
ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2017) 000–000

  www.elsevier.com/locate/procedia 

2212-8271 © 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of 
existing products for an assembly oriented product family identification 

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat 
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France 

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

The digital transformation already has a strong impact on manufacturing techniques and processes and requires novel data-driven maintenance 
strategies and models, which support prompt and effective decision-making. This poses new requirements, challenges and opportunities for 
securing and improving machine availability and process stability. This paper builds on the concept of prescriptive maintenance and proposes a 
reference model that (i) supports the implementation of a prescriptive maintenance strategy and the assessment of its maturity level, (ii) facilitates 
the integration of data-science methods for predicting future events, and (iii) identifies action fields to reach an enhanced target maturity state 
and thus higher prediction accuracy. 
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1. Introduction 

The industrialized world is currently facing a fourth 
revolution through the realization of digitalized manufacturing, 
which is built upon cutting-edge computer science, information 
and communication technologies as well as manufacturing 
science and technology [1]. These advances have paved the way 
for systematical deployment of Cyber Physical Production 
Systems (CPPS) [2]. Utilizing CPPS significantly contributes 
in increasing productivity, machine availability and automation 
level, improving resource efficiency and ensuring product 
quality of a manufacturing system [1, 3]. Remote and real-time 
control, complete embedded systems, predictability and 
robustness at every level as well as safety are further 
expectations associated to CPPS [4, 5, 6]. As a result, increasing 
complexity in terms of products, processes and machines [7, 8, 
9] arise, which dramatically increase the need for rethinking 
and reshaping maintenance management organizations, models 
and associated systems [10]. 

Hence, a paradigm shift from descriptive to predictive and 
prescriptive maintenance is triggered [10]. The concept of 
prescriptive maintenance extends beyond the mere prediction 
of failures. Utilizing sensing technology, modeling expert 
knowledge, and employing predictive data analytics, based on 
historical and incoming real time data, allow making 
predictions on when a failure occurs and ultimately 
recommending an optimal course of action [11, 10]. According 
to Ansari et. al. (2017) prescriptive maintenance of CPPS not 
only aims at understanding and reasoning out past events, but 
also at anticipating the likelihood of future events and potential 
effects of each decision alternative on the physical space and 
associated business processes [10]. The two most important 
complementary skills required for implementing prescriptive 
maintenance in practice are: production process and system 
knowledge on the one hand and data science methods and skills 
on the other hand [6]. 

Although several studies emphasize the importance of 
predictive and prescriptive maintenance to overcome current 



1040	 Tanja Nemeth et al. / Procedia CIRP 72 (2018) 1039–1044
2 Author name / Procedia CIRP 00 (2018) 000–000 

challenges of digitalized manufacturing [12], hardly any of 
these strategies have been implemented in practice. Recent 
empirical studies revealed that 15% of producing companies 
pursue partly predictive maintenance strategies, and 
prescriptive approaches are only applied by 4% [13]. Due to 
vague (not precisely determined or distinguished) or ambiguous 
(have two or more interpretations) definitions and descriptions 
of these terms, companies fail in pursuing innovative 
maintenance strategies [10].  

In order to resolve the aforementioned challenges, a 
prescriptive maintenance reference model is proposed within 
this paper, trying to answer the following research questions: i) 
Which tasks and objectives should an efficient prescriptive 
maintenance (operational and management) process comprise?  
ii) Which data-science methods are most suitable for predicting 
future events and how can they be integrated into a prescriptive 
maintenance process? and ultimately iii) How can the 
prescriptive maintenance maturity level be assessed including 
operational and management parameters? 

2. State of the Art 

2.1. Knowledge-Based Maintenance Strategies 

Prescriptive maintenance is known as the highest maturity 
and complexity level of knowledge-based maintenance (KBM) 
[10]. KBM assumes that competitive advantages for stabilizing 
maintenance processes and reducing unplanned costs are 
achieved through holistic consideration of production 
processes, rather than atomistic inspection of (all) influential 
components [10, 14]. Thus, KBM concentrates on analyzing 
maintenance as a non-isolated sub-domain of production 
systems, which, in turn, influences the organizational value 
creation [14]. Recent investigations show that especially the 
sub-domains quality management, maintenance and production 
planning strongly interact and jointly determine the 
achievement of the desired production performance, equipment 
availability, and product quality [8, 9].  

Fig. 1. Knowledge-Based Maintenance Strategies [10] 

The central objective of KBM is to develop a generic 
concept for optimizing maintenance processes through 
comprehensive consideration of maintenance consequences, 
system conditions, organization, and processes [14]. Existing 
approaches for achieving the aforementioned goals of KBM 
can be categorized as follows (cf. Fig. 1) [10]:  
 Descriptive maintenance answers the question “What 

happened?” by providing information about previous 
maintenance operations.  

 Diagnostic maintenance answers the question “Why did it 
happen?” by analyzing cause-effect relations, reasoning, 
and providing further technical details about former 
maintenance operations.  

 Predictive maintenance answers the question “What will 
happen when?” by learning from historical maintenance 
data, possibly in real-time, and predicting future events. 
This is also  referred to as “Smart Maintenance”, “Data-
Driven Maintenance” and recently as “Maintenance 4.0”.  

