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Abstract—While nanopositioners often use flexures for
high quality motion avoiding nonlinearities, the achievable
motion range and energy efficiency are limited due to the
force required for positioning against the flexures. To over-
come the problem, this paper proposes a flexure-guided
nanopositioner with a nonlinear hybrid reluctance actua-
tor for a large range and energy efficiency. The actuator
has nonlinear negative stiffness that partially cancels the
flexures’ stiffness. Consequently, the nonlinearities reduce
the required current by up to 67 %. To compensate them for
high-precision motion in the entire range of 2 mm, a feed-
back controller is designed, achieving a closed-loop band-
width of 640 Hz and positioning resolution of 2.48 nm(RMS).
The mechatronic system is designed such that the flexure
nonlinearity has no influence on the closed-loop stability
and bandwidth. Additionally for accurate periodic scanning
motion, modeling-free inversion-based iterative control is
combined to decrease the tracking error by a factor of
396 at most. The achieved error is 10 nm(RMS) for a 1 Hz
triangular motion of 1.6 mm range and for a 100 Hz trian-
gular motion of 10µm range. The results demonstrate that
the proposed nanopositioner can play a role of both long-
stroke and high-speed scanners with the improved power
consumption.

Index Terms—Actuators, motion control, nanoposition-
ing, magnetic circuits.

I. INTRODUCTION

FOR manufacturing and inspection with nanometer resolu-
tion, such as 3D printing [1] and atomic force microscopy

(AFM) [2] in a production line [3], compact nanopositioners
are indispensable to carry and scan the materials and the
samples. To improve the productivity of the manufacturing
and inspection systems, the nanopositioners need to realize
fast motion with nanometer resolution over a long range. For
the compactness and linearity, these nanopositioners usually
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have a mover that is guided by flexures and actuated by high-
precision actuators [4].

Piezoelectric actuators are used for their high force, small
size and extremely high bandwidth [5], [6]. Because the
achievable control bandwidth is typically up to the first
dominant resonant frequency [7], it is increased with the
high stiffness of the piezoelectric materials and the flexures
[8]. In return, the achievable range is strictly limited for a
given actuation force, resulting in a strict trade-off between
the bandwidth and range. Furthermore, piezoelectric actuators
have nonlinearities such as hysteresis to be compensated for
precise motion [9].

Lorentz actuators (e.g. voice coil actuators) utilize the
Lorentz force, which is independent of the mover position with
a uniform flux density for high linearity [10], and the flexures
dominate the stiffness between the mover and the stator.
Furthermore, these actuators enable a closed-loop bandwidth
significantly higher than the first resonant frequency by design
[11]. Thus, the stiffness can be lowered to some extent by
the flexure design for large motion [12] and high disturbance
rejection [13]. However, low-stiffness flexures can create anti-
resonances and resonances at low frequencies [14], which may
demand a higher current for actuation and may restrict the
bandwidth, respectively. Similarly, resonances to restrict the
bandwidth occur at low frequencies when negative-stiffness
flexures are combined to cancel the guiding flexures’ stiffness,
as simulated by finite element analysis (FEA) in [15]. A
disadvantage of Lorentz actuators is their relatively small
motor constant (i.e. force-to-current ratio), which can restrict
the force and the range [10]. The motor constant can decrease
around the stroke ends due to the fringing of the magnetic
flux [10]. These properties are undesired also for fast motion
requiring a high acceleration force.

To overcome the above limitations, a high-speed actuator
may be combined with a long-range actuator as a dual
stage actuator (DSA) [16], [17]. However, a second actuator
complicates the system and control design [18]. Furthermore,
the high-speed actuator may generate the reaction force that
excites the long-range actuator, dependent on the configura-
tion. The compensation of the problematic force requires an
additional actuator [19], balance mass [20] or heavy long-
range actuator [21], which impairs the systems’ compactness.
Due to those disadvantages, a single actuator is rather desired
particularly for motion within a few millimeters.
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Fig. 1. Nanopositioner using hybrid reluctance actuator: (a) photograph, (b) illustration showing the actuation principle, (c) damped mass-spring
system modeling the nanopositioner, and (d) 3D model of the flexures with their dimension.

