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Abstract
For the automatic segmentation of multivariate time series domain experts at first need to consider a huge space of alternative
configurations of algorithms and parameters. We assume that only a small subset of these configurations needs to be computed
and analyzed to lead users to meaningful configurations. To expedite this search, we propose the conceptualization of a seg-
mentation workflow. First, with an algorithmic segmentation pipeline, domain experts can calculate segmentation results with
different parameter configurations. Second, in an interactive visual analysis step, domain experts can explore segmentation
results to further adapt and improve segmentation pipeline in an informed way. In the interactive analysis approach influences
of algorithms, parameters, and different types of uncertainty information are conveyed, which is decisive to trigger selective
and purposeful re-calculations. The workflow is built upon reflections on collaborations with domain experts working in activity
recognition, which also defines our usage scenario demonstrating the applicability of the workflow.

CCS Concepts
•Mathematics of computing → Time series analysis; •Human-centered computing → Visual analytics;

1. Introduction

The segmentation of multivariate time series into meaningful se-
quences of time intervals is a highly relevant task in many applica-
tion domains. The segmentation helps to divide complex structures
into smaller and yet more meaningful segments that may reveal un-
derlying mechanisms and foster knowledge generation. Example
analysis goals are speech recognition within audio streams, synthe-
sis of human motion based on segmented tracking data, or medical
diagnosis using electrocardiography measurements.

This work builds upon ongoing collaborations with domain ex-
perts with the goal of identifying different activities in multi-
variate time series data. For that purpose, we reflect and com-
bine tasks, challenges, and visions of experts working in hu-
man motion activity recognition [VKK14], equine biomechan-
ics [WVZ∗15], oil drilling processes [ABG∗14], and ambient as-
sisted living [RLB∗15]. Domain experts in all these use cases share
the need for automated segmentation methods to cope with the
complexity (size and heterogeneity) of considered multivariate time
series. To shift the analysis from time series as a whole to the gran-
ularity of segments, a “cascade of algorithmic models” [Fek13] is
needed – which we refer to as a segmentation pipeline. From our
collaborations, we also learned that domain experts need to gain
trust of applied algorithms and generated results. This requires a
segmentation pipeline that allows the interactive exploration and
adaptation of algorithm and parameter selection throughout the
pipeline. We further postulate that users may also want to better un-
derstand the underlying segmentation algorithms, uncertain areas,
appropriate parameterizations, and relations between these aspects.

Thus, employing this in a visual analytics approach can ultimately
result in a higher acceptance of the segmentation pipeline.

To support optimal algorithm and parameter selection, we focus
on three primary types of challenges. The first factor is the choice
of algorithms for the segmentation pipeline. Domain experts of-
ten have to include important classes of algorithms such as data
cleansing routines, sampling approaches, normalizations, descrip-
tor (feature extraction) and feature selection techniques, as well as,
naturally, segmentation algorithms. However, the effect of a par-
ticular algorithm (or combinations of algorithms) on a particular
dataset is not easily predictable [BDB∗16]. The second class of
challenges to facilitate the segmentation of multivariate time series
comes with the parameters of the segmentation pipeline [SHB∗14].
Especially when parameter sets become large, choosing adequate
parameter values might be difficult [BPFG11] and conventional ap-
proaches become increasingly iterative [PBCR11]. The third chal-
lenge that domain experts face is the uncertainty inherent in the
data [WYM12] or produced by processing or segmentation al-
gorithms across the entire process [GSB∗15]. Awareness of in-
herent uncertainty is mandatory to convey and control robustness
of results against variations of input and different user behav-
ior [SSK∗16], as well as for the adjustment of algorithms and pa-
rameter values.

With this huge design space at hand, the number of possible con-
figurations of segmentation pipelines (and thus different segmenta-
tion results) is virtually infinite. Depending on the computational
complexity of the segmentation pipeline the calculation of multiple
segmentation results can quickly become a time-consuming bottle-
neck. In contrast to the naïve calculation of large numbers of seg-
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Figure 1: Pipeline for the segmentation of multivariate time series. Different data processing routines may be applied to make the data usable
and useful, followed by a segmentation algorithm. Several parameters are required by the algorithms of the pipeline. Information about value
and result uncertainties is collected throughout the pipeline. These uncertainties may influence the initiation of re-calculation in the pipeline.

mentation results, a careful selection of calculations is desirable.
In this connection, the informed refinement of parameter configu-
rations for relevant subspaces can make the workflow of domain
experts more effective and efficient. Visual-interactive techniques
can support users in the exploration of pre-calculated results to fos-
ter informed decisions about which algorithms to choose and which
parameter values to prefer.