 Prescriptive maintenance answers the question “How can 
we make it happen?” or in other words “How can we 
control the occurrence of a specific event?” by providing 
actionable recommendations for decision making and 
improving and/or optimizing forthcoming maintenance 
processes. It also refers to the recent advances in 
enhancing self-organization capabilities of CPPS, which 
ideally aim at machine self-diagnosis and scheduled 
maintenance. 

2.2. Maintenance Decision Support Models 

The state-of-the-art literature review reveals that the 
majority of existing maintenance models aims at supporting 
decision-making processes. By combining different data-
sources and knowledge assets and applying data-science 
methods such as exploratory data analysis or machine learning, 
maintenance system intelligence is improved. A selection of 
recently developed maintenance decision support models 
(MDSM) is presented in this section. 

Glawar et. al. (2016) outlined a holistic and anticipatory 
framework, which “enables the identification of maintenance-
critical conditions and the prediction of failure moments and 
quality deviations” of tooling machines [15]. Aghezzaf et. al 
(2016) addressed a degradation-based selective maintenance 
decision problem of a continuously monitored multi-
component system. By modelling components as time-
dependent stochastic processes a cost-optimal set of necessary 
maintenance actions is found [16]. Moreover, Wang et. al 
(2017) investigated “a cloud-based paradigm of predictive 
maintenance based on mobile agent to enable timely 
information acquisition, sharing and utilization for improved 
accuracy and reliability in fault diagnosis, remaining service 
life prediction, and maintenance scheduling.” [17]. Arab et. al 
(2013) solved a dynamic maintenance scheduling problem for 
a multi-component production system by taking into account 
real-time information from workstations including remaining 
reliability of equipment, cycle times, buffers’ capacity and 
mean time to repair of machines [18].  

Besides, Bärenfänger-Wojciechowski et. al. (2017) 
presented a reference integrated management approach, named 
smart maintenance, which combines key maintenance 
knowledge assets, namely humans, sensors, data-management 
and assistance-systems [19]. The concept “knowledge as a 
service”, was introduced by Abramovici et. al. (2017) and 
supports knowledge allocation and the recommendation of 
possible solutions in accordance with failure causes and 
similarity degree between former failure descriptions stored in 
a semantic knowledge base [20]. Last but not least, 
A. K. Muchiri et. al (2017) developed a theoretical framework 
for evaluating the efficiency of maintenance actions based on a 
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technical, managerial and human perspective [21], Mehairjan 
et. al (2016) developed a maintenance management maturity 
model based on five holistic dimensions including data quality 
[22] and Schumacher et. al (2016) developed an Industry 4.0 
maturity model, which indirectly assesses aspects relevant for 
data-driven maintenance [23].  

Although these models achieve valuable results in the area 
of prescriptive maintenance, they suffer from the following 
shortcomings: i) they consider dynamics of maintenance 
processes (using time variables) but do not fully or partially 
consider learning and prediction of the behavior of process 
related parameters overtime, ii) they are use-case-specific 
(unique problem) and hardly generalizable to similar groups of 
problems, iii) they do not adequately include feedback loops 
and efficiency assessment techniques in order to improve 
maintenance planning quality, and iv) they use well-
established, but outdated process models for data analysis and 
knowledge discovery, which clearly need to be refined and 
extended for predictive analytics tasks. 

2.3. Data Science Methods for Prescriptive Maintenance 

Groundwork for prescriptive maintenance data science 
methods has been laid by the field of condition monitoring, 
which provides condition indicators and analysis methods for 
regular monitoring of actual mechanical conditions, operating 
efficiency, and other indicators of machines and process 
systems. These conditions feed into a wide spectrum of possible 
maintenance techniques, which include vibration monitoring, 
thermography, tribology (e.g., lubricating oil analysis), 
production process parameters, visual inspection, ultrasonic, or 
failure mode (e.g., max rotation speed) analysis. 

Estimating the Remaining Useful Life (RUL) is a central 
task for optimizing repair intervals and minimizing costs of 
unscheduled outages created by machine failures. Throughout 
years, methods have clearly shifted from rule-based to data-
driven approaches applying statistical or machine learning 
techniques [24] such as Support Vector Machines, Bayesian 
learning techniques, Hidden Markov models, similarity-based 
approaches, or unsupervised learning methods. However, most 
of these approaches heavily rely on manual investigation and 
identification of possible failure characteristics and subsequent 
feature engineering. 

In order to overcome manual feature engineering, a number 
of Deep Learning based methods have been investigated: 
Convolutional Neural Networks have been applied for 
detection faults in rotating machinery [25] and for detecting 
structural damages [26]. However, both approaches have been 
evaluated in simulated environments, which shows that Deep 
Learning is still in its infancy and requires further systematic 
research (e.g., standard datasets, insight into black box models, 
transferring models, imbalance in training data, etc.) before it 
can be applied in the field of prescriptive maintenance [27]. 