Although nanopositioners are usually designed to be linear
with flexures for high quality motion, their proportionality
between the displacement and force fundamentally restricts
the actuation range and energy efficiency. This is because
large motion needs a sufficiently high force against the flexure
force. In the meantime, control algorithms are developed to
compensate for the residual nonlinearities of the nanoposition-
ers (e.g. actuators’ hysteresis), including sliding mode control
[22], adaptive control [23] and iterative control [24].

To enable large motion with reduced power consumption,
this paper proposes a nanopositioner that utilizes nonlineari-
ties, which are integrated to be compensated by motion control
relatively easily for high bandwidth and precision. The pro-
posed nanopositioner is guided by flexures and equipped with
a hybrid reluctance actuator. Hybrid reluctance actuators have
a motor constant that is several times lager than a comparable
Lorentz actuator [10] and have been applied to fast tool servos
[25] and steering mirrors [26]. In this paper, the nonlinear
negative stiffness of the hybrid reluctance actuator is used to
partially cancel the flexures’ stiffness. Consequently a small
coil current is sufficient for large motion, improving the energy
efficiency. This mechatronic system is designed for a closed-
loop system with robust stability for high quality motion.
Additionally, iterative control is used to accurately track a
periodic trajectory to demonstrate achievable performance.

This paper is organized as follows. Section II introduces the
proposed nanopositioner with the hybrid reluctance actuator,
which is investigated in Section III. Section IV presents a
measured frequency response for the verification and the
feedback control design, which is discussed with iterative
control design in Section V. Section VI presents experimental
results. Section VII concludes the paper.

II. SYSTEM DESCRIPTION

Fig. 1(a)(b) shows the proposed nanopositioner with a hy-
brid reluctance actuator and its actuation principle. A small
ferromagnetic yoke is laterally guided by flexures as the
mover to achieve high acceleration. Among different types
of flexures, leaf-spring flexures are selected and manufactured
from aluminum for their capability to realize low stiffness and
large motion [4]. The stator consists of a relatively large yoke,
a Nd-Fe-B permanent magnet, and two identical coils.

TABLE I
DIMENSION OF THE DEVELOPED NANOPOSITIONER

Dimension Value Description

xg 1 mm Left and right gaps at the origin
lf 1 mm Fixed gap
lm 19 mm Magnet length
A 15 mm×15 mm Cross-section area of the flux paths

The permanent magnet creates a biasing flux to be dis-
tributed to the left and right air gaps around the mover, as
indicated by the green lines in Fig. 1(b). When a current is
applied to the coils, an additional flux is created, as shown
by the orange line. By superimposing these two types of flux,
the force on a side of the mover is stronger than the other,
creating a lateral actuation force F . The hybrid reluctance
actuator is designed to provide a large actuation range of 2 mm,
and its yokes are manufactured from laminated electrical steel
sheets (EN10025-S235JR) to reduce the eddy current [27].
Table I lists the dimensions of the developed hybrid reluctance
actuator, which is further discussed in Section III.

To provide the current, the coils are connected in series
and driven by a custom-made current amplifier. It has a -3 dB
bandwidth of 3.2 kHz, with a maximum output current and
voltage of ± 5 A and ± 15 V, respectively. To measure the
mover position, a cube-corner retroreflector (43-305, Edmund
optics, Barrington, USA) is mounted on the mover, and an
interferometer (10899A, Agilent Technologies, Santa Clara,
USA) is used. The sensor has a resolution of 1.25 nm/bit.
For high quality motion, control is implemented by the CPU
(DS1005, dSpace GmbH, Paderborn, Germany) of a rapid
prototyping control system at a sampling frequency of 20 kHz,
using a 16-bit DAC (DS2102) and FPGA (DS5203) to in-
terface it with the current amplifier and the interferometer,
respectively.

III. SYSTEM ANALYSIS

A. Hybrid reluctance actuator

To analyze the hybrid reluctance force, the flux in Fig. 1(b)
is derived by assuming that the permeability of the yokes are
sufficiently large [26]. The magnetic reluctances of the left
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gap Rl, the right gap Rr, the fixed gap Rf and the permanent
magnet Rm are given by

Rl =
xg − x

µ0A
, Rr =

xg + x

µ0A
, Rf =

lf
µ0A

, Rm =
lm
µ0A

, (1)

where x is the mover position from the center, and xg is the
left and right air gaps at x = 0. While lf , lm and µ0 are the
fixed gap, the magnet length and the vacuum permeability,
respectively, A is the cross-section area of the flux paths. By
applying Hopkinson’s law [10], the total flux given by the
permanent magnet Φmt is

