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Abstract. This paper describes an approach to online forecasting of
ambient temperature and solar irradiation. The proposed method creates
a localized prediction with an improvement over the available weather
predictions ranging from 52% to 92% in ambient temperature forecast
and 8% to 42% for solar irradiation forecast. This localized forecast can
be used for improved predictions in smart homes or PV power plants for
a more efficient operation. A new method for adapting the parameters
of the autoregressive model with external input (ARX) for the solar
irradiation over the night is proposed. This allows the model to be tuned
to changing weather conditions without relying on external inputs.
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1 Introduction

With the ever growing energy demand and the exhaustion of non-renewable re-
sources the efficient usage of renewable energy sources (wind, solar, tidal and
biomass) gets more important [4]. Due to the weather dependent nature of those
renewable energy sources it is challenging to balance energy production and con-
sumption in global electrical grids and in decentralized smart grids with smart
consumers (e.g. smart homes). Therefore it is vitally important to have accurate
forecasting models for those renewable energy sources [6]. The most important
factor influencing solar power production via PV (photovoltaic) systems is solar
irradiation [9], followed by meteorological parameters like ambient temperature
and relative humidity [4]. Another application where solar irradiation and am-
bient temperature are important factors are the heating and cooling tasks of
residential buildings [5]. There a model predictive controller for an HVAC (heat-
ing, ventilation and air conditioning) system cannot only provide better comfort
for the residents, but also save energy if accurate predictions are available.
The well-known modern numerical weather forecasting services (WFS) use dis-
crete cells for simulating weather predictions. The initial conditions for those
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simulations are gathered by land based weather stations and satellite images.
This results in poor localized predictions as the forecast is valid for the whole
cell. The idea of this paper is to create a localized weather prediction based on
the forecasts of the WFS and the past and current local sensor data.
The WFS provide information up to several days ahead [9]. The temporal res-
olution of those WFS predictions is typically limited to 1 hour. This resolution
is usually not sufficient for the performance of most applications [3]. A common
approach for short term forecasting is based on sky imaging [2] and time-series
models [1, 4, 7, 9].
While predictions based on sky imaging provide good results in the range up to
a few minutes, they also suffer from drawbacks: the devices are expensive, they
require a lot of maintenance and predictions are only usable when the cloud
cover is not too high or too low.
The usage of localized sensors and global predictions provided by WFS al-
low for more accurate localized predictions and a higher temporal resolution.
While many authors use non-linear methods like ANN (Artificial Neuronal Net-
works) [7], GMDH (Group Method of Data Handling) [4] or SVM (Support Vec-
tor Machines) [9] for forecasting, a linear autoregressive model with exogenous
input (ARX) is proposed in this paper. The advantages of using ARX models
over ANN, GMDH and SVM are that less parameters have to be optimized and
the optimization can be done in real time. Bacher et.al [1] proposed a similar
modeling approach in their work. The main differences to the proposed work are
the usage of a diurnal component and a clear sky approximation via smoothing
kernels. The method proposed here includes furthermore an overnight prediction
scheme to accommodate unmeasured changes in weather conditions.
With the usage of ARX-models the proposed method can learn statistical differ-
ences between local conditions (provided via the sensors) and the WFS predicted
conditions.
The remainder of the paper is structured as follows: Section 2 explains the meth-
ods and algorithms used for the ambient temperature forecast. Section 3 high-
lights the necessary changes for the solar irradiation forecast. Section 4 briefly
explains the simulation setup as well as the results of the simulations for ambient
temperature forecast and solar irradiation forecast. In the end Sect. 5 concludes
this paper.

