DEVELOPMENT OF GPS-BASED LOCAL IONOSPHERE TEC MODEL WITH TAYLOR SERIES EXPANSIONS

Department of Geodesy and Geoinformation, Vienna University of Technology, Austria
CONTENT

- OBJECTIVES

- METHODOLOGY AND DATA
 - Input data
 - Data processing and ionosphere model estimation in Bernese GNSS Software v.5.2
 - Model’s evaluation
 - Selection of study periods

- RESULTS AND ANALYSIS
 - VTEC maps
 - VTEC variability at origin of development
 - Comparison of VTEC from different models

- CONCLUSIONS
OBJECTIVES

- Development of local ionosphere model (LIM) for Bosnia and Herzegovina (BiH)
 - Utilizing GPS observations of permanent reference stations:
 - Bosnia and Herzegovina Positioning Service (BIHPOS)
 - EUREF Permanent GNSS Network (EPN)
 - 8 BIHPOS stations circularly located around EPN station in Sarajevo (SRJV)
 - Maximum distance from EPN SRJV: 80 km
 - Temporal resolution: 1h
 - Spatial resolution: 1° x 1°

Map of BiH, stations: BiHPOS (white) and EPN (pink coloured triangles).
INPUT DATA

- RINEX observation files obtained from BiHPOS and EPN
- Earth rotation parameters obtained from CODE
- Precise orbit files obtained from CODE
- Differential satellite (P1-C1) code biases (DCBs) from CODE
- Clock (CLK) files obtained from CODE
DATA PROCESSING AND IONOSPHERE MODEL ESTIMATION IN BERNESE GNSS SOFTWARE V.5.2

I. Preparation of orbit and Earth orientation information
 • POLUPD (ERP files), PRETAB (tabular orbits), ORBGEN (standard orbits)

II. Preparation of satellite clock correction files (RNXCLK and CCRNXC)

III. Import RINEX observation data into Bernese format (RXOBV3)
 • Receiver clock synchronization (CODSPP)

IV. Estimation of ionosphere model (IONEST)
IONOSPHERE MODEL ESTIMATION – IONEST

- Local TEC models based on two-dimensional Taylor series expansions.
- Geometry-free (L4) linear combination of zero-difference PHASE observations (GPS).
- Set up a new ambiguity parameter for each cycle slip detected (IONEST preprocessing).

The model specific options (the recommended ones):

1. “Elevation cutoff angle” : 15°
2. “Height of the single layer” : 450 km
3. “Degree of development in latitude”: 1 (nmax in Eq.)
4. “Degree of development in hour angle”: 2 (mmax in Eq.)
5. Maximum degree in mixed coefficients” : 2 (n+m)

\[
E(\beta, s) = \sum_{n=0}^{n_{\text{max}}} \sum_{m=0}^{m_{\text{max}}} E_{nm}(\beta - \beta_0)^n (s - s_0)^m
\]

- **E_{nm}** - TEC coefficients of the Taylor series,
- **\beta_{0}, s_{0}** - coordinates of the origin of the development,
- **\beta** - geographic latitude of the ionospheric intersection point of the receiver-satellite signal line.
- **s** - the sun-fixed longitude of the ionospheric pierce point.
Model’s Evaluation

Global Ionospheric Maps (GIM)
- **CODE, ESA, JPL, IGS**
- **Spatial resolution** $5^\circ \times 2.5^\circ$ (lon. and lat.)
- **Temporal resolution** $2h$ (in 2018 CODE: $1h$).
- **VTEC modeling:**
 1. spherical harmonics expansion (CODE, ESA)
 2. bi-cubic splines on a spherical grid (JPL)
 3. IGS combined maps

International Reference Ionosphere (IRI)
- **IRI 2012 and IRI 2016**
- **Spatial resolution** $1^\circ \times 1^\circ$
- **Temporal resolution:** $1h$
- **The data sources:** ionosondes, incoherent scatter, topside sounders, in situ instruments on satellites and rockets.
- **Currently:** The service under reconstruction!

Multi-layer Ionospheric Model (MLM)
- **For European region from TU Vienna**
- **Spatial resolution** $1^\circ \times 1^\circ$
- **Temporal resolution** $1h$
- **VTEC modelling** using 5 parameters (global VTEC maximum and 2 weighting functions)
- **Utilizing global network of IGS stations**
SELECTION OF STUDY PERIODS

- **20.03.2014 – 26.03.2014**
 - High solar activity (>150 sfu)
 - Solar maximum in April 2014
 - Spring equinox
 - Geomagnetic activity low to moderate

- **20.03.2018 – 26.03.2018**
 - Low solar activity (< 70 sfu)
 - Spring equinox
 - Geomagnetic activity moderate to active

Fig.: Solar radio flux f10.7cm in sfu (solar flux units), Dst index in nT (nanotesla), Kp index multiplied by 10 (Quiet Kp<3, Moderate 3≤Kp<4, Active 4≤Kp<5, Storm 5≤Kp). Obtained from OMNIWeb of Goddard’s Space Physics Data Facility.
TEC MAPS LIM_BIH

VTEC diurnal variations to 70 TECU. 21.03.2014.

