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Abstract 

Under the concept of "Industry 4.0", production processes will be pushed to be increasingly interconnected, 
information based on a real time basis and, necessarily, much more efficient. In this context, capacity optimization 
goes beyond the traditional aim of capacity maximization, contributing also for organization’s profitability and value. 
Indeed, lean management and continuous improvement approaches suggest capacity optimization instead of 
maximization. The study of capacity optimization and costing models is an important research topic that deserves 
contributions from both the practical and theoretical perspectives. This paper presents and discusses a mathematical 
model for capacity management based on different costing models (ABC and TDABC). A generic model has been 
developed and it was used to analyze idle capacity and to design strategies towards the maximization of organization’s 
value. The trade-off capacity maximization vs operational efficiency is highlighted and it is shown that capacity 
optimization might hide operational inefficiency.  
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1. Introduction 

The cost of idle capacity is a fundamental information for companies and their management of extreme importance 
in modern production systems. In general, it is defined as unused capacity or production potential and can be measured 
in several ways: tons of production, available hours of manufacturing, etc. The management of the idle capacity 
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The paradigm shift in production system known as Industry 4.0 imposes changes on work division between human and machine. 
A human labor on the one side is assisted by smart devices and machines (human-machine cooperation) and on the other should 
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1. Introduction 
Digital technologies and cognitive computing [1] are shifting the traditional boundaries of manufacturing 

industries. Through connecting smart devices and machineries, employing self-learning solutions, and enhancing self-
direction capabilities, it is envisioned that the communication cost is reduced while flexibility for manufacturing, mass 
customization capabilities, production speed and quality are increased [2], [3], [4]. These are not only the opportunities 
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addressed by the umbrella terms “Industry 4.0” and “Digital Manufacturing” but also reveal several challenges or in 
a more critical way obstacles to improving productivity at the work place. Among them, work division between human 
workers and intelligent machines in technology-rich working environment raises question about the concept of human-
machine learning in the factories of future. This alters the paradigm shift in work-based and vocational education and 
related didactical concepts. A recent survey has revealed that only 13% of workers in OECD countries and economies 
use key information-processing skills, namely literacy, numeracy and problem-solving skills on a daily basis with 
higher proficiency than computers [5]. Cognitive computing aims at reproducing human skills through building 
artificial models and computable algorithms deployed for handling human kinds of problems (tasks) and transferring 
human decision-making processes to intelligent machines [1], [6]. How does the paradigm shift treat the role of human 
learning?  

In this paper, we aim at defining and characterizing “mutual human-machine learning” in factories of future. In 
particular, the key research question is how to define a mutual learning when there is a learning effect on both human 
worker and intelligent machine, in different degree of competence and intelligence respectively, through participation 
in doing a mutual task (task segment)? To find an answer, we review typical human and machine learning scenarios, 
and identify human and machine capability in production systems. For this purpose, we distinguish between two types 
of learning, depending on the target learner, as follows: human learning (i.e. human as a learner) and machine learning 
(intelligent machine or computer as a learner). Tailoring the practical challenges defined in the context of TU Wien 
Pilot Factory Industry 4.0 to the theoretical models, we identify research potentials including several directions for 
applied research and theory development.  
2. Human and Machine Learning: Terminologies and Definitions 

Human learning has been considered as a subject in the field of education, pedagogy and cognitive psychology in 
relation to the learning theories (behaviorism, cognitivism, constructivism, and humanism), learning styles, pedagogic 
models, concept learning and educational psychology [7]. This has led to a wide variation in definition of human 
learning and thus universal consensus on any single definition is nonexistent [7]. According to Ertmer and Newby [7] 
the main ideas about learning are incorporated in the “definition by Shuell (as interpreted by Schunk, 1991): Learning 
is an enduring change in behavior, or in the capacity to behave in a given fashion, which results from practice or other 
forms of experience”[8],[9],[10]. In particular, Bendar et al. [11] stated that “constructivism is a theory that equates 
learning with creating meaning from experience”[7]. Constructivist theories such as social constructivism, situated 
learning, and connectivism [12] have established the “foundation for the majority of teaching methods that have taken 
hold in recent years (for example, problem-based learning, authentic instruction, computer-supported collaborative 
learning)”[7]. The five-stage model of adult skill acquisition, in which the experience and skill level of a learner are 
highly correlated, considers learning with creating concepts and meaning from experience [13]. In the context of 
learning factories [14], Scenario-Based Learning (SBL) has been considered as an effective approach [15]. It is rooted 
in constructivist theories in particular situated learning [16] as well as cognitive theories [17]. SBL, as an iterative and 
interactive process, “uses scenarios, structured descriptions of real-world problems and related instructions, to support 
active learning” [15].  
Table 1: Four Main Families of Machine Learning Algorithms (Adopted from [18]) 