We contribute a segmentation workflow for multivariate time se-
ries data that allows both the calculation of large numbers of seg-
mentation results with a segmentation pipeline and the interactive
visual analysis of multiple competing results. The workflow fosters
the in-depth analysis of segmentation results as well as refinement
of algorithms and parameters and thus facilitates an iterative re-
finement approach. Domain experts can make informed decisions,
effectively using necessary re-calculation cycles for parameter re-
finements and reducing uncertainty in the results. Our primary con-
tributions are as follows:

• The conceptualization of a segmentation pipeline for selecting
and customizing a segmentation process.

• An interactive and iterative analysis approach that fosters the
exploration and in-depth analysis of segmentation results along
with their influencing algorithms, parameters, and occurring un-
certainties.

• A usage scenario of the segmentation workflow demonstrating
how domain experts can apply implementations of the segmen-
tation pipeline together with the interactive analysis approach,
coupled with a feedback loop.

2. Approach
Our workflow consists of two parts: a segmentation pipeline and
an interactive visual analysis step (see Figure 1). The segmentation
pipeline allows building a cascade of algorithmic routines, subdi-
vided into two core steps: time series processing and segmentation
(see Section 2.1). The visual-interactive analysis facilitates the ex-
ploration of large numbers of segmentation results from different
algorithms, the investigation of parameter spaces, the assessment of
different types of uncertainty information, and the re-initialization
of the segmentation pipeline based on gained insights (see Sec-
tion 2.2).

2.1. The Segmentation Pipeline
Design Goals From the collaborations in various use cases in ac-
tivity recognition, we abstract four design goals for our segmen-

tation pipeline. First, the pipeline is general in a way that it can
be applied to various use cases and application domains. Second,
it supports the definition of individual algorithmic routines to be
specific towards individual data, users, and tasks. Third, parame-
ters are disclosed and can be defined externally, e.g., initiated from
a visual analysis environment. Fourth, additional uncertainty infor-
mation is recorded and propagated alongside the algorithmic rou-
tines and segmentation results.

Description of Segmentation Pipeline Research and practice in
data mining and machine learning led to a vast amount of algo-
rithms and techniques for processing and transforming multivariate
time series. For the sake of compactness, we refer to recent tax-
onomies and surveys which provide an in-depth overview [Mör06,
Fu11]. At a glance, we differentiate between algorithms for pro-
cessing multivariate time series data [Ber15] and for segmenta-
tion modeling [FMH16]. Processing includes cleansing [KHP∗11],
pre-processing [BRG∗12], or sampling [Fu11]. The segmentation
algorithm splits the time series into smaller, yet more meaning-
ful intervals, making use of supervised or unsupervised machine
learning models [BDV∗17], specific time series segmentation algo-
rithms [KCHP04], or feature-based approaches employed in time
series data mining [LKLC03]. Parameters required by individual
algorithms are collected in a parameter set, and made available to
the user. By design, implementations of included algorithms pro-
vide default values for every parameter to ease initial segmentation
calculations. Finally, the pipeline supports recording of information
about data and algorithm uncertainty derived from the processing
and segmenting steps.

Supported Types of Uncertainty Correa et al. [CCM09] suggest
sourcing uncertainty from (i) the data and (ii) data transformations.
Uncertainty can then be utilized to enhance the visual analysis in
our interactive analysis step (see Figure 1). We consider uncertain-
ties of the value and the result domain, which are important for
an informed execution of the segmentation pipeline. Value uncer-
tainty is either obtained from uncertainties inherent in the data in-
put [OM02] or reflects the effect of algorithmic routines applied
to the value domain (e.g., noise reduction). Result uncertainty is
generated by the segmentation algorithms and is represented by
the likelihood of segments over time. Changes of result uncertainty
over time reflect transitions between different types of segments.

We are currently working with two implementations of the seg-
mentation pipeline, both used for different use cases for activity
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Figure 2: Visualizations with a parameter sorting for two different parameters. a) Structured segments correlate with the values of the second
parameter, indicating a high influence of the parameter. The upper edge of the red structure matches with a change of the parameter values.
A resampling in this parameter range is likely to produce new insights. b) Scattered segments signify little influence of the fifth parameter.

recognition (i) in ambient assisted living and (ii) for human mo-
tion capture data. With theses implementations, domain experts can
apply our interactive visual analysis approach, and thus close the
feedback loop proposed in the conceptual workflow.

