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Abstract. In this paper, the computational power of several control
mechanisms for specific variants of (sequential, isometric) array gram-
mars generating arrays on Cayley grids of finitely presented groups is
investigated. Using #-context-free array productions together with con-
trol mechanisms as control graphs, matrices, permitting and forbidden
rules, partial order on rules or activation and blocking of rules the
same computational power is obtained as when using arbitrary array
productions.

1 Introduction

As a natural extension of string languages (e.g., see [31,32]), arrays on the d-
dimensional grid Z¢ have been introduced and investigated since more than
four decades, for example, see [6,26]. Applications of array grammars and array
automata especially can be found in the area of pattern and picture recognition,
for instance, see [29,30,33].

Following some ideas of Csuhaj-Varji and Mitrana [7], the investigation of
arrays on Cayley grids of finitely presented groups was started in [22], pre-
sented at MCU 2013 in Ziirich, Switzerland; first definitions and results for array
automata on Cayley grids can be found there. Array grammars and automata
on Cayley grids then were investigated in more detail in [23]. As a first example
of arrays on a Cayley grid of a non-Abelian group we refer to [1], where arrays
on the hexagonal grid were considered.

In this paper, first the notions and definitions for arrays defined on Cayley
grids of finitely presented groups as well as for array grammars generating sets
of such arrays are recalled from [23]. Following the general notions for regulated
rewriting based on the applicability of rules as introduced in [21], then the con-
trol mechanisms using control graphs, matrices, permitting and forbidden rules,
partial order on rules or activation and blocking of rules are defined. We elab-
orate some relations between these control mechanisms in the general setting
of sequential grammars as already done in [21] and also prove some new ones.
When using #-context-free array productions in the underlying array grammars,
together with any of these control mechanisms, the same computational power
as with arbitrarv arrayv productions can be obtained.
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2 Preliminaries

The set of integers is denoted by Z, the set of positive integers by N, the set
of non-negative integers by Ny. An alphabet V is a non-empty set of abstract
symbols. Given V', the free monoid generated by V under the operation of con-
catenation is denoted by V*; the elements of V* are called strings, and the empty
string is denoted by A; V*\ {A} is denoted by V. The cardinality of a set M
is denoted by |M|.

For the basic notions and results of formal language theory the reader is
referred to the monographs and handbooks in this area as [8,31,32], and for the
basics of group theory and group presentations to [25].

2.1 Groups and Group Presentations

Now let G'= (G’,0) be a group with group operation o. As is well-known, the
group axioms are

— closure: for any a,b € G', aobe &,

— associativity: for any a,b,c € G, (aob)oc=ao(boc),

— iddentity: there exists a (unique) element ¢ € G/, called the identity, such that
eoa=uaoeforal e« c ¢ and

— invertibility: for any a € G, there exists a (unique) element a~!, called the
inverse of a, such that aoa ! =g log =e.

Moreover, the group is called commutative, if for any a,b € G', aob=boa.
In the following, we will not distinguish between G’ and G if the group operation
is obvious from the context.

For any element b € G, the order of b is the smallest number n € N such
that b = e provided such an n exists, and then we write ord (b) = n; if no such
n exists, {b" | n > 1} is an infinite subset of G’ and we write ord (b) = 0.

For any set B, B! is defined as the set of symbols representing the inverses
of the elements of B, i.e., B~! = {b~! | be& B}. We now consider the strings
in (B U B‘l)' and two strings as different unless their equality follows from
the group axioms, i.., for any a,b,c € (B U B™Y)", abb~'c = ac; using these
reductions, we obtain a set of irreducible strings from those in (BuB~Y",
the set of which we denote by I(B). Then the free group generated by B is
F(B) = (I(B),o) with the elements being the irreducible strings over BU B!
and the group operation to be interpreted as the usual string concatenation,
yet, obviously, if we concatenate two elements from I (B), the resulting string
eventually has to be reduced again. The identity in F' (B) is the empty string.

In general, B (not containing the identity) is called a generator of the group
G if every element @ from G can be written as a finite product/sum of elements
from B, ie, a = byo-::0by, for by,...,b, € B. In this paper, we restrict
ourselves to finitely presented groups, i.e., having a finite presentation (B | R)
with B being a finite generator set and moreover, R being a finite set of relations
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B. we here consider the strings in B* reduced according to th.e
1d the relations given in R. Informally, the group G = (B | R) is

roup axioms al

west one generated by B subject only to the group axioms and the relatioin]s
thie 1are .mally, we will restrict ourselves to relations of the form by0---0b, = ¢
in.R— i b , ¢ € B, which equivalently may be written as byo---oby 0e =¢;
e bl" ;s;t.e;a(,l"(;f such relations we may specify R by strings over B yielding the
ln?n::eg ilc;enltity, i.e., instead of by 0 ++- 0 by, = ¢! we take by o -+- 0 by, oc (these
5;:111;5 then are called relators).