2 Ambient Temperature Forecast

The WFS is assumed to provide an ambient temperature prediction for the next
80 hours. In the first 65 hours hourly prediction values are available. After that
the WFS only provides predictions in 3 hour intervals. An example WFS pre-
diction for the ambient temperature can be seen in Fig. 1.
The WFS prediction is linearly interpolated and a new time series ϑpred(k) with
the uniform sampling time of Ts = 0.25 h is constructed. Where k = {1, ..., T }
with T being the final time step where predictions are available.
It is assumed that a local weather station is measuring the local ambient tem-
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Fig. 1. Temperature prediction from the WFS. The hourly ambient temperature pre-
dictions are provided for the next 65 hours and after that in 3 h intervals for an
additional 15 hours.

perature ϑamb(k) every 0.25 hours. The last n measurements of the local tem-
perature are saved in the system.
At every time step the vector

xT (k) = [ϑamb(k − n+ 1), . . . , ϑamb(k), ϑWFS(k), . . . , ϑWFS(k +m− 1)] (1)

is constructed, where ϑWFS(k) is the latest WFS prediction for the current time
step and ϑamb(k) is the current measured ambient temperature. The variables
n ∈ N

+ and m ∈ N
+ represent the order of the denominator and nominator in

the resulting ARX model.
Using the Weighted Recursive Least Squares algorithm (WRLS) shown in (2a)-
(2c),

γ(k) =
P (k)x(k)

xT (k)P (k)x(k) + λ
, (2a)

θ̂(k + 1) = θ̂(k) + γ(k)[ϑamb(k + 1)− xT (k)θ̂(k)], (2b)

P (k + 1) =
1

λ
[I − γ(k)xT (k)]P (k), (2c)

with P (k) ∈ R
(n+m)×(n+m) being the parameter-covariance matrix, θ̂(k) ∈

R
(n+m) representing the estimated parameter vector, and γ(k) ∈ R

(n+m) the
correction vector. The scalar value λ ≤ 1 represents the sensitivity of the algo-
rithm to more recent values. Choosing a λ closer to 1 will increase the weight
of past samples that are significant to the current parameter estimation. With
λ = 1 the WRLS algorithm will behave like a regular recursive least squares
algorithm. Furthermore I ∈ R

(n+m)×(n+m) is defined as the unity matrix.
The initial value for the parameter-covariance matrix P is chosen as P (0) = αI

where α ≫ 1. The initial value for θ̂(0) is chosen as a random (n+m)×1 vector.
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The future predictions for the ambient temperature, denoted by ϑ̂amb(k|j + 1)
where j + 1 represents any given future time step and k the current time step
are given by (3). Note that j ≥ k and j < T must hold.

ϑ̂amb(k|j + 1) = x̂T (k|j)θ̂(k), (3)

where

x̂T (k|j) = [ϑ̃amb(k|j−n+1), . . . , ϑ̃amb(k|j), ϑWFS(j), . . . , ϑWFS(j+m−1)], (4)

with ϑ̃amb(k|i) being defined as

ϑ̃amb(k|i) =

{

ϑamb(i) if i ≤ k

ϑ̂amb(k|i) else.
(5)

In (4) ϑWFS(j) is the most recent prediction for the time step j. Equation (5)
recursively calculates predictions by (3) until only current or past measurements
are needed for the formulation of x̂T in (4).
The predicted future values have to be recalculated after every new measurement
since the parameter vector θ̂(k) is updated in (2b).

3 Solar Irradiation

The WFS provides the hourly solar irradiation predictions for the next 43 hours.
Because of the diurnal and annual periodicity of the sun the scheme presented
in Sect. 2 cannot be used without modifications. The absence of measurements
during the night does not allow for parameter adaption during the night. This
is problematic since the weather conditions could change drastically overnight.
In a first step the global horizontal irradiance (GHI), provided by the sensors,
is transformed into the clear sky index. The clear sky index τcs is defined by