Anomaly detection, which refers to the problem of finding 
anomalous patterns and outliers in data is a complementary, 
frequently used data-driven maintenance technique. Recent 
approaches [28, 29] apply Long-Short-Term-Memory based 
algorithms for that purpose. However, those existing anomaly 
detection approaches operate on machine sensor data only 
without taking into account production process parameters.  

Active learning [30] is a possible technique for training 
machine learning algorithms in settings with low availability of 
labelled training data (e.g., machine outages). The key idea is 
that an algorithm is allowed to choose data from which it learns. 
However, to the best of our knowledge, the application of active 
learning technique has not yet been investigated for real-world 
prescriptive maintenance problems. 

2.4. Literature Synthesis: Research Gap on Maturity 
Assessment 

Considering the literature review presented in section 2.1-
2.3, we identified four dimensions, namely, KBM, MDSM, 
machine learning (ML) and maturity assessment (MA), which 
constitute the basis for prescriptive maintenance of CPPS (cf. 
Tab. 1). There are several papers, which either cover the three 
dimensions of KBM, MDSM and ML or discuss the idea of 
(maintenance) maturity assessment. Despite advantages, we 
have determined a gap on integrated data-driven maintenance 
maturity assessment considering multi-dimensionality of 
maintenance problems affected by strategic, tactical and 
operational processes. To the best of our knowledge, a 
systematic maintenance maturity model, which assesses the 
level of maturity from the angle of industrial data science, 
rather than considering only maintenance influencing factors 
such as organizational, cultural, IT and infrastructural factors 
(generic approaches), is nonexistent.  

Table 1. Literature Synthesis 

Literature KBM MDSM ML MA 

[8], [9], [14]    

[24], [25], [26], [27], [28], [29]    

[16]    

[19]    

[18]    

[30]    

[17], [15], [17], [20]    

[21], [22], [23] *   

* maturity including maintenance aspects, but not specifically for KBM 

Hence we build on the concept of prescriptive maintenance 
model (PriMa) presented in [10] and propose a reference model 
entitled “PriMa-X” that supports the implementation of a 
prescriptive maintenance strategy and the assessment of its 
maturity level, facilitates the integration of data-science 
methods for predicting future events, and identifies action 
fields to reach an enhanced target maturity state and thus higher 
prediction accuracy. 

3. The PriMa-X Reference Model  

3.1. Fundamentals and Scope 

The PriMa-X reference model (cf. Fig. 2) constitutes a three-
layer portfolio matrix, covering objectives, challenges as well 
as machine learning methods and necessary IT-infrastructures 
for realizing a prescriptive maintenance strategy within an 
existing production system. Each layer of the model is broken 
down and in-depth analyzed for each step of the introduced 
prescriptive maintenance process, namely, 1. Analysis and 
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challenges of digitalized manufacturing [12], hardly any of 
these strategies have been implemented in practice. Recent 
empirical studies revealed that 15% of producing companies 
pursue partly predictive maintenance strategies, and 
prescriptive approaches are only applied by 4% [13]. Due to 
vague (not precisely determined or distinguished) or ambiguous 
(have two or more interpretations) definitions and descriptions 
of these terms, companies fail in pursuing innovative 
maintenance strategies [10].  

In order to resolve the aforementioned challenges, a 
prescriptive maintenance reference model is proposed within 
this paper, trying to answer the following research questions: i) 
Which tasks and objectives should an efficient prescriptive 
maintenance (operational and management) process comprise?  
ii) Which data-science methods are most suitable for predicting 
future events and how can they be integrated into a prescriptive 
maintenance process? and ultimately iii) How can the 
prescriptive maintenance maturity level be assessed including 
operational and management parameters? 

2. State of the Art 

2.1. Knowledge-Based Maintenance Strategies 

Prescriptive maintenance is known as the highest maturity 
and complexity level of knowledge-based maintenance (KBM) 
[10]. KBM assumes that competitive advantages for stabilizing 
maintenance processes and reducing unplanned costs are 
achieved through holistic consideration of production 
processes, rather than atomistic inspection of (all) influential 
components [10, 14]. Thus, KBM concentrates on analyzing 
maintenance as a non-isolated sub-domain of production 
systems, which, in turn, influences the organizational value 
creation [14]. Recent investigations show that especially the 
sub-domains quality management, maintenance and production 
planning strongly interact and jointly determine the 
achievement of the desired production performance, equipment 
availability, and product quality [8, 9].  

Fig. 1. Knowledge-Based Maintenance Strategies [10] 

The central objective of KBM is to develop a generic 
concept for optimizing maintenance processes through 
comprehensive consideration of maintenance consequences, 
system conditions, organization, and processes [14]. Existing 
approaches for achieving the aforementioned goals of KBM 
can be categorized as follows (cf. Fig. 1) [10]:  
 Descriptive maintenance answers the question “What 

happened?” by providing information about previous 
maintenance operations.  

 Diagnostic maintenance answers the question “Why did it 
happen?” by analyzing cause-effect relations, reasoning, 
and providing further technical details about former 
maintenance operations.  