Fzample 1. The free group F'(B) = (I (B) o) can be written as (B | 0) (or even
siﬁ?pler as (B)) because it has no restricting relations.

Evample 2. The cyclic group of order n has the presentation {{a} | {a™}) (o1,
oélitting the set brackets, written as (a | a™)); it is also known as Z, or as the

quotient group L)L,

Example 8. 7 is a special case of an Abelian group {ii;'f?nerated l?y (1) and its
inverse (—1), i.e., Z is the free group generated by (1?. Z is an Abelian group gen-
erated by the unit vectors (0,...,1,...,0) and tht'eu‘ inverses (0,. r —1,...,0).
It is well known that every finitely generated Abelian group is a direct sum. of a
torsion group and a free Abelian group where the torsmx’t group may be w1‘1Ften
as a direct sum of finitely many groups of the form Z/p"Z for p being a prime,
and the free Abelian group is a direct sum of finitely many copies of Z.

Remark 1. Given a finite presentation of a group (B | R), in ge.neral i’F is pot
even decidable whether the group presented in that way is finite or mﬁmt('e.
If we consider (infinite) groups where the word equivalence problem v = v is
decidable, or equivalently, there is a decision procedure telling us whether, given
two strings u and v, uv™ = e, then we call (B | R) a recursive or computable
finite group presentation.

2.2 Cayley Graphs

Let G = (B | R) be a finitely presented group with G’ denoting the s.et of group
elements. Then we define the corresponding Cayley graph of G with .respect
to the generating set B as the directed graph C(G,B) = (G', E) with the
set of nodes G’ and the set FE of directed edges labeled by elements of B by
E={(z,a,9) |2,y € G',a € B,za =y}, i.e., from an element  an edge labeled
by the generator a leads to y if and only if za = y.

As can be seen directly from the definition, the Cayley graph for a group G
depends on its presentation by the generator set B and the relators in R.

Example 4. The dihedral group De corresponds with the Cartesian product
2 .
of Z and Z,. One presentation of Dy, is as <7‘,S | 82, (s7) >, another one is

<7‘, s |72, 52>, the Cayley graph of which can be represented easily in the following
way:
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In this presentation, both generators have order two; on the other hand, an
infinite line can be obtained by taking the group element rs and its powers
(rs)" for n > 0, as the order of rs is infinite.

The Cayley graph for the presentation of Dy, as {r,s| s%,srsr) can be
depicted as follows:

2 r r T —1 i -2
w0 ST —— 8 — 8 — gr b L g2
slls slls sits slis slls
—9 r -1 r r r 2
: T — T — e _ r —_— 7
As s is self-inverse, instead of the two directed edges s |[ s often only the
corresponding non-directed edge | s is depicted, i.c.,

R R -y S L
|'s E |'s |'s | s
SN r —s 72

The lower and the upper lines are going into opposite directions, which nicely
fits as a representation of double-stranded DNA molecules, i.e., the lower line
going from the left 5'-end to the right 3-end, whereas the complementary upper
line goes from the right 5'-end to the left 3’-end.

Ezample 5. The hexagonal grid is the Cayley graph assigned to the presentation
of the group (a,b,¢| a2 b?¢c?, (abc)?). As all three generators a, b,c are self-
inverse and the direction of these elements indicates which generator is meant,

b
we obtain a simpler picture for the hexagonal grid by replacing a S a, 2,
b

and ¢ \\\\ ¢by /, —, and \, respectively. Both representations are depicted in
the following:

NN e o a N /
aéab a — ab
NN e a s a ’ eNNe N / AN
ir& abe b — e abe
e a i e NN e a s a 7 N Y
14%r.b ¢ — b
a . A a b [N / N

3 Arrays and Array Grammars

In this section we generalize the concept of d-dimensional arrays to arrays
defined on Cayley grids. Let G = (B | R) be a finitely presented group with
B = {e1,...,e;m} and G’ denoting the set of group elements; moreover, let
C'(G) be the Cayley graph of G with respect to B. Throughout the paper we
will assume that B! C B, i.e., B contains all inverses of its elements. For paths
in the Cayley graph this means that for each path v = wy; — ... - w, = win
C'(G) from v to w also its inverse w = w, — ... — wy = v is a path in C'(G).
A finite array A over an alphabet V on G’ is a function A : G' — V U {#},

wmrhars ahaeal AN o Faw = 79 0 ey, ¥ 1% %
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und or blank symbol, i.e., the nodes of C(G) get assigned elements of

?,fﬁ?#o} We usually will write A = {(v, A(v)) | v € shape(A)}.