 Learning Approach Description Example of algorithm 

Machine 
Learning 

Information-based Learning Employing concepts from information theory to build models. Decision Trees 

Similarity-based Learning 
Building a model based on comparing features of known and 
unknown objects, or measuring similarity between past and 
forthcoming occurrences. 

k nearest neighbor (k-NN) 

Probability-based Learning Building a model based on measuring how likely it is that 
some event will occur. Bayesian Network 

Error-based Learning Building a model based on minimizing the total error through 
a set of training instances. 

Multivariable linear 
regression 

From a cognitive computing perspective, artificial models and computational algorithms resemble the ability of 
human learning and reproduce human skills. The model building, as the core of this process, is automated using 
methods of Machine learning (ML). One can classify ML algorithms into four families; namely, information-based, 
similarity-based, probability-based, and error-based learning (cf. Table 1). Furthermore, main types of ML are 
distinguished as follows [18], [19]: i) Supervised ML “assumes that training examples are classified (labeled)” (i.e. 
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learning relationship between a set of descriptive features and a target feature), ii) Unsupervised ML “concerns the 
analysis of unclassified examples”, iii) Semi-supervised ML uses unlabeled data with a small amount of labeled data 
to improve the learning accuracy, and iv) Reinforcement ML employs different scenarios for discovering the greatest 
rewarded action in a trial-and-error process by collecting feedback from environment.  
3. Mutual Learning in the Context of Industry 4.0  

Considering the above discussion on human and machine learning, we have identified two groups of learners 
(human or machine as a learner) and two distinctive but interacting learning concepts. The human and machine 
interaction and closely collaboration lays the ground for hybridization of the learning concepts, in which “mutual 
learning” occurs. This is also affected by different potential capacity of human and machine in performing different 
tasks such as mechanical jobs and decision-making. Quality and performance variation in carrying out a task are the 
key indicators, which identify and ultimately distinguish the capability of human and machine on performing the 
assigned task. Table 2 compares quality and performance variation of the learner groups with respect to an assigned 
task. Similarly, it can be extended to information processing and problem-solving tasks discussed earlier in [20] and 
[6], respectively.  
Table 2:  Comparing capability of human and machine (learner groups), based on quality and performance variation (Adopted from [20],[21]) 

 

 Human Machine 

C
ap

ab
ili

ty
  Quality 

Variation in 

Mechanical 
Job 

 High inter-individual differences and diversities  
 It can be improved by training and job 

satisfaction. 

 Very low 
 It can be degraded over lifetime or due to 

inappropriate maintenance  

Decision-
Making 

 High inter-individual differences and diversities 
depending on problem-solving abilities, 
competences, experiences and qualification level. 

 Personal, societal and institutional interests may 
influence on human decision-making. 

 The complexity and sensitivity (risk) of the 
decision may affect it. 

 Low to high depending on the quality of 
data (affected by disturbances and noises), 
preciseness of algorithms, degree of 
preparation affected by human, and 
complexity of the problem field. 

 The quality can be improved after training 
the system with (relatively large) datasets. 

Performance 
Variation in 

Carrying out 
a task 

 Relatively high (depending on individual 
capacity, motivation and commitment). 

 High possibility of work fatigue and job 
dissatisfaction. 

 Very low (depending on the lifetime, 
associated degradation rate and service 
quality). 

Differences in learners’ capabilities, as exemplified above, reflect the learning potentials for human workers and 
intelligent machines. The learning process for each group of learners can be independent or dependent. The former 
refers to distinctive training for each group of learner. The latter considers the co-occurrence of learning through doing 
a mutual or shared task (set of tasks). For example, Task A(assembly of a product) can be segmented into sub-tasks 
Ai(mechanical assembly), Aii(data collection), Aiii(quality control), which can be either divided between human 
worker and machine or can be shared. In the literature, the majority of approaches involve ML algorithms for imitating 
or transferring human skills to robots. For instance, robot learning by observation of human activities are discussed in 
[22],[23], [24]. In addition, the Google Brain Team recently reported on self-supervised approach to robot learning, 
which enables robots to grasp objects without involving human supervision (see [25] and [26]). Evidently, there is a 
lack on exploring co-occurrence of human-machine learning. Hence, we have a strong tendency to differentiate 
between learning approaches purely subject to human and machine learning, where human and machine specific 
learning has distinctively examined.  