 Predictive maintenance answers the question “What will 
happen when?” by learning from historical maintenance 
data, possibly in real-time, and predicting future events. 
This is also  referred to as “Smart Maintenance”, “Data-
Driven Maintenance” and recently as “Maintenance 4.0”.  

 Prescriptive maintenance answers the question “How can 
we make it happen?” or in other words “How can we 
control the occurrence of a specific event?” by providing 
actionable recommendations for decision making and 
improving and/or optimizing forthcoming maintenance 
processes. It also refers to the recent advances in 
enhancing self-organization capabilities of CPPS, which 
ideally aim at machine self-diagnosis and scheduled 
maintenance. 

2.2. Maintenance Decision Support Models 

The state-of-the-art literature review reveals that the 
majority of existing maintenance models aims at supporting 
decision-making processes. By combining different data-
sources and knowledge assets and applying data-science 
methods such as exploratory data analysis or machine learning, 
maintenance system intelligence is improved. A selection of 
recently developed maintenance decision support models 
(MDSM) is presented in this section. 

Glawar et. al. (2016) outlined a holistic and anticipatory 
framework, which “enables the identification of maintenance-
critical conditions and the prediction of failure moments and 
quality deviations” of tooling machines [15]. Aghezzaf et. al 
(2016) addressed a degradation-based selective maintenance 
decision problem of a continuously monitored multi-
component system. By modelling components as time-
dependent stochastic processes a cost-optimal set of necessary 
maintenance actions is found [16]. Moreover, Wang et. al 
(2017) investigated “a cloud-based paradigm of predictive 
maintenance based on mobile agent to enable timely 
information acquisition, sharing and utilization for improved 
accuracy and reliability in fault diagnosis, remaining service 
life prediction, and maintenance scheduling.” [17]. Arab et. al 
(2013) solved a dynamic maintenance scheduling problem for 
a multi-component production system by taking into account 
real-time information from workstations including remaining 
reliability of equipment, cycle times, buffers’ capacity and 
mean time to repair of machines [18].  

Besides, Bärenfänger-Wojciechowski et. al. (2017) 
presented a reference integrated management approach, named 
smart maintenance, which combines key maintenance 
knowledge assets, namely humans, sensors, data-management 
and assistance-systems [19]. The concept “knowledge as a 
service”, was introduced by Abramovici et. al. (2017) and 
supports knowledge allocation and the recommendation of 
possible solutions in accordance with failure causes and 
similarity degree between former failure descriptions stored in 
a semantic knowledge base [20]. Last but not least, 
A. K. Muchiri et. al (2017) developed a theoretical framework 
for evaluating the efficiency of maintenance actions based on a 
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technical, managerial and human perspective [21], Mehairjan 
et. al (2016) developed a maintenance management maturity 
model based on five holistic dimensions including data quality 
[22] and Schumacher et. al (2016) developed an Industry 4.0 
maturity model, which indirectly assesses aspects relevant for 
data-driven maintenance [23].  

Although these models achieve valuable results in the area 
of prescriptive maintenance, they suffer from the following 
shortcomings: i) they consider dynamics of maintenance 
processes (using time variables) but do not fully or partially 
consider learning and prediction of the behavior of process 
related parameters overtime, ii) they are use-case-specific 
(unique problem) and hardly generalizable to similar groups of 
problems, iii) they do not adequately include feedback loops 
and efficiency assessment techniques in order to improve 
maintenance planning quality, and iv) they use well-
established, but outdated process models for data analysis and 
knowledge discovery, which clearly need to be refined and 
extended for predictive analytics tasks. 

2.3. Data Science Methods for Prescriptive Maintenance 

Groundwork for prescriptive maintenance data science 
methods has been laid by the field of condition monitoring, 
which provides condition indicators and analysis methods for 
regular monitoring of actual mechanical conditions, operating 
efficiency, and other indicators of machines and process 
systems. These conditions feed into a wide spectrum of possible 
maintenance techniques, which include vibration monitoring, 
thermography, tribology (e.g., lubricating oil analysis), 
production process parameters, visual inspection, ultrasonic, or 
failure mode (e.g., max rotation speed) analysis. 

Estimating the Remaining Useful Life (RUL) is a central 
task for optimizing repair intervals and minimizing costs of 
unscheduled outages created by machine failures. Throughout 
years, methods have clearly shifted from rule-based to data-
driven approaches applying statistical or machine learning 
techniques [24] such as Support Vector Machines, Bayesian 
learning techniques, Hidden Markov models, similarity-based 
approaches, or unsupervised learning methods. However, most 
of these approaches heavily rely on manual investigation and 
identification of possible failure characteristics and subsequent 
feature engineering. 

In order to overcome manual feature engineering, a number 
of Deep Learning based methods have been investigated: 
Convolutional Neural Networks have been applied for 
detection faults in rotating machinery [25] and for detecting 
structural damages [26]. However, both approaches have been 
evaluated in simulated environments, which shows that Deep 
Learning is still in its infancy and requires further systematic 
research (e.g., standard datasets, insight into black box models, 
transferring models, imbalance in training data, etc.) before it 
can be applied in the field of prescriptive maintenance [27]. 