2.2. Interactive Visual Analysis

Design Goals According to the working practices of the domain
experts, we differentiate two primary design goals to facilitate the
selection of a well suited segmentation result. First, the interactive
visual analysis should be scalable to large amounts of segmenta-
tion results. Second, the automated segmentation should be com-
plemented by the selection and adaption of algorithms and param-
eter values, as well as the exploration of inherent uncertainty types.

Parameter selection: The influence of different parameteriza-
tions might not be easy to understand [TWSM∗11]. Thus, an in-
teractive visual analysis is needed

• to investigate the influence of each single parameter as well as
sets of multiple parameters on the resulting segments

• to explore the relationship between parameter settings and the
quality of segmentation results

• to ultimately select the most appropriate configuration in a sys-
tematic way

Uncertainty assessment: To address challenges related to uncer-
tainty, our goal is to communicate different types of uncertainty
information captured throughout the pipeline to the user, which
can have significant impact on the trustworthiness of an algo-
rithm [SSK∗16]. A comprehensive uncertainty analysis means

• to assess value uncertainty and result uncertainty within the seg-
mentation results

• to compare uncertainties of alternative segmentation algorithms
and parameterizations

• to obtain detailed uncertainty information if required

Visual Analysis Approach We introduce different views that can
be used and combined to interactively analyze multiple segmen-
tation results. The overarching design is a row-wise visualization
of segmentation results, where segments are shown as individual
color-coded bands. We provide two complementary views to allow
the analysis of the parameter space and the investigation of dif-
ferent types of uncertainty. The insights gained from parameter and
uncertainty analysis can subsequently be used to change algorithms
and parameters of the pipeline.

We provide an overview of the parameter space in concert with

corresponding segmentation results (see Figure 2). The parameter
settings are located at the left with a column for the value distribu-
tion of each parameter. Rows depict values of individual parameter
configurations. Just arranging the segmented time series in a row-
wise fashion leads to cluttered images. Hence, users can sort the
data either w.r.t. segmentation results, or parameter values. Sorting
based on segments helps inspecting structures like patterns, simi-
larities, or differences in the segmentation results. In turn, param-
eter sorting facilitates the investigation of parameter influence. If
changes of segments correlate with changes of parameter values, it
is likely that the parameter has a high influence. For example, the
red box in Figure 2a shows a structure with long red segments that
correlate with the second parameter, indicating a strong parame-
ter influence. Figure 2b is sorted by another parameter, but only
shows scattered segments. This signifies only a minor influence of
that parameter. Significant changes of segment properties can in-
dicate that the used sampling of the parameter space might not be
sufficient (e.g., on the edges of observed structures as depicted in
Figure 2a). The visualization and sorting strategies help to identify
these ranges and thus provide a means to steer the parameterization
of re-calculations. However, in this view it is not possible to inspect
the impact of uncertainties on the depicted segmentation results.

Thus, we provide another view to communicate different rele-
vant uncertainties in the segmentation pipeline (see Section 2.1).
The overview representation (see Figure 3a) allows the exploration
and visual comparison of multiple segmentation results calculated
with different algorithms and/or parameters. We use color hue to
indicate the dominating segment types over time and color gradi-
ent (fading color saturation) to depict the result uncertainty of these
segments (according to insights gained for the visualization of the
value uncertainty [CG14] and temporal uncertainty [GBFM16]).
The color gradient technique also scales for the visualization of
large numbers of competing results. To compare and explore the
uncertainties further, an on-demand detail view is used that also al-
lows the assessment of result and value uncertainties for individual
segmentation results (see Figure 3b1−2). We use a standard line
chart to depict the likelihood of individual segment types (e.g., dif-
ferent types of activities) over time as calculated by the segmen-
tation algorithm (see Figure 3b1). High values indicate high like-
lihood of a segment type. In Figure 3b1 first the purple segment
type is most likely, followed by a short blue segment, until a green
segment type is most probable. The value uncertainty is visualized
by gray value gradient over time to highlight "hot spots" of high
value uncertainty. This type of representation is often used to show
data quality metrics [XWRH07] and was used in earlier work to
communicate probabilities [RLB∗15].
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Figure 3: Interactive exploration of value and result uncertainty.
The upper view (a) uses a color gradient to depict result uncertain-
ties of dominating segments over time (for two segmentation results
in this case). Details about uncertainties can be obtained with an
interactive overlay technique: line charts depict the likelihood of
segment labels over time (b1) and a heat-band technique shows the
value uncertainty (b2). Area (c) shows an interesting combination
of result and value uncertainty, that needs further investigation.