In the context of Industry 4.0, we define mutual learning as «a bidirectional process involving reciprocal 
exchange, dependence, action or influence within human and machine collaboration, which results in creating new 
meaning or concept, enriching the existing ones or improving skills and abilities in association with each group of 
learners». Considering smart factory as a learning environment, one may distinguish between three pools of tasks 
assigned specifically to human or machine and the shared tasks (cf. Figure 1). Performing shared tasks involves 
exchange, action or influences and results in certain degree of dependency. This hybridization combines elements of 
human and machine in knowledge acquisition and participating in doing the shared task into a new boundary system 
in which mutual learning takes place. Figure 1 depicts our conceptual model of mutual learning inspired by the model 
of hybrid learning proposed by Zitter and Hoeve [27] and the research on applying hybrid learning for vocational 
education in process technology firms presented by Ritzen et. al. [28]. 
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From a cognitive computing perspective, artificial models and computational algorithms resemble the ability of 
human learning and reproduce human skills. The model building, as the core of this process, is automated using 
methods of Machine learning (ML). One can classify ML algorithms into four families; namely, information-based, 
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learning relationship between a set of descriptive features and a target feature), ii) Unsupervised ML “concerns the 
analysis of unclassified examples”, iii) Semi-supervised ML uses unlabeled data with a small amount of labeled data 
to improve the learning accuracy, and iv) Reinforcement ML employs different scenarios for discovering the greatest 
rewarded action in a trial-and-error process by collecting feedback from environment.  
3. Mutual Learning in the Context of Industry 4.0  

Considering the above discussion on human and machine learning, we have identified two groups of learners 
(human or machine as a learner) and two distinctive but interacting learning concepts. The human and machine 
interaction and closely collaboration lays the ground for hybridization of the learning concepts, in which “mutual 
learning” occurs. This is also affected by different potential capacity of human and machine in performing different 
tasks such as mechanical jobs and decision-making. Quality and performance variation in carrying out a task are the 
key indicators, which identify and ultimately distinguish the capability of human and machine on performing the 
assigned task. Table 2 compares quality and performance variation of the learner groups with respect to an assigned 
task. Similarly, it can be extended to information processing and problem-solving tasks discussed earlier in [20] and 
[6], respectively.  
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Differences in learners’ capabilities, as exemplified above, reflect the learning potentials for human workers and 
intelligent machines. The learning process for each group of learners can be independent or dependent. The former 
refers to distinctive training for each group of learner. The latter considers the co-occurrence of learning through doing 
a mutual or shared task (set of tasks). For example, Task A(assembly of a product) can be segmented into sub-tasks 
Ai(mechanical assembly), Aii(data collection), Aiii(quality control), which can be either divided between human 
worker and machine or can be shared. In the literature, the majority of approaches involve ML algorithms for imitating 
or transferring human skills to robots. For instance, robot learning by observation of human activities are discussed in 
[22],[23], [24]. In addition, the Google Brain Team recently reported on self-supervised approach to robot learning, 
which enables robots to grasp objects without involving human supervision (see [25] and [26]). Evidently, there is a 
lack on exploring co-occurrence of human-machine learning. Hence, we have a strong tendency to differentiate 
between learning approaches purely subject to human and machine learning, where human and machine specific 
learning has distinctively examined.  

In the context of Industry 4.0, we define mutual learning as «a bidirectional process involving reciprocal 
exchange, dependence, action or influence within human and machine collaboration, which results in creating new 
meaning or concept, enriching the existing ones or improving skills and abilities in association with each group of 
learners». Considering smart factory as a learning environment, one may distinguish between three pools of tasks 
assigned specifically to human or machine and the shared tasks (cf. Figure 1). Performing shared tasks involves 
exchange, action or influences and results in certain degree of dependency. This hybridization combines elements of 
human and machine in knowledge acquisition and participating in doing the shared task into a new boundary system 
in which mutual learning takes place. Figure 1 depicts our conceptual model of mutual learning inspired by the model 
of hybrid learning proposed by Zitter and Hoeve [27] and the research on applying hybrid learning for vocational 
education in process technology firms presented by Ritzen et. al. [28]. 
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                                           Fig. 1: Mutual learning in relation to human-machine collaboration.  