Anomaly detection, which refers to the problem of finding 
anomalous patterns and outliers in data is a complementary, 
frequently used data-driven maintenance technique. Recent 
approaches [28, 29] apply Long-Short-Term-Memory based 
algorithms for that purpose. However, those existing anomaly 
detection approaches operate on machine sensor data only 
without taking into account production process parameters.  

Active learning [30] is a possible technique for training 
machine learning algorithms in settings with low availability of 
labelled training data (e.g., machine outages). The key idea is 
that an algorithm is allowed to choose data from which it learns. 
However, to the best of our knowledge, the application of active 
learning technique has not yet been investigated for real-world 
prescriptive maintenance problems. 

2.4. Literature Synthesis: Research Gap on Maturity 
Assessment 

Considering the literature review presented in section 2.1-
2.3, we identified four dimensions, namely, KBM, MDSM, 
machine learning (ML) and maturity assessment (MA), which 
constitute the basis for prescriptive maintenance of CPPS (cf. 
Tab. 1). There are several papers, which either cover the three 
dimensions of KBM, MDSM and ML or discuss the idea of 
(maintenance) maturity assessment. Despite advantages, we 
have determined a gap on integrated data-driven maintenance 
maturity assessment considering multi-dimensionality of 
maintenance problems affected by strategic, tactical and 
operational processes. To the best of our knowledge, a 
systematic maintenance maturity model, which assesses the 
level of maturity from the angle of industrial data science, 
rather than considering only maintenance influencing factors 
such as organizational, cultural, IT and infrastructural factors 
(generic approaches), is nonexistent.  

Table 1. Literature Synthesis 

Literature KBM MDSM ML MA 

[8], [9], [14]    

[24], [25], [26], [27], [28], [29]    

[16]    

[19]    

[18]    

[30]    

[17], [15], [17], [20]    

[21], [22], [23] *   

* maturity including maintenance aspects, but not specifically for KBM 

Hence we build on the concept of prescriptive maintenance 
model (PriMa) presented in [10] and propose a reference model 
entitled “PriMa-X” that supports the implementation of a 
prescriptive maintenance strategy and the assessment of its 
maturity level, facilitates the integration of data-science 
methods for predicting future events, and identifies action 
fields to reach an enhanced target maturity state and thus higher 
prediction accuracy. 

3. The PriMa-X Reference Model  

3.1. Fundamentals and Scope 

The PriMa-X reference model (cf. Fig. 2) constitutes a three-
layer portfolio matrix, covering objectives, challenges as well 
as machine learning methods and necessary IT-infrastructures 
for realizing a prescriptive maintenance strategy within an 
existing production system. Each layer of the model is broken 
down and in-depth analyzed for each step of the introduced 
prescriptive maintenance process, namely, 1. Analysis and 
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Diagnosis, 2. Prediction Model Building, 3. Prescriptive 
Maintenance Decision Support, 4. Maintenance Planning and 
5. Execution and Documentation.  

Fig. 2. PriMa-X –Three-Layer Portfolio Matrix 

Prescriptive maintenance maturity is assessed for a 
maintenance and data analytics dimension. Both dimensions 
have decisive influence on the success of a prescriptive 
maintenance strategy, due to the strong interdisciplinary 
application of maintenance and production system 
competencies on the one hand and data analytics expertise on 
the other hand.  

Before implementing the proposed reference model, a target 
application area for the realization of prescriptive maintenance 
within a production system has to be selected. It can be a single 
machine, a production line of serial and/or parallel interlinked 
machine associations or a whole production area, characterized 
by high internal criticality (due to far-reaching effects of 
downtimes, missing redundancies of machines etc.) and high 
importance (production of runner products etc.). Several 
concepts for assessing the equipment priority, such as the 
equipment index proposed in [31], are published in the 
scientific literature and therefore not further discussed in this 
paper.  

Fig. 3. Scope and elements of PriMa-X 

PriMa-X builds on three iterative steps (cf. Fig. 3): 
1. Planning and implementation of a prescriptive 

maintenance strategy: A planned and stepwise 
execution of the introduced prescriptive maintenance 
process enables a systematic realization of a 
prescriptive maintenance strategy. 

2. Assessment of the prescriptive maintenance maturity: 
The current state maturity level is assessed and 

weaknesses are identified for each prescriptive 
maintenance process step. 

3. Definition of a target state maturity and underlying 
action fields: A company-specific target maturity level 
and necessary measures for its realization are defined 
for each prescriptive maintenance process step and will 
be considered as input for the next iteration circle. 

The first element is described in detail within the following 
sub-section. Elements 2 and 3 are outlined in the final section 
“Conclusion and Future Research Agenda” of this paper.  

3.2. Planning and implementation of a prescriptive 
maintenance strategy 

For each prescriptive maintenance process step, the three 
layers objectives, challenges and ML methods of the reference 
model are presented within this section. The focus is hereby 
placed on the first layer objectives. The key findings of the 
second and third layer are summarized within the tables 2-6. 