Φmt =
Hclmλ

Rm +Rf + RrRl

Rr+Rl

, (2)

where the coercive force Hc is about 1 MA/m. The coefficient
λ is introduced to take account of the flux leakage [28] and
the fringing flux [29]. Dependent on x, Φmt is separated into
the flux through the left gap Φml and through the right gap
Φmr:

Φml = ΦmtRr/(Rl +Rr), Φmr = ΦmtRl/(Rl +Rr). (3)

Since the magnet is regarded as a long air gap in (1), the coils’
flux Φc does not go through the magnet, resulting in

Φc = 2NI/(Rl +Rr), (4)

with the current I and winding number N = 120 of each coil.
By applying the Maxwell’s stress tensor, the lateral force F

of the hybrid reluctance actuator is derived as [26]

F =
(Φc +Φml)

2 − (Φc − Φmr)
2

2µ0A
= Km(x)I + ka(x)x,

(5)
where the motor constant Km and the actuator stiffness ka are
given as follows, by assuming that lm is sufficiently longer
than lf :

Km(x) =
2µ0ANλHclm

2lmxg + x2
g − x2

, ka(x) =
2µ0Aλ2H2

c l
2
mxg

(2lmxg + x2
g − x2)2

.

(6)
Note that the nonlinearity due to x2 in the denominator of
Eq. (6) occurs because x influences Φmt [26], [28].

While the above analytical model reveals a source of the
actuator’s nonlinearities, it is difficult to analytically determine
the coefficient λ [10], which may depend on x. Therefore,
FEA is used with a software (Maxwell, ANSYS, Canonsburg,
USA) to compute Km and ka, as shown in Fig. 2(a). It is
visible that they are small at the center (x = 0) and increase
around the stroke ends (x = ±xg). In conventional hybrid-
reluctance systems [26], [28], such nonlinearities are regarded
as unwanted properties. However, the proposed nanopositioner
utilizes them, as discussed in the next section.

B. Lumped mass model and current for actuation
To investigate the nonlinearities’ influence, the nanoposi-

tioner is described by a lumped mass model in Fig. 1(c) with
a mover mass m of 55 g. The damping c is usually way smaller
than the critical damping. The flexures’ stiffness kf is related
to their length L, width w and height h (Fig.1(d)) by [14]

kf = nEwh3/L3, (7)
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Fig. 2. Simulated parameters: (a) the motor constant Km and the
actuator stiffness ka by FEA, and (b) the total stiffness force Ff with
and without the actuator stiffness ka.

with the Young’s modulus E = 72 GPa. The number of the
flexures n= 3 as well as L= 40 mm, w = 15 mm and h= 1.2 mm
are determined by using modal analysis (Workbench, ANSYS)
such that the rotational modes of the flexure-guided mover
occur at a high frequency of 800 Hz or higher. This is highly
desired for high closed-loop bandwidth and robust stability as
discussed in Section V. The resulting kf is 87 kN/m.

The equation of motion is related to (5)

F = Km(x)I + ka(x)x = mẍ+ cẋ+ kfx. (8)

For a quasi-static response, it is rewritten as

I =
Ff (x)

Km(x)
=

kf − ka(x)

Km(x)
x, (9)

where Ff = (kf − ka)x is the total stiffness force that needs
to be compensated for a displacement of x. Fig. 2(b) shows
the simulated Ff with and without the actuator stiffness ka.
Without ka, a displacement within a range of about ±1 mm
requires a force of more than ±80 N against the flexure
stiffness force kfx. This high force is reduced to less than
±15 N by combining it with ka. This is because ka partially
cancels kf in (9), which is more effective toward the stroke
ends of ±1 mm, as the negative value with ka increases.
In summary, this simulation clearly demonstrates that the
proposed nanopositioner enables large motion with a small
current and high energy efficiency.