7€ we denote the set of arrays over V on G’, any subset of V(’G) is called
e Janguage over V on G. With respect to the finite presentation of G by
i tead of VE we also write V), .
(@) m!:npw array in VY has empty shape and is denoted by Ag. Ordering
Thie‘:ato;s in B in a specific way as e; < - < e‘m,_ for each a.rray' A=
o ) | v € shape(A)} in V{6 \ {Ag} we get a canonical representation as
(v, AW) A1) 5. » (Vs A(wn))) such that {v; | 1 < i < n} = shape (A) and
a list {(01, 1 < 4 < n, with respect to the length-plus-lexicographic ordering
L H; ’witi_l_ the elements of G written as sums of the elements in B (the
o E“;-,ll'f:ilglusc-lexicographic ordering < is a well-ordering, where for two strings u
Ien,:;gv IL < v if either |u| < |v| or |u| = |v|, u = zay, v = xby, and a‘< b).
T ter;ns of € (G) this means that the elements of the array are listed in ‘t.l.le
igngth-plus-lexicographic ordering of the paths in C'(G) seen from the origin

(the identity).

Ezample 6. Consider the hexagonal grid from Example 5. Then the “pf)sitio‘n”
abe can also be reached by taking the path cba from the “origin” (the 1d§3nt1ty
e). Hence, with taking the ordering a < b < ¢, the canonical representation of

a,b,cla® b?,c?,(abc)?
the array A = {(ab, X), (abc,Y) | v € shape(A)} € {X,Y}C(< bicla’ ¢ (abe)®))
is ((ab, X)v(a’bca Y)>

Ezample 7. A d-dimensional array is an array over the free group Z2. If we
take the unit vectors ex = (0,...,1,...,0) and their inverses (0, . —.1, o ,0),
the resulting Cayley graph is the well-known d-dimensional grid, which in the

2-dimensional case can be depicted in the following way, where each horizontal
(1,0) i _

line — represents the two directed edges = and each vertical line | represents
(_170)

the two directed edges (0, —1) |1 (0,1):

| | I

With respect to the origin (0, 0), the four vectors (1, 0), (._1’ 0), (0, 1), (0, —1)
are known as the von Neumann neighborhood, whereas adding the diagonal posi-
tions (1,1),(~1,1),(=1,-1),(1,=1) yields the Moore neighborhood and thus a
A EY . 5 o - 4 oo - - . )

b
-
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a1 -

(_ivl) . -
N

(=1,0) — (0,0) — (1,0) —---
1 N

(1,=1) =+

For any v € G, the translation 7, ;: G' — (' is defined by 7y(w) = wouy
for all w € G, and for any array A € V(@) we define 7y(A), the corresponding
array translated by v, by

(70 (A)) (w) = A (w ov™!) forallwe G

An array A €V (D) g called k-connected if for any two elements v and w in
shape (A) there is a path v = w; — +-- — w, = win C (G) with {wi,...;wy} C
shape (A) such that for the distance in C (@) between w; and w;_,, d (wy, wi—y),
we have d (wj, wi—1) < k for all 1 < i < n; the distance d (z,y) between two
nodes « and y in C'(G) is defined as the length of the shortest path between z
and y in C'(G). The subset of k-connected arrays in V(@ is denoted by V(G

Ezample 8. Consider the set of one-dimensional arrays over the alphabet {a}",
. 1
i.e., {G}C((ﬂll-(-l))}’ which in a simpler way we will also write as {a}” . Then the

l-dimensional array {((0),a), ((k),a)} € {a}zl is m-connected, i.e., in {a}zl"'e
if and only if m > k.

3.1 Array Grammars

For a finitely presented group G = (B | R) with the set of elements G”, we define
an array production p over V and G as a triple (W, A;, Ay), where W C G’
is a finite set and A; and A, are mappings from W to V U {#} such that
shape (A1) # 0, where again the shape is defined to exactly contain the non-
blank positions, i.e., shape(A1) = {v € W | A(v) # #}. We say that the
array Cp € VO is directly derivable from the array C; € VC(©) by the array
production (W, 41, Ag) if and only if there exists a v € G such that, for all
w e G\ 7 (W), C1 () = Cz(w), as well as, for all w € 7, (W), C; (w) =
A1 (7-y (w)) and Cy (w) = Az (7_, (w)), i.e., the sub-array of C; corresponding
to A; is replaced by Aj, thus yielding Cy; we also write C; =, Ca.