4. Mutual Learning Scenarios in the TU Wien Pilot Factory Industry 4.0 
The TU Wien Pilot Factory Industry 4.0 (PFI40) [29] is an endeavor to build an exemplary digitalized and 

intelligential factory of the future. The PFI40 serves both as a platform for research and showcase to demonstrate 
solutions for pressing problems in industry. One of these problem areas in industry is division of work between human 
and machines and subsequent collaboration challenges. In this section, we shortly describe three exemplary 
collaboration scenarios to discuss potential mutual learning opportunities between humans and machines in the light 
of a real world factory setting.  
4.1. Description of Overall Production Process 

In the PFI40, a 3D printer for home use is produced (see Fig. 2). The product consists of 130 unique types of parts 
(excluding identical items) and 233 parts (including identical items). The main parts of the printer’s frame and the 
printer head are manufactured internally. The printer’s control unit and other electrical and electronic parts are 
purchased from external suppliers as well as all helper materials like screws.  

Fig. 2: a) Assembly line in PFI40 with AGV in front (yellow) and handling robot (blue) in the background, b) Autonomous vehicle for 
materials transport, c) Single arm robot assists human in the mounting tasks. 

In the PFI40, we distinguish between manufacturing processes, which transform raw materials into parts and 
assembly processes. In addition, we have transport processes and handling processes. For parts manufacturing, we 
have cells for milling, turning and welding. For parts assembly, we have four assembly cells equipped with shooter 
racks, remote frequency identifiable containers for small parts, touch screens to provide assembly instructions and 
control, and various mounting tools. Assembly tasks are subdivided into preassembly tasks for parts like the print 
head and associated parts like the print head, the printer table and the drive units. For material storage, we use simple 
racks and containers equipped with tags and stock level sensors to be able to track material location and stock at any 
time in the production process. A flock of three autonomous vehicles accomplishes material transport between the 
different cells. Both human workers and single arm robots perform handling of materials between different agents in 
the production process. 
4.2. Scenario 1: Human Worker and Single Arm Robot Collaborating in Complex Assembly Tasks  

One of the assembly cells is equipped with a stationary single arm robot. The robot is unfenced and works closely 
with the human (see Fig. 2c). The robot arm has a parallel gripper and is capable to handle (grab, move and release) 

 

a) b) c) 
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small work pieces (<5kg). Its gripping force is limited to 20-235 N. The typical advantage of a single arm robot in 
mechanical tasks is its capability regarding handling of pieces in a spherical three-dimensional space. Its capacity 
regarding precision, force and endurance makes it advantageous over humans in respective handling tasks. In the 
current configuration, the robot performs positioning tasks to help the worker during mounting of the print head within 
the frame. In human-robot collaboration, typical learning takes place when the robot is trained to perform certain 
movements. Humans can physically program a robot by moving the robots head along a predefined path or can 
program the robot the traditional way through coding. In our assembly cell, we support positioning tasks by a camera 
system, which allows detecting exact position of parts. The camera system as part of the robot well is trained by 
feeding exemplary images of parts to be able to extract geometric information. Both ways are extremely simple forms 
of instructional learning from human to machine. In scenarios where the robot is equipped with more intelligence, e.g. 
through additional sensors and a certain kind of memory as well as analytical functions, learning that is more 
sophisticated can take place. For example, we have equipped human workers with a sensory system that track the 
movement paths of workers’ hands. The data obtained can be used to identify movement patterns which in turn can 
be fed back to the robot programming interface, e.g. to take over certain material picking tasks. In the end, also 
complex tasks like screwing can be learned by the robot through a combination of motion tracking, visual pattern 
recognition and tool data mining methods. Modern screwdrivers have embedded systems that provide data streams on 
screwing force and angles. The data from data loggers can be linked to screwing tasks, which potentially allows 
learning screwing sequences from human workers. Machines themselves can evaluate human activities and find better 
solutions, e.g. a faster sequence of tasks. These improved activities can be fed into an assistive information system, 
which allows a human to learn these improved activities. 
4.3. Scenario 2: Autonomous Vehicles and Human Worker Sharing Transport Routes and Tasks  