C. Open-loop stability
Because the actuator stiffness ka canceling the flexure

stiffness kf in (9) can cause a stability problem, its influence
is investigated by linearizing (8) at an equilibrium point x0,
from which the transfer function P (s) from the current to the
mover position is derived as follows

P (s) = Km(x0)/(ms2 + cs+ kl(x0)), (10)

using the linearized total stiffness kl given by

kl(x0) =
∂Ff (x)

∂x

∣∣∣∣
x=x0

−
(

∂Km(x)

∂x

∣∣∣∣
x=x0

)
Ff (x0)

Km(x0)
. (11)

The poles p of the plant is derived from (10) as

p =
−c±

√
c2 − 4mkl(x0)

2m
. (12)

According to (11), kl is larger than zero around the center of
x0 = 0, where Ff is zero and has positive slope in Fig. 2(b).
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In this case, the poles given by (12) are in the left-half
of the Laplace transform s-plane. Consequently, stability of
the nanopositioner is guaranteed around the center. This also
allows to carry out system identification for control design.
When the mover is far from the center, however, Ff can be
non-zero with negative slope, resulting in negative kl. In this
case, the nanopositioner is unstable because a pole occurs in
the right-half plane, which is compensated by feedback control
in Section V.

IV. FREQUENCY RESPONSE

As an experimental evaluation, a Bode plot from the current
amplifier input to the mover position is measured when
the measurement point x0 is changed within 0 - 0.9 mm by
superimposing an offset to the sine sweep input. When x0 is
set to zero, the frequency response is measured in an open
loop for the feedback control design in Section V-A. For the
other cases, the nanopositioner is stabilized by the resulting
controller for evaluation. The results in Fig. 3 show the first
resonant frequency at 178 Hz for x0 = 0 mm, which gradually
decreases as x0 increases up to 0.6 mm. This is because
the natural frequency ωn =

√
|kl|/m approximates the first

resonant frequency, and kl gradually decreases.
When x0 is 0.8 mm and 0.9 mm, the resonance peak van-

ishes. This can be explained by replacing s by jω in (10)

P (jω) = Km(x0)/(kl(x0)− ω2m+ jωc). (13)

When the nanopositioner is open-loop unstable due to the
unstable pole, kl is negative and does not cancel out −ω2m
at ωn in the denominator of Eq. (13), unlike the stable case.
Consequently the magnitude shows well-damped low-pass
characteristics. Overall, Fig. 3 demonstrates the open-loop
stability of the nanopositioner around the center, validating
the analysis in Section III-C.

Fig. 3 shows a phase lag at high frequencies due to the
current amplifier’s dynamics and due to the eddy current [27].
More importantly, the magnitude variation at the frequen-
cies higher than 300 Hz is not as significant as the lower
frequencies. This is because the stiffness does not influence
the dynamics at the frequencies sufficiently higher than ωn

in (13), which are determined mainly by Km and the the
mass m. The -40 dB/dec mass line shows a slight variation
dependent on x0, which would be due to the variation of Km.
Notice that the second resonant frequency at 841 Hz is almost
insensitive to x0. Because such a mode can restrict the closed-
loop bandwidth, this insensitivity is highly desired to decrease
uncertainties for handling in the control design.

V. MOTION CONTROL

For experimental demonstrations, a triangular wave, com-
monly used as scanning motion in AFM [2], is selected as
the motion trajectory r. To track it precisely, Fig. 4 shows
the control of the nanopositioner with the stabilized system’s
reference u and the current amplifier’s dynamics Pa(s), which
has low-pass characteristics. The control design and analysis
are presented in this section.
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A. Feedback control design
To enable high-precision long-stroke motion, a feedback

controller C(s) is used to stabilize the nanopositioner, as
shown in Fig. 4. To compensate for the second mechanical
resonance that is almost insensitive to x0 in Fig. 3, a notch
filter is used as a part of C(s). In addition, C(s) includes a
lead compensator providing a phase lead to set the open-loop
cross-over frequency ωc beyond 300 Hz for high bandwidth
and robust stability. Finally a PI controller is combined to
eliminate the steady-state error due to the static stiffness of
the plant as follows (cf. [13])

C(s) = gc

(
s+ ωc

10

s

)(
3s+ ωc

s+ 3ωc

)(
s2 + 0.1dNωNs+ ω2

N

s2 + 0.1ωNs+ ω2
N

)

(14)
where ωN =2π×841 rad/s and dN = -15 dB are the notch fre-
quency and depth for the second resonance, respectively. The
controller gain gc is tuned to maximize ωc with a sufficient
phase margin of more than 30◦ for the measured response at
0 mm in Fig. 3. The resulting gc and ωc are -22 dB and 358 Hz,
respectively.

B. Feedback control analysis and validation
For closed-loop stability analysis, Nyquist stability criterion

[30] is applicable, and it can be simplified in a case of open-
loop stable systems (the simplified Nyquist criterion [30]).
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In this section, Nyquist stability criterion is used when the
nanopositioner is open-loop unstable at first.