VTEC diurnal variations to 12 TECU. 21.03.2018.

Note different colourmap limits!

LIM_BiH VTEC daily peaks correspond to GIMs VTEC.

During night GIMs VTEC is overestimated compared to LIM_BiH.

VTEC from IRI models is underestimated compared to other models.

LIM_BiH VTEC variability in 2014 is at least 5x higher than in 2018.
COMPARISON OF VTEC FROM DIFFERENT MODELS

- Daytime: well agreement between LIM and CODE
- MLM higher TEC values
- Biggest differences w.r.t. IRI

- Impact of different phase of Solar cycle on VTEC variability
- Smaller discrepancies between models in solar minimum.
MEAN DIFFERENCES (DVTEC) & STANDARD DEVIATIONS (STDEV)

Mean absolute dVTEC w.r.t. LIM_BiH, 2014
- GIM_CODE
- GIM_ESA
- GIM_JPL
- GIM_IGS
- MLM
- IRI2012
- IRI2016

StDev w.r.t. LIM_BiH, 2014
- GIM_CODE
- GIM_ESA
- GIM_JPL
- GIM_IGS
- MLM
- IRI2012
- IRI2016

Mean dVTEC = |VTEC_LIM| - |VTEC_CODE|
20-26 March 2014

Mean dVTEC = |VTEC_LIM| - |VTEC_CODE|
20-26 March 2018
MEAN DIFFERENCES (DVTEC) & STANDARD DEVIATIONS (STDEV)

- dVTEC in 2014 at least 2x higher than in 2018 (increased VTEC variability).
- dVTEC w.r.t. GIMs ~4 TECU in 2014 and 2 TECU in 2018.
- Slightly higher differences w.r.t. MLM in 2014.
- dVTEC w.r.t. IRI >10 TECU.
- StDev ~2 TECU GIMs in both periods. StDev ~6 TECU MLM and IRI in 2014.
- Twice higher differences from GIMs during nighttime.
- During daytime better agreement (CODE: <3 TECU in 2014 and 1 TECU in 2018).
CONCLUSIONS I

- Local Ionosphere Model (LIM) developed for region of Bosnia and Herzegovina
 - Utilizing GPS observations of permanent stations belonging to BiHPOS and EPN

- Period of processing:
 - Solar maximum and spring equinox (20-26 March 2014)
 - Solar minimum and spring equinox (20-26 March 2018)

- VTEC variability (LIM_BiH) at least 5x more expressive in March 2014, than in March 2018
 - Different behavior of ionosphere activities in low and high solar activity periods
 - Effect of different phase of solar cycle -> different level of solar activity

- LIM_BiH VTEC daily peaks correspond to GIMs VTEC during solar maximum and minimum
 - Mean difference <3 TECU in 2014 and 1 TECU in 2018.
 - The biggest discrepancy contribution is during nighttime, where GIMs overestimate VTEC values.
CONCLUSIONS II

- MLM higher deviations from LIM_BiH in 2014 (~6 TECU), while in 2018 agreement is better (~2 TECU).

- The biggest differences are observed compared to IRI
 - Daytime to 40 TECU, nighttime < 10 TECU (IRI VTEC is underestimated).

- Discrepancies between models higher in 2014 (higher level of ionization).

- Future work could be done towards implementation of this model in near-real time processing!

Note:
- MLM does not include observations from BiH and nearby countries, where are no IGS stations.
- GIMs do not include stations in BiH.
ACKNOWLEDGMENTS

Thanks to:

- **Ernst Mach Grant Worldwide**, financed by Austrian Federal Ministry of Education, Science and Research, awarding organization OeAD-GmbH.

- Institutions for providing data: Geodetic Administration of Federation Bosnia and Herzegovina, EPN - Royal Observatory of Belgium, IGS Associate Analysis Centres, Astronomical Institute of University of Bern, Goddard's Space Physics Data Facility.
THANK YOU FOR YOUR ATTENTION!

Vienna University of Technology, Vienna, Austria

randa.natras@hotmail.com; randa.natras@geo.tuwien.ac.at

SGI 2018 Summit

Specialized Summit on Space Geodesy and Ionosphere Research
Berlin, Germany, 28 - 29 June 2018