).

Another thing we learned in the course of our evaluation, is that
although the heatmap can be used to identify cyclic behavior, this

is only true for cycles that follow a calendar based structure (e.g.,
monthly patterns, yearly patterns), since heatmap axes can only
be configured with these calendar based instances. To be able to
identify cyclic behaviour with other cycle lengths, for instance a 17
days cycle, we would need to provide the possibility to configure
the number of instances displayed at one axis. This would enable
users to identify possible quality problems of additional types of
time series data.

6.3 Further Research Challenges

In the context of this paper we have designed and evaluated a VA
approach for data profiling. While we provide predefined automatic
quality checks and the possibility for users to formulate specific
automatic checks, we did not focus on supporting the application
of these checks with VA methods (by now users simply choose the
respective quality checks from the menu and configure its param-
eters in a dialog window, or they enter regular expressions). Yet,
for a comprehensive VA data profiling solution, this process should
be better integrated with the actual visualization. Thus, one further
research challenge in this field is the design and evaluation of bet-
ter ways to formulate, configure, and apply automatic quality
checks, supported by VA methods. While KYE is suited to cover
the majority of data quality issues from a single data source (as
outlined in Gschwandtner et al. [9]), there are some quality prob-
lems that cannot be easily detected, neither with automatic nor
with visual methods. For instance, we do not support the task of
understanding if a given data entry is conform to the real entity it
refers to (e.g., the data contains an entry that Suzanne lives in Boston
while she actually lives in New York). Other quality problems we
cannot support yet are incorrectly derived values and ambiguous
data. These require other means with cross-checks to other data
sources and advanced AI techniques.

While we were tackling in particular the problem of data profiling,
data quality management also includes data cleansing and data
transformation. When dealing with time series data this holds
specific difficulties. It is important to consider the different kinds of
temporal dependencies of data values. The number of items sold
within one hour has other plausible bounds than the number of items
sold within one day. Other data values again behave differently: the
number of staffs in a shop may stay the same whether considering
one hour or the whole day. Cleansing erroneous values and replacing
them with an estimated value requires the consideration of these
dependencies. A related challenge is the transformation of time
series data. Also when transforming data with unevenly spaced
time-stamps or intervals with different lengths into evenly spaced
intervals, these temporal dependencies need to be considered. If not
supported correctly, this transformation of time series data may even
introduce uncertainties and additional quality issues into the data.
This is an open research challenge which asks for sophisticated VA
support.

On a more general note, we identified research challenges that
are not specific to time series data but can be generalized to profiling
of all kinds of data. For instance, the support for user-defined
quality metrics is still an open challenge. Grouping quality checks
into quality metrics, such as completeness, validity, or plausibility,
would allow users to create a re-usable expert tool set that fits their
specific needs for more efficient data profiling of similar data sets
and tasks. The visual-interactive definition and fine-tuning of
quality metrics would be an interesting topic for further research.

Another general data profiling challenge is the integration of
expert knowledge. By now, we include the expert and his/her
domain knowledge (which is crucial for assessing the quality of the
data) by interactively working with the prototype and accepting or
discarding automatically detected problems. A formalization of this
knowledge, however, would considerably reduce the expert’s efforts.
This could be accomplished by learning systems or methods that



support the input of expert knowledge.

7 CONCLUSION

We presented the design and evaluation of KYE, a VA solution for
data profiling with a special focus on supporting time series data.
The purpose of KYE is three-fold: (1) communicating automatically
detected quality problems (by means of predefined checks and the
possibility for user-defined checks), (2) enabling users to investi-
gate these problems and reason about them, and (3) making the
data set visually explorable in a way that fosters the identification
of further quality problems overlooked by automatic methods. We
thoroughly considered possible design alternatives and decided for a
two-dimensional heatmap visualization in combination with a table
view and a statistics view. We employed an iterative design pro-
cess and we evaluated the prototype with respect to its potential to
identify data quality problems and to reveal new findings. This eval-
uation indicates that KYE is well-suited to support the task of data
profiling of time series data. KYE was especially appreciated for its
flexibility and the connection of visual items to original data entries.
However, we also learned a number of lessons from this study. Most
importantly, it became evident how crucial it is to carefully consider
the trade-off between flexibility of the provided solution and the
additional learning effort it takes for users to configure the solution
to their specific needs. By providing only one visualization that
needs to be understood and configured, we minimize the required
learning effort, albeit it cannot be avoided completely. In conclusion,
data quality management of time series data is a fascinating topic
that still holds many unresolved problems. While we have success-
fully tackled the first step (i.e., data profiling), data cleansing and
data transformation also require special consideration. Correctly
handling time dependent values in cleansing and transformation
operations, and VA support for normalizing unevenly spaced time
series are examples of further extensive research challenges.
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