When P (s) has the unstable pole with negative kl, the open-
loop transfer function C(s)Pa(s)P (s) at a sufficiently low
frequency has high gain due to the integrator of C(s) and
phase approximating to

lim
ω→+0

̸ C(jω)Pa(jω)P (jω) = −90◦ + 0◦ − 180◦ = −270◦.

(15)
Thus, the locus on a Nyquist diagram starts from the top
along the imaginary axis and approaches the origin at high
frequencies (+∞) due to the strictly proper system, as shown
by solid lines in Fig. 5(a). The plot also shows the locus
mirrored about the real axis for the response from ω =−∞
to -0, and the +0 and -0 ends are connected by a clockwise
semicircle (dashed lines), due to C(s)’s integrator [30]. For
closed-loop stability, the connected solid and dashed lines must
encircle the -1 point once in the counterclockwise direction
because of the unstable pole, according to Nyquist stability
criterion [30]. To satisfy this condition in Fig. 5(a), the -1
point must lie on the left side of the locus from ω = +0 to
+∞, as the solid black line indicates. (Otherwise the system is
unstable, without counterclockwise encirclement around the -1
point (the red lines).) This stability requirement is same as the
simplified Nyquist criterion for open-loop stable systems. In
other words, whether the pole is stable or unstable, a feedback
controller including an integrator can stabilize a flexure-
guided hybrid reluctance actuator by providing sufficient phase
margin and gain margin, which are based on the simplified
Nyquist criterion [30].

Fig. 5(b) shows a Nyquist diagram of the open-loop transfer
function simulated with the measured response in Fig. 3.
Regardless of the measurement position x0, phase margin
(PM) of more than 30◦ is ensured for robust stability. This
is realized by the cross-over frequency ωc sufficiently higher
than the natural frequency ωn, so that the stiffness variation
does not influence the dynamics around ωc (Fig. 3). In fact,
ωc is within 350±15 Hz for any x0 in Fig. 5(b). Such control
design is possible with the parasitic mechanical modes that
are sufficiently higher than ωn, as designed in Section III-B.

For validation, the complementary sensitivity function T (s)
from u(t) to x(t) in Fig. 4 is measured when the measurement
point x0 is changed within 0 - 0.9 mm by superimposing an
offset to the sine sweep input. The results in Fig. 6 show a
high closed-loop bandwidth (-3 dB) of at least 640 Hz even
if x0 varies. This successfully demonstrates that the careful
mechatronic system design allows the same controller C(s) to
stabilize the nanopositioner whether it is open-loop stable or
unstable. However, the Bode plot shows a magnitude variation
up to about 10 dB dependent on x0 beyond 20 Hz, where the
gain of C(s) is not large enough to completely compensate for
the nanopositioner’s nonlinearities. The residual nonlinearities
are compensated for scanning by iterative control in the next
section.

C. Iterative control
The residual nonlinearities observed in Fig. 6 is problematic

to accurately track r. Additionally, dependent on the mover
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Fig. 6. Measured complementary sensitivity function T (s) for the
validation of C(s). The measurement point x0 is varied within 0 - 0.9 mm
by superimposing a DC offset to the sine sweep input.

position, the open-loop transfer function has an integrator, and
the nanopositioner becomes a Type 1 system [30], which tracks
the ramp parts of the triangular trajectory r with an error.
Although feedforward control may be used for compensation,
an accurate model needs to be identified for the design [10],
which can be time-consuming due to the nonlinearities. There-
fore, for the proposed nanopositioner, modeling-free inversion-
based iterative control (IIC) [24], [31], [32] is selected.

Modeling-free IIC learns from the previous trial to update
the control input, significantly decreasing the tracking error.
To take an advantage that the periodic trajectory r consists of
fundamental and harmonic frequency components, modeling-
free IIC can learn at those discrete frequencies only. This is
beneficial to eliminate the measurement noise between the
harmonic frequencies [32] and to reduce its algorithm and
the required computation power [33]. Furthermore, modeling-
free IIC performs system identification during learning, and
its design requires no model in advance.