As we already see from the definitions of an array production, the condi-
tions for an application to an array B and the result of an application to B, an
array production (W, A;, As) is a representative for the infinite set of equiv-
alent array productions of the form (r, (W), 7, (A1),7, (42)) with v € G'.
Hence, without loss of generality, we can assume e € W (e is the identity in
G) as well as A; (e) # #. Moreover, we often will omit the set W, because it
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A = { (v A () |veW} for 1 < ¢ < 2. Thus, in the following,
Az I;T,res'e:nt the array production (W, Ay, As) also by writing A; — As, ie.,
we I

) |ve W} — {(v, 42 () |ve W} If W] =2, ie, W= {e,v} for
(AL o for (e, A (), (0 As 90} — (623 (€ (0, Az ()} we
S?lrﬁl only write A (e)vAy (v) — Az(e) Az (v). If W] =1, ie,, W = {e}, we

An array grammar (over C (@) is a septuple
GA = (C(G),N’Ta#aPaA()v:G/\)a

here N is the alphabet of non-terminal symbols, T is the alphabet of terminal
Ja 181{‘) Is. NNT =0, # ¢ NUT; P is a finite non-empty set of array productions
Syﬂ: ;}/ ‘whel‘e V =NUT; A € VC is the initial array (axiom), for which,
:‘s{ilsua;lly done in the literature, we shall assume Ag = {(vp, S)}, where vy € G’
is the start node, and S € N is the start 3ymbo§. M(freover, =raa deuotes‘ the
derivation relation induced by the array productions in P. In the examples given
below, we will omit =g, in the description of the array grammars.
We say that the array By € VOO is directly derivable from the array
B, € VE(© in Gy, denoted By =g, By, if and only if there exists an array pro-
duction p = (W, A1, Az) in P such that B; =, Bs. Let =, be the reflexive
transitive closure of =@, . The array language generated by the array grammar
Ga, L(Ga), is defined by

L(GA):{AiAeTC(G), Ag =% A}.

An array production p = (W, A1, Az) in P is called

— #-context-free (of type #-CFA), if |shape (41)| = 1, i.e., shape (A;) = {e},
and A; (e) € N;

— context-free (of type CFA), if it is of type #-CF A and A (e) # #;

— strictly context-free (of type SCFA), if it is of type #CFA and
shape (Az) = W.

For X € {ARBA,#-CFA,CFA S5CFA}, an array grammar G is called
to be of type X, if every array production in P is of the corresponding type,
where ARBA means that there are no restrictions on the form of the array pro-
ductions, The family of k-connected array languages generated by array gram-
mars on C (G) of type X is denoted by L (C (G)-X); the family of arbitrary
array languages generated by array grammars on C (G) of type X is denoted by
L(C(G)-X).

The main difference between array grammars of type #-CFA and of type
CFA is that already by the definition of the array productions of type CFA
it is guaranteed that all intermediate arrays derived from the initial arrays as
well as the terminal arrays are k-connected, if all W in the array productions
(W, Ay, Ay) are k-connected due to the condition that no symbol can be erased,
Le., replaced by the blank symbol #. On the other hand, array productions of
type #-CF A allow symbols to move as far as they want from their original
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Ezample 9. Consider the #-context-free 1-dimensional array grammar

Gy = (Zl7N = {S,A}7T . {a‘}v#avaO a {((0)>S)}> )
P={{051)# — (0)a(1)4, (0)A(1)# — (0)#(1)4, (0)4 — (0)a} .

According to our conventions, in a simpler way we can write
P={S()# — ad, A()# — #A4, A - a}.

The array language generated by Gy is the subset of {a}Zl that can be written

as {(0)a(m)a | m € N} and thus for no k and no type X of array grammars is
in ,Ck (Zl = X)

For arbitrary and #-context-free array grammars the condition to only con-
sider languages of k-connected arrays corresponds to intersecting the generated
array language with V(x| which can be carried out by arbitrary array gram-
mars by themselves (which will be proved later, see Lemma 2), but is a condition
imposed from “outside” when dealing with #-context-free array grammars. Yet
as later we are going to show that some #-context-free array grammars equipped

with specific control mechanisms can simulate any arbitrary array grammar this
makes no difference any more.