1. Analysis & Diagnosis: The process step “Analysis & 
Diagnosis” firstly aims at building up ground truth datasets in 
order to facilitate derivation and description of patterns in 
stored data sets, which indicate a failure. For this purpose, 
historical shop floor data, including product, process and 
machine as well as maintenance management and cost data, has 
to be acquired from ERP, MES, quality or maintenance 
management systems, condition monitoring and PLC controls. 
Relevant data is aggregated, normalized and stored within a 
comprehensive data model. An appropriate data space 
infrastructure and streaming concept (supporting data batching 
to structured data streaming) is required to store and analyse 
datasets with large volume, velocity and variety. Secondly, the 
derived failure patterns must be inspected systematically in 
order to understand their technical characteristics, criticality 
(e.g. downtime, costs and occurrence) and their effects on 
maintenance key performance indicators. Thirdly, awareness 
of failure depended effects in interrelated functional areas 
(maintenance, production planning, quality management) has 
to be generated within this process step. 

Table 2. Analysis & Diagnosis | Challenges and ML methods 

Challenges ML methods 

• Missing (digital) data 
availability 

• Syntactically, structurally and 
semantically heterogeneity of 
data 

• Diversity of data infrastructures 
• Poor data quality  
• Lacking data storage capability - 

volume and complexity of data 
• Systematic requirements 

elicitation and specification 
• Accuracy of patterns 

• Building up a ground truth 
• Prediction problem formalization 
• Expert knowledge formalization 
• Raw data collection and 

Sampling 
(e.g. Python, R, Shell Scripts) 

• Data preprocessing (e.g., 
cleansing, sampling, 
transformation, aggregation) 

• Exploratory data analysis (e.g. R, 
Python) 

• Hypothesis formulation 

 
2. Prediction Model Building: In the second process step, 
future machine failures are predicted based on the previously 
derived failure patterns and incoming data sets in order to 
determine their probability of occurrence. Besides the defined 
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input data sets of process step 1, further prediction relevant 
input data shall be acquired in order to enhance the prediction 
accuracy. The future production program, which indirectly 
reveals future machine loads, can, for example, serve as a 
valuable additional input parameter for the prediction. As a 
result, transparency of the expected impact of future machine 
failures (e.g. downtime, maintenance KPIs and costs) is 
generated and mechanical conditions and quality deviations 
can be monitored in their current and future state. 

Table 3. Prediction Model Building | Challenges and ML methods 

Challenges ML methods 

• Real-time access to actual 
planning data 

• Fast data processing 
capability 

• Successful and significant 
predictions: 

• High prediction accuracy 
• High probability of 

occurrence 

• Definition of training, test, and 
validation datasets 

• Selection of suitable machine 
learning and optimization algorithms  

• Model building / Training 
• Systematic model evaluation and 

validation using standard machine 
learning quality assessment metrics 

• Packaging model as data product 

 
3. Prescriptive Maintenance Decision Support: The main 
objective of this step lies in the systematic prioritization and 
prescription of maintenance activities. By defining company 
specific operational (e.g. environmental factors, downtime) and 
management decision parameters (e.g. risk disposition, budget 
targets, strategic prioritization) a dynamic set of decision rules 
is derived and integrated into a multi criteria decision model. 
The decision model automatically prioritizes the predicted 
machine failures of process step 2. Considering the current 
service plan, availability of spare parts and resources a specific 
maintenance activity can be prescribed in order to avoid the 
machine failure and its associated negative impacts. 

Table 4. Prescriptive Maintenance Decision Support | Challenges and ML 
methods 

Challenges ML methods 

• Fast data processing capability 
• Successful and significant 

prescriptions of maintenance 
activities: 
o High accuracy of results 
o Prioritization of results 
o Interpretability of results 

• Dynamic nature of operational and 
business workflows and related 
decision preferences and parameters 

• Application of trained and 
evaluated prediction models 
on live-data 

• Visualization and reporting 
of prediction results 

• Contextualization of 
prediction results (data 
sources, timeliness, etc.) 

• Expert feedback collection 
(Active Learning) 

 
4. Maintenance Planning: The fourth process step aims at the 
creation of concrete maintenance orders within the company´s 
maintenance management system (MMS). Therefore, domain 
experts manually accept (or reject) the previously prescribed 
maintenance activities in order to integrate their implicit 
knowledge and context sensibility within the prescriptive 
maintenance process. By bundling maintenance activities, e.g. 
a prescribed maintenance activity and a regular preventive task, 
an additional efficiency improvement on operational and 
management level can be achieved within all interrelated 

functional areas (maintenance, production planning, and 
quality management). 

Table 5. Maintenance Planning | Challenges and ML methods 

Challenges ML methods 

• Data access to MMS 
• Fast data processing 

capability 
• Establishment of feedback 

loops to process the final 
judgement of the user 

• High confidence of 
planner in the prescribed 
actions 

• Data visualization and interactive user 
interfaces (concept maps, dashboards, 
networks, etc.) 