As shown in Fig. 4, modeling-free IIC is implemented in
the frequency domain by Fourier coefficient vector U, X and
R for u(t), x(t) and r(t), respectively [32]:

U = [u1 ... uk ... uq]
T , X = [x1 ... xk ... xq]

T , (16)
R = [r1 ... rk ... rq]

T , where rk = 0 for k > qr, (17)
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where uk, xk and rk are the k-th complex Fourier coefficients
of the respective signals. While q is the highest harmonics
compensated by modeling-free IIC to determine its bandwidth,
qr is the highest harmonics of the trajectory. Since the nanopo-
sitioner’s nonlinearities deform the periodic motion and create
higher harmonics, qr < q is desired. The learning law is [32]

Ui+1 = Ui + J−1
i (R−Xi), (18)

where i is the trial number, and Ji is a Jacobian matrix
representing the plant.

For modeling-free IIC, Ji is identified and updated during
learning, and the secant method [24], [31], [32] is used for fast
and accurate learning. In this case, Ji is a diagonal matrix, and
its k-th diagonal element is updated by

jk,i =

{
xk,i−xk,i−1

uk,i−uk,i−1
for |uk,i − uk,i−1| ≥ ϵ,

jk,i−1 otherwise,
(19)

where ϵ is a threshold for stable learning [32] and tuned
to 10 pm at the implementation. As the initial condition,
an identity matrix is used for J−1 with U−1 =X−1 = 0,
resulting in U0 =R. In other words, the nanopositioner at
the 0th iteration is controlled only by feedback control. For
the convergence of IIC, the convergence criteria [34] needs
to be satisfied, and convergence properties of modeling-free
IIC with the secant method are investigated in [31]. In this
paper, the convergence and effectiveness of modeling-free IIC
is experimentally evaluated for the nanopositioner using the
hybrid reluctance actuator in Section VI-D.

VI. EXPERIMENTAL RESULTS

A. Nominal parameter values
The motor constant Km and the actuator stiffness ka are

evaluated at the center x = 0 as nominal performance
by a force sensor (K6D27, ME-Messsysteme, Hennigsdorf,
Germany). The sensor is connected to the mover, and the
resulting force is measured when a current of ±0.2 A is applied
to the coils. From the result, 8.48 N/A is obtained as the
nominal motor constant Km. For the actuator stiffness, the
force is measured at ±0.1 mm without the current. As a result,
the combined stiffness kf − ka at the center is given by
57 kN/m. Since kf given by (7) is 87 kN/m, ka is estimated
at 30 kN/m. Notice that the evaluated Km and ka are smaller
than the FEA by a factor of 2.7 and 1.6, respectively. The
difference would be due to the manufacturing and assembly
tolerance.

B. Step response
The positioning resolution of the nanopositioner is evaluated

at static points by measuring a response to 4 nm steps. For this
evaluation, the nanopositioner is stabilized by the controller
C(s) without modeling-free IIC. Fig. 7 shows the reference u
and measured position x. Although the nanopositioner is open-
loop unstable at 0.8 mm, the error u− x at this point shows a
peak-to-peak value of ±8 nm and an RMS value of 2.48 nm,
validating the controller design enabling static positioning with
nanometer resolution. Consequently, the 4 nm steps are clearly
resolved in Fig. 7. Note that the RMS error is close to the
resolution of the interferometer (1.25 nm).
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Fig. 7. Measured response to steps of 4 nm around the 800µm point.

C. Slow ramp motion
To evaluate the current I in a quasi steady state (cf. Eq. (9)),

a slow ramp of about 40µm/s is used as the reference u for
the closed-loop system without modeling-free IIC. During the
experiment, the voltage over the coils is measured by a probe
(N2791A, Keysight, Santa Rosa, USA) and the coil current
is calculated from the amplifier input, from which the power
consumption of the nanopositioner is calculated as shown in
Fig. 8, where the range is ±0.95 mm to prevent the mover from
colliding the stator.

Fig. 8(a) shows the stable operation of the closed-loop
system over the entire range. This clearly demonstrates that the
controller C(s) is able to regulate the nanopositioner whether
it is in a stable or unstable state. However, the error u−x varies
between 80 nm and -117 nm for the 1.9 mm motion, which is
handled in the next section.