G = Gcs · τcs, (6)

where G is the current global horizontal irradiation (in W/m
2
) and Gcs is the

clear sky global horizontal irradiation (in W/m2). The clear sky index τcs is an
indication for the transmissivity of the atmosphere. The GHI for clear sky con-
ditions is calculated via the toolbox provided by Sandia National Laboratories
[8].
As previously the vector

xT (k) = [τcs(k − n+ 1), . . . , τcs(k), τWFS(k + 1), . . . , τWFS(k +m)], (7)

is created at every time step k = {1, ..., T }, where T is the final time step where
predictions are available and τWFS(k + 1) the next clear sky index calculated
with the WFS data. It is important to note that the current prediction τWFS(k)
is not used, instead the next future prediction τWFS(k + 1) is included. This
corresponds to a negative input dead time. The variables n ∈ N

+ and m ∈ N
+
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represent again the order of the denominator and nominator in the resulting
ARX model.
During the day the WRLS algorithm shown in (2a) - (5) can be applied to com-
pute the predictions for the clear sky index τ̂cs.
During the night no calculations are possible due to the lack of measurements.
In the morning new initial values for P and θ̂ are needed since the weather
conditions could have changed significantly overnight.
To calculate the new initial values the latest predictions from sunrise to sunset
are queried before sunrise and concentrated into the vector τpred. These predic-
tions are then compared against measured solar irradiation time-series of past
days in a database.

Require: ∃ τpred,i ∈ R
1×1, τdatab ∈ R

nd×48

1: normalize τpred to 12h day ⇒ τ̃pred ∈ R
1×48

2: for j = 1 to nd do

3: ej =
√

1

48

∑48

i
(τ̃pred,i − τdatab,j,i)2

4: end for

5: sort ej ascending
6: return τdatab,j of [e1, e2, ..., eK ]

Algorithm 1: Find the K most similar solar days

Algorithm 1 showcases an example on how to search a database with nd normal-
ized entries. For a normalized solar day the time between sunrise and sunset is
defined as 12 hours. Therefore a single normalized solar day consists of 48 entries
when sampled at 15 minutes intervals. Line 3 of the algorithm uses the euclidean
distance to calculate the similarity, but other distances could be considered too.
Algorithm 1 returns the K most similar solar days in the database.
With the usage of the clear sky index and normalizing the solar days to 12 hours,
comparisons between the daily solar conditions can be drawn regardless of the
time of the year.
Algorithm 2 describes the overnight prediction process. The prediction for the
next day and the K most similar solar days from the database along with λ

are the inputs. After normalizing the database entries and initializing P and θ̂

the WRLS algorithm shown in (2a) - (5) is executed. In this WRLS algorithm
τWFS = τpred and τCS = τ̃datab,j according to (7). The overnight prediction algo-

rithm then returns the new initial values for θ̂ and P for the WRLS algorithm
that is active during the next day.
The choice of K should be large enough for the parameters to settle during the
overnight prediction.
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Require: ∃ τpred,i ∈ R
1×1, τdatab ∈ R

K×48, λ ∈ R
1×1

1: normalize τdatab to size(τpred) ⇒ τ̃datab ∈ R
K×I

2: θ̂(0) = α ∗ I

3: P (0) = rand
4: for j = 1 to K do

5: [θ̂(j),P (j)] = WRLS(τpred, τ̃datab,j , θ̂(j − 1),P (j − 1), λ)
6: end for

7: return θ̂(K),P (K)

Algorithm 2: Overnight prediction

4 Results

In this section the simulation setup as well as the results of the proposed local-
ized weather prediction algorithm described in Sec. 2 and Sec. 3 are presented.
Both ambient temperature and solar irradiation forecasting simulations use data
collected over a period of 36 days. The local weather station collects measure-
ments for ambient temperature (in deg C) and solar irradiation (in W/m

2
) with

a common sampling time of 15 minutes. The database for the overnight pre-
diction consists of 181 collected daily solar irradiation values from a different
weather station from a different time-frame. The dataset entries were already
normalized to the normalized solar day with the correct sampling time of 15
minutes.