• Online analytical processing (OLAP) 
• Meta-analysis  
• Similarity-based learning (e.g. case-

based reasoning) 
• Information-based learning (e.g. 

decision trees) 

 
5. Execution & Documentation: Besides the obvious task of 
timely executing a maintenance order, the last step “Execution 
& Documentation” includes the measurement and control of 
the share of successful predictions and effective 
recommendations as well as the a-posteriori specification and 
concretization of machine failures due to the operator´s 
feedback. This information is used for the semi-automatic 
refinement of the machine learning methods and the decision 
model. Finally, the improvement of maintenance key 
performance indicators due to the prescribed and bundled 
maintenance activities is quantified. 

Table 6. Execution & Documentation | Challenges and ML methods 

Challenges ML methods 

• Provision of relevant information for 
maintenance execution 

• Integration of comprehensive process 
understanding and feedback of 
employees into the model 

• High effectiveness of recommended 
actions 

• High confidence of maintainer in 
prescribed actions 

• Measuring and controlling the number 
of highly effective recommendations 

• Data product deployment 
• Data product scaling and 

real-time streaming 
connection 

• Communication and 
automatic report 
generation 

• Interactive interfaces 
• Continuous monitoring of 

prediction accuracy and 
effectiveness 

4. Conclusion and Future Research Agenda 

The presented reference model constitutes a comprehensive 
approach for systematically realizing a prescriptive 
maintenance strategy in both operational and management 
process levels of a production system. Besides, typical 
challenges (e.g. multiplicity of data sources, lacking data 
quality, and variety of process interrelations) within each 
prescriptive maintenance process step and appropriate ML 
methods to overcome these challenges are highlighted. As a 
result of applying the model, companies benefit from optimized 
intervals between repairs, minimized costs of unscheduled 
machine breakdowns and prevented unexpected consequential 
impacts on associated functional areas.  

In order to further enhance an existing prescriptive 
maintenance strategy in a targeted way, there is a clear need of 
prescriptive maintenance maturity assessment, which is one 
major task on the author´s future research agenda. The concept 
is outlined within the next paragraph. 
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Diagnosis, 2. Prediction Model Building, 3. Prescriptive 
Maintenance Decision Support, 4. Maintenance Planning and 
5. Execution and Documentation.  

Fig. 2. PriMa-X –Three-Layer Portfolio Matrix 
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for each prescriptive maintenance process step and will 
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The first element is described in detail within the following 
sub-section. Elements 2 and 3 are outlined in the final section 
“Conclusion and Future Research Agenda” of this paper.  

3.2. Planning and implementation of a prescriptive 
maintenance strategy 

For each prescriptive maintenance process step, the three 
layers objectives, challenges and ML methods of the reference 
model are presented within this section. The focus is hereby 
placed on the first layer objectives. The key findings of the 
second and third layer are summarized within the tables 2-6. 

1. Analysis & Diagnosis: The process step “Analysis & 
Diagnosis” firstly aims at building up ground truth datasets in 
order to facilitate derivation and description of patterns in 
stored data sets, which indicate a failure. For this purpose, 
historical shop floor data, including product, process and 
machine as well as maintenance management and cost data, has 
to be acquired from ERP, MES, quality or maintenance 
management systems, condition monitoring and PLC controls. 
Relevant data is aggregated, normalized and stored within a 
comprehensive data model. An appropriate data space 
infrastructure and streaming concept (supporting data batching 
to structured data streaming) is required to store and analyse 
datasets with large volume, velocity and variety. Secondly, the 
derived failure patterns must be inspected systematically in 
order to understand their technical characteristics, criticality 
(e.g. downtime, costs and occurrence) and their effects on 
maintenance key performance indicators. Thirdly, awareness 
of failure depended effects in interrelated functional areas 
(maintenance, production planning, quality management) has 
to be generated within this process step. 

Table 2. Analysis & Diagnosis | Challenges and ML methods 
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• Missing (digital) data 
availability 

• Syntactically, structurally and 
semantically heterogeneity of 
data 

• Diversity of data infrastructures 
• Poor data quality  
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volume and complexity of data 
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• Expert knowledge formalization 
• Raw data collection and 
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• Data preprocessing (e.g., 
cleansing, sampling, 
transformation, aggregation) 
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Python) 
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2. Prediction Model Building: In the second process step, 
future machine failures are predicted based on the previously 
derived failure patterns and incoming data sets in order to 
determine their probability of occurrence. Besides the defined 
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input data sets of process step 1, further prediction relevant 
input data shall be acquired in order to enhance the prediction 
accuracy. The future production program, which indirectly 
reveals future machine loads, can, for example, serve as a 
valuable additional input parameter for the prediction. As a 
result, transparency of the expected impact of future machine 
failures (e.g. downtime, maintenance KPIs and costs) is 
generated and mechanical conditions and quality deviations 
can be monitored in their current and future state. 