In Fig. 8(c), the red dashed trend line captures the cur-
rent’s slope around the origin, which represents a case of
linear nanopositioners for comparison. The current of the
proposed nanopositioner follows the trend line around the
origin. However, the nanopositioner requires less current than
the trend line at positions far from the origin. Particularly at
0.95 mm the trend line indicates 4.74 A. In contrast, the pro-
posed nanopositioner needs only 1.65 A, reducing the required
current by 67 % in comparison to the trend line representing
a linear positioner. Accordingly, positioning near the stroke
ends requires less voltage and power than the point around
±0.7 mm (Fig. 8(b)). Overall, the results clearly demonstrate
the benefits of the nanopositioner that takes advantage of the
system integration to utilize the nonlinearities for long-range
and energy-efficient positioning.

D. Triangular motion
For accurate large scanning motion, a 1 Hz triangular wave

of ±800µm is used as r, including the first 11 harmonics
(qr = 11) to prevent the saturation of the amplifier. The highest
harmonics of the modeling-free IIC is tuned to q = 100 to
sufficiently compensate for the nonlinearities. The results are
shown in Fig. 9(a)-(c). At the 0th iteration in Fig. 9(a), the
nanopositioner controlled only by the feedback controller
results in a large tracking error e = r−x of 4120 nmrms, since
the Type 1 system is unable to track r’s ramp parts that are
3.2 mm/s. This error quickly converges. At the 15th iteration,
the modeling-free IIC decreases the error by a factor of 396
to 10.4 nmrms, demonstrating its effectiveness to compensate
for the nonlinearities. Fig. 9(b)(c) show the signals in the time
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Fig. 8. Experimental results when the nanopositioner tracks a ramp
reference u with a velocity of about 40µm/s in a range of ±0.95 mm:
(a) measured mover position x and error, (b) voltage over the coils and
power consumed by the nanopositioner, and (c) coil current and its trend
line at the origin.

domain at the 15th iteration. It can be seen that the error is
within ±40 nm.

Dependent on applications, short-stroke scanning is required
at a high frequency, as well [2]. To demonstrate the perfor-
mance with such motion, a 100 Hz triangular wave of ±5µm
is used near the stroke end (800µm), including the first 11
harmonics. As shown in Fig. 9(a), the modeling-free IIC with
q = 17 decreases the error e from 913 nmrms at the 0th iteration
to 10.0 rms at the 15th iteration by a factor of 91. The results
at the 15th iteration are shown in Fig. 9(d)(e), where the peak-
to-peak error is within ±25 nm. During the scanning, the coil
voltage varies between 0.16 V and 4.30 V, and the current
I varies between 1.93 A and 2.10 A, which are sufficiently
smaller than the amplifier’s maximum output voltage and
current. This is because their DC components are reduced by
the nanopositioner’s nonlinearities, such that a small current
and voltage enable high-speed scanning even near the stroke
ends. In other words, the proposed nanopositioner is versatile,
playing a role of both long-stroke and high-speed scanners.

Overall, the experimental results clearly demonstrate that
the integrated nonlinearities can realize the energy efficient
nanopositioner where the advanced motion control enables
high-precision motion over a long range.

VII. CONCLUSION AND FUTURE WORK

This paper proposes a flexure-guided nanopositioner with
nonlinearities to decrease the current required for positioning.
The model based analysis and FEA of a hybrid reluctance
actuator selected for this purpose reveal that the position-
dependent force can be regarded as negative stiffness canceling
the flexure stiffness for the current reduction. For further re-
duction, the negative stiffness and the motor constant increase
toward the stroke ends, however, causing a stability problem.
This is solved by robust feedback control that is able to
regulate the nanopositioner even if it is at a stable or unstable
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Fig. 9. Measured triangular motion using modeling-free IIC: (a) learning
transient, (b)(c) 1 Hz triangular motion of ±800µm, and (d)(e) 100 Hz
triangular motion of ±5µm.

position. Consequently, the nanopositioner is operated for the
entire motion range of about ±1 mm, achieving a positioning
resolution of 2.48 nmrms at a static point. The required current
of the nonlinear nanopositioner is experimentally evaluated,
and it is reduced by 64 % in comparison with a linearly
designed case. The influence of the nonlinearities on the
scanning motion is successfully compensated by modeling-
free IIC, reducing the tracking error by a factor of 396.
Consequently, the proposed nanopositioner achieves a tracking
error of 10 nmrms for a triangular scanning signal of 1.6 mm at
1 Hz, as well as for a triangular scanning of 10µm at 100 Hz.
Future work includes to develop a 2D nanopositioner based
on hybrid reluctance actuators to enable a variety of motion
trajectories for AFM and additive manufacturing.
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