Autonomous vehicles (see Fig.2b) perform material transport between assembly cells. The vehicles are capable of 
autonomously navigating on flat two-dimensional surfaces. Given a destination location, the vehicle is capable to find 
its way through fixed and moving obstacles by using an internal map together with a laser scanner to detect and avoid 
collisions. Its capacity regarding location preciseness is limited to +/-3 cm. Speed range is up to 1.5 m/s, operating 
time due to battery capacity is limited to 10 hours. Loading capacity is limited to 150 kg. Currently, we train our 
transport vehicles in their awareness of the physical environment in the factory. In particular, transport vehicles are 
prepared for their autonomous operation by driving them through the factory in a remote controlled manner. Driving 
through the factory, vehicles map their environment by a rotating laser array. Thus, a digital map of the factory is 
created which can be adapted ex-post by a human, e.g. to mark hazardous areas where increased human traffic happens 
or floor structure is unsuitable for navigation. In the future, we will extend the scenario of learning in terms of route 
optimization. In particular, data from cameras or sensors can provide information about preferred routes from human 
movements. Digital layout models created during factory planning can be used to teach vehicles about changes in 
layout and subsequently allow for altering of programmed paths and internal map. In a different scenario, we plan to 
use vehicles’ laser scanning capabilities to detect unplanned permanent or frequent obstacles.  
4.4. Scenario 3: Scheduling of Productions Tasks – Human versus Machine  

For controlling the flow of work in our assembly line, we use a software component. Based on a detailed work plan 
the so-called Sequencer keeps track of the status of all technical systems and task completion progress. Scheduling of 
tasks is currently performed in a first-in first-out manner. Currently the Sequencer acquires its knowledge on the 
sequence of tasks from the data maintained in product specific work plans, which is created by a human. Situation 
specific changes to the order of tasks are not possible for a human worker. For future scenarios bidirectional learning 
between human planner and the Sequencer might be beneficial. Given a certain intelligence of the scheduler, e.g. by 
implementing a genetic algorithm to find better task schedules within feasible time, humans can learn from the 
sequencers suggestions. The other way around, where a human worker overrules the scheduler repeatedly (similar to 
GPS), can be used to teach the sequencer a human logic of scheduling.  
5. Conclusion and Recommendations  

Engineering and operation management jobs in the age of Industry 4.0 require more multi- and interdisciplinary 
skills for handling combined task elements. Collaboration of human and intelligent machines triggers mutual learning. 
We have defined the term mutual learning and explored certain use-cases in the context of TU Wien Pilot Factory 
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or floor structure is unsuitable for navigation. In the future, we will extend the scenario of learning in terms of route 
optimization. In particular, data from cameras or sensors can provide information about preferred routes from human 
movements. Digital layout models created during factory planning can be used to teach vehicles about changes in 
layout and subsequently allow for altering of programmed paths and internal map. In a different scenario, we plan to 
use vehicles’ laser scanning capabilities to detect unplanned permanent or frequent obstacles.  
4.4. Scenario 3: Scheduling of Productions Tasks – Human versus Machine  

For controlling the flow of work in our assembly line, we use a software component. Based on a detailed work plan 
the so-called Sequencer keeps track of the status of all technical systems and task completion progress. Scheduling of 
tasks is currently performed in a first-in first-out manner. Currently the Sequencer acquires its knowledge on the 
sequence of tasks from the data maintained in product specific work plans, which is created by a human. Situation 
specific changes to the order of tasks are not possible for a human worker. For future scenarios bidirectional learning 
between human planner and the Sequencer might be beneficial. Given a certain intelligence of the scheduler, e.g. by 
implementing a genetic algorithm to find better task schedules within feasible time, humans can learn from the 
sequencers suggestions. The other way around, where a human worker overrules the scheduler repeatedly (similar to 
GPS), can be used to teach the sequencer a human logic of scheduling.  
5. Conclusion and Recommendations  

Engineering and operation management jobs in the age of Industry 4.0 require more multi- and interdisciplinary 
skills for handling combined task elements. Collaboration of human and intelligent machines triggers mutual learning. 
We have defined the term mutual learning and explored certain use-cases in the context of TU Wien Pilot Factory 
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Industry 4.0. From our point of view, pursuing this line of research beyond the state of the art is tied to theory 
development and experimental research in the following areas: i) Redefining job roles, including clear definition of 
three tasks pools (human-specific, machine-specific, shared tasks), identifying the shared activities/tasks between 
human and machine, and defining measures to assess proper fulfillment of the assigned tasks, ii) Identifying learning 
areas, considering human self-learning and machine self-supervised learning capabilities in association with 
fulfillment of shared tasks, iii) Examining competence transferability between human and machine, which impacts on 
mutual learning, and iv) Measuring mutual learning outcome, considering human and machine specific characteristics 
in relation to key indicators such as human/machine error probability rate, learnability, operation/handling time. 
Finally yet importantly, the concept of mutual learning in the production and operation management is still vague and 
requires interdisciplinary research collaboration with educators, data scientists and cognitive psychologists as well.   
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