4.1 Ambient Temperature Forecast

The values for n and m in (1) represent the order of the ARX model. The
denominator-order is set by n and represents how many past measurements are
used in the model. The nominator order is defined by m and corresponds to the
amount of future predictions used.
Since the ARX model represents a stochastic system rather than a physical sys-
tem only an optimal model order can be determined. This optimal order was
determined by calculating the global significance of the model and the signifi-
cance of the individual parameters and choosing the values that offer the best
trade-off. The parameters used for the simulation can be found in Table 1. There
Np represents the maximal prediction horizon.

Table 1. Parameters used for the ambient temperature forecast

Variable Value

Np 96 Samples = 24 hours

n 1

m 2

λ 0.996



Localized Online Weather Predictions with Overnight Adaption 7

1

2

2.5

3

3.5

0.5

0
0

1.5

10 20 30 40 50 60 70 80 90 100

R
M

S
E

o
f
A
m
b
ie
n
t
T
e
m
p
e
ra

tu
re

in
◦
C

np

RMSE comparison

ARX

WFS

Fig. 2. RMSE between the ARX-Model output and the WFS for ambient temperature
forecasting

In Fig. 2 the root mean square error (RMSE) between ϑWFS and ϑamb are shown.
The RMSE for the WFS is fairly constant over the whole prediction horizon with
3◦C, while the RMSE between ϑ̂amb and ϑamb is only 1.5◦C at the most and
significant lower for short term predictions. This yields a forecast skill [9] ranging
from 52% to 92% over the available weather predictions.
In this dataset the ARX model is primarily acting as offset compensation. The
ARX model output and the WFS forecast can be seen in Fig. 3. Note that the
depicted interval requires a sufficient run-in period for the parameters to settle.
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Fig. 3. Sample 7 day interval of WFS and ARX-Model output for ambient forecasting
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Fig. 4. Comparison of normalized WFS and ARX-Model output for solar forecasting
for 3 selected days

4.2 Solar Irradiation

As seen in Sec. 4.1, the optimal values for n and m were evaluated by examining
the parameter significance and the global model significance. The chosen simu-
lation parameters can be found in Tab. 2 alongside with the parameter K which
is used for the overnight prediction.

Table 2. Parameters used for the solar forecast

Variable Value

Np till sunset

n 1

m 3

λ 0.98

K 5

In Fig. 4 the ARX model output τ̂cs and the WFS predictions τWFS can be seen
for 3 selected days. The black dash-dotted line represents the real (measured)
clear sky index τcs. During the start/end of the sunny days the value for the clear
sky index τcs shows erratic changes. This is due to the small magnitudes of solar
irradiation measured and also small magnitudes of clear sky solar irradiation
Gcs which leads to ill-conditioned normalization. During the day, when the clear
sky index settles, the predictions are reliable. In Fig. 5 the outputs have been
converted to GHI in W/m

2
and the clear sky global horizontal irradiation Gcs

is plotted for reference.
Figure 6 gives a better overview on the accuracy of the ARX model compared
to the predictions provided by the WFS. The development of the RMSE error
over the prediction horizon is plotted for the ARX model output and the WFS
predictions. Both predictions have an increasing RMSE over the prediction hori-
zon with the ARX predictions displaying a significantly better RMSE for short
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Fig. 6. RMSE between the ARX-Model output and the WFS for solar forecasting

term predictions and at the end of np. The forecast skill over the WFS model is
8% to 42% for the solar irradiation forecast.

5 Conclusion

Inspired by previous studies a forecasting method for ambient temperature and
solar irradiation has been developed. The proposed approach localizes the nu-
merical weather prediction provided by WFS to increase the local accuracy and
reduce the forecasting errors. The overnight adaption of the ARX model param-
eters allow the model to accommodate to unmeasured changes and ensures a
well tuned start into the next day.
Simulation results with real data showcase the benefits of the proposed meth-
ods. The method is not computational intensive and can easily be run online
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on low-cost CPUs, for example in home automation systems. There the local-
ized forecasts could provide better predictions for smart home controllers and
therefore increase the comfort, save money and energy.
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