Table 3. Prediction Model Building | Challenges and ML methods 

Challenges ML methods 

• Real-time access to actual 
planning data 

• Fast data processing 
capability 

• Successful and significant 
predictions: 

• High prediction accuracy 
• High probability of 

occurrence 

• Definition of training, test, and 
validation datasets 

• Selection of suitable machine 
learning and optimization algorithms  

• Model building / Training 
• Systematic model evaluation and 

validation using standard machine 
learning quality assessment metrics 

• Packaging model as data product 

 
3. Prescriptive Maintenance Decision Support: The main 
objective of this step lies in the systematic prioritization and 
prescription of maintenance activities. By defining company 
specific operational (e.g. environmental factors, downtime) and 
management decision parameters (e.g. risk disposition, budget 
targets, strategic prioritization) a dynamic set of decision rules 
is derived and integrated into a multi criteria decision model. 
The decision model automatically prioritizes the predicted 
machine failures of process step 2. Considering the current 
service plan, availability of spare parts and resources a specific 
maintenance activity can be prescribed in order to avoid the 
machine failure and its associated negative impacts. 

Table 4. Prescriptive Maintenance Decision Support | Challenges and ML 
methods 

Challenges ML methods 

• Fast data processing capability 
• Successful and significant 

prescriptions of maintenance 
activities: 
o High accuracy of results 
o Prioritization of results 
o Interpretability of results 

• Dynamic nature of operational and 
business workflows and related 
decision preferences and parameters 

• Application of trained and 
evaluated prediction models 
on live-data 

• Visualization and reporting 
of prediction results 

• Contextualization of 
prediction results (data 
sources, timeliness, etc.) 

• Expert feedback collection 
(Active Learning) 

 
4. Maintenance Planning: The fourth process step aims at the 
creation of concrete maintenance orders within the company´s 
maintenance management system (MMS). Therefore, domain 
experts manually accept (or reject) the previously prescribed 
maintenance activities in order to integrate their implicit 
knowledge and context sensibility within the prescriptive 
maintenance process. By bundling maintenance activities, e.g. 
a prescribed maintenance activity and a regular preventive task, 
an additional efficiency improvement on operational and 
management level can be achieved within all interrelated 

functional areas (maintenance, production planning, and 
quality management). 

Table 5. Maintenance Planning | Challenges and ML methods 

Challenges ML methods 

• Data access to MMS 
• Fast data processing 

capability 
• Establishment of feedback 

loops to process the final 
judgement of the user 

• High confidence of 
planner in the prescribed 
actions 

• Data visualization and interactive user 
interfaces (concept maps, dashboards, 
networks, etc.) 

• Online analytical processing (OLAP) 
• Meta-analysis  
• Similarity-based learning (e.g. case-

based reasoning) 
• Information-based learning (e.g. 

decision trees) 

 
5. Execution & Documentation: Besides the obvious task of 
timely executing a maintenance order, the last step “Execution 
& Documentation” includes the measurement and control of 
the share of successful predictions and effective 
recommendations as well as the a-posteriori specification and 
concretization of machine failures due to the operator´s 
feedback. This information is used for the semi-automatic 
refinement of the machine learning methods and the decision 
model. Finally, the improvement of maintenance key 
performance indicators due to the prescribed and bundled 
maintenance activities is quantified. 

Table 6. Execution & Documentation | Challenges and ML methods 

Challenges ML methods 

• Provision of relevant information for 
maintenance execution 

• Integration of comprehensive process 
understanding and feedback of 
employees into the model 

• High effectiveness of recommended 
actions 

• High confidence of maintainer in 
prescribed actions 

• Measuring and controlling the number 
of highly effective recommendations 

• Data product deployment 
• Data product scaling and 

real-time streaming 
connection 

• Communication and 
automatic report 
generation 

• Interactive interfaces 
• Continuous monitoring of 

prediction accuracy and 
effectiveness 

4. Conclusion and Future Research Agenda 

The presented reference model constitutes a comprehensive 
approach for systematically realizing a prescriptive 
maintenance strategy in both operational and management 
process levels of a production system. Besides, typical 
challenges (e.g. multiplicity of data sources, lacking data 
quality, and variety of process interrelations) within each 
prescriptive maintenance process step and appropriate ML 
methods to overcome these challenges are highlighted. As a 
result of applying the model, companies benefit from optimized 
intervals between repairs, minimized costs of unscheduled 
machine breakdowns and prevented unexpected consequential 
impacts on associated functional areas.  

In order to further enhance an existing prescriptive 
maintenance strategy in a targeted way, there is a clear need of 
prescriptive maintenance maturity assessment, which is one 
major task on the author´s future research agenda. The concept 
is outlined within the next paragraph. 
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We pursue an analytical, rather than an empirical approach 
(based on guided interviews with domain experts) to assess the 
current state maturity level of each prescriptive maintenance 
process step. For each prescriptive maintenance process step, 
relevant and measureable key indicators for the data analytics 
and maintenance dimension are derived, e.g.: 

 Maintenance dimension: maintainability, reliability, 
availability, repair- and downtime, cost and human 
resource effectiveness 

 Data analytics dimension: data quality metrics 
(structure, information and veracity), accuracy of 
failure patterns, certainty and reliability of predictions

By quantifying the defined key indicators, the current state 
maturity level is assessed, and weaknesses are identified. These 
results serve as a basis for the third element of the reference 
model: A company specific target maturity state is defined 
based on strategic priorities of the company. Due to the 
quantified key indicators and a set of prescriptive maintenance 
influencing factors on operational, tactical and strategic level, 
action fields to achieve the target state can be specified. 
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