3. Usage Scenario

In this usage scenario, we describe how a domain expert can use our
conceptualized segmentation workflow. Given an implementation
of the segmentation pipeline (see Section 2.1) and our interactive
visual analysis approach (see Section 2.2), the expert can initialize
the algorithms and calculate the pipeline with a series of parame-
ter configurations. Next, domain experts can analyze a plethora of
segmentation results with a focus on involved parameters and/or
resulting uncertainty information. Insights gained in the analysis
help the domain expert to effectively trigger the feedback loop, i.e.,
algorithm and parameter tuning.

In general, domain experts can initialize the segmentation
pipeline based on earlier approaches, collaborations with model-
ing experts, or a first guess (previous heuristic). With the pre-
calculation, domain experts obtain initial segmentation results
based on default parameters or initial parameter-sampling strate-
gies. In later iterations, domain experts can re-calculate the pipeline
with a better understanding of how to refine the parameter config-
urations, derived from the interactive analysis process. In the in-
teractive analysis step, domain experts may want to gain a com-
prehensive overview of the segmentation results first. This can be
achieved either by focusing on parameter selection (see Figure 2) or
under consideration of different types of uncertainty (see Figure 3).
Domain experts then can decide whether to approve individual seg-
mentation results or carry out parameter and uncertainty analysis to
identify more meaningful parameter configurations.

Interactive Parameter Analysis For a parameter space analysis
the domain experts can start by inspecting the influence of each
individual parameter. For this, experts can sort segmentation re-
sults by the values of individual parameters (Figure 2). If experts
infer that a particular parameter hardly has an influence on the re-
sults, the parameter is excluded from further inspection. In a next
step, domain experts can also investigate parameter combinations
by consecutively sorting the rows according to multiple parameter
values. Focusing on influential parameters helps to reduce the num-
ber of parameter combinations. To find a suitable configuration of

an algorithm, new parameterizations need to be recalculated and
evaluated. A more fine-grained sampling of influencing parameters
is likely to produce new insights. If a particular parameter shows
only significant results for one value (see Figure 2a), a narrower
scope in value range could present a new direction of analysis.

Interactive Uncertainty Assessment Another way for domain ex-
perts to judge the suitability of chosen algorithms and parame-
ter settings is to analyze the uncertainty information provided by
the segmentation pipeline. In a first step, domain experts compare
the result uncertainty of multiple segmentation results. Consider-
ing Figure 3a, a core finding is the disagreement of the (here only)
two segmentation results with regard to the green segment type.
Next, the experts can focus on more detailed uncertainty informa-
tion to better understand which parameter values require adaption.
Figure 3b shows details about the transition from one dominating
segment type (purple) to another (green). The time interval marked
by a red border reveals two other findings. First, at the bottom of the
view (Figure 3b2) an interval of particularly high value uncertainty
can be observed. Second, this high value uncertainty correlates with
an increased probability of the red segment type, as can be seen in
the result uncertainty distribution (see Figure 3c). This is a clear
indication to investigate the impact of this interesting combination
of value and result uncertainty on the employed algorithms and pa-
rameterizations.

Triggering the Feedback Loop Informed by the insights gained
from parameter and uncertainty analysis, the domain experts can
further adjust algorithmic routines and parameter configurations of
the segmentation pipeline. Re-calculation of the pipeline with new
results leads to the next interactive visual analysis iteration.

4. Conclusion

We presented a conceptual workflow for the segmentation of mul-
tivariate times series that tackles challenges associated with the in-
terplay between pre-calculated segmentation results and their vi-
sual analysis. The workflow describes the assembly of different al-
gorithmic routines to a segmentation pipeline with parameters that
can be triggered externally, e.g., from a visual analysis tool. More-
over, to foster an informed decision process, the pipeline supports
the propagation and communication of different types of uncer-
tainty information (inherent in the data or introduced by the uti-
lized algorithms). Finally, we demonstrated how the workflow can
be conflated with visual-interactive interfaces for the comparative
analysis of multiple segmentation results. The approach overcomes
trial-and-error scenarios by allowing users to make informed deci-
sions on algorithm and parameter choices by feeding information
about algorithm, parameter, and uncertainty into the analysis. Fu-
ture work includes the application of the workflow with other user
groups. In particular, we assume that it may be interesting to in-
vestigate differences between a model-centered perspective of data
mining experts and a data-centered perspective of domain experts.
In addition, we plan to investigate the usefulness of the pipeline in
progressive analytics scenarios.
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