Example 10. Let G = (B | R) be a finitely presented group and & € G with
ord(z) = co. Let by 0...0b, be the canonical representation of # in (B | R);
then ({z" | n € Z},0) is an infinite subgroup of G, and z™ # ™ for n # m.
Hence, along this “line” we can argue many results obtained for Z!, e.g., we can
argue that, for any Cayley grid C (B | R))

L(C((B|R)),CFA) C L(C((B|R)),ARBA),

because the inclusion directly follows from the definitions, and the strictness
follows from the well-known corresponding result for string languages using as a
witness the language (L) = {a"’" | n € N} and the representation of the strings
in it as 1-dimensional arrays. As a small technical detail we have to mention that
forz=byo...oby, by,..., b € B, such witness languages have to be expanded
by the homomorphism Ay with hy (a) = a* for every symbol a in the alphabet,
as in C ((B | R)) we now have to fill k positions instead of only one in Z'.
Such infinite lines can be found in various Cayley graphs described so far.

For example, consider the presentation of D, as (r,5 |72, 5%) from Example 4;
3 r 8 T 8 T

its Cayley graph ...srs @ sr 2 s 2 e 2 p 2 g = Tsr... can somehow be
T s r

8 i s
seen as the line (rs)”, n € Z, when only taking the elements having a canonical
representation of even length.

Remark 2. The possibility to compute along such infinite lines is also impor-
tant if we want to (describe how to) simulate computations of a Turing machine

— or similar computationally complete mechanisms (for strings) — using spe-
cfie variante oF foamotao TN e I N =0
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inite gr ion of a group (B | R), we can effectively
table finite group presentation o : :
any c?lnfin encoding of any array language in £ (C'(G)-ARBA) given by an
Smm" ) array grammar and vice versa. The finite group presentation of the
?g| R) being computable is crucial for this result.

con

(a‘rbitl'

group ' .

- simulating array grammars of type C (G)-ARBA, a special normal form

F0111 marked normal form is very helpful; it has a!reaciyt been described for 1-

W camional array grammars in [20] as a special variant of the Chomsky normal
?c::-lsr?for array grammars, shown, for example, in [16].

Lemma 1 (marked normal form). For every array grammar of type

em

c(G) -ARBA
GA . (C (G) 7N7Ta #an {(’UO,S)},ﬁGA) )
we can effectively construct an equivalent array grammar of type C (G)-ARBA
C_YYA = (C(G) avaTa#)P/a {(UO,S’)} ’:>GA) )

such that N € N' and all array productions in P' are of one of the following
forms:

1. AB — CD, where A,B,C,D € N'UT, or

2. # — #.

Before the final array production # — # is applied, any intermediate array

derived from the initial array {(vo,S)} contains exactly one barred symbol.

We omit the proof as the arguments given in {20] for 1-dimensional array
grammars can be taken over for the general case of arbitrary array grammars
over Cayley grids.

We now exhibit the promised algorithm how array grammars with arbitrary
rules can filter out the terminal arrays which are k-connected.

Lemma 2 (filtering out all k-connected arrays). Let k € N. For every array
grammar of type C (G) -ARBA

Ga=(C(G),N,T,#, P {(v0,5)},==>c.4)
we can effectively construct an equivalent array grammar of type C (G) -ARBA
Gy = (C(G),N',T, #, P, {(v0,5")}, =¢,) ;
such that L (G'y) contains ezactly those arrays from L (G ) that are k-connected.

Proof (sketch). According to Lemma 1, without loss of generality we may assume
that G4 is in the marked normal form. First, we replace every terminal syrr'lbol
a € T by a corresponding non-terminal symbol X, in all the array productions
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with the only difference that instead of the terminal symbols a € T we have the
corresponding non-terminal symbols X, in all arrays occurring in any derivation.

Finally, instead of applying the final rule # — # we move the bar to a
symbol X, and apply the rule X, — a. This terminal seed a at some position
¥ NOwW may propagate the signal become terminal to all positions v in the array
derived so far which allow for a k-connected path on non-blank symbols from
vo to v by using the rules of the form buX. — be, b,c € T, and any u being
an element from the underlying group reachable from e in at most k steps in
C (G). This condition guarantees that when no rule is applicable any more, the
obtained subarray only containing terminal symbols is k-connected, hence, if no
non-terminal symbol has remained, the final array is terminal and k-connected.

As a technical detail we mention that to obtain the empty array we immedi-
ately apply the array production # — #. O

Remark 3. The ides of first working with non-terminal symbols X, instead of
terminal symbols a and then turning them into the corresponding terminal sym-
bols a can be taken over for any arbitrary array grammar. Hence, without loss
of generality, we may always assume that any array production contains at least
one non-terminal symbol in the array on its left-hand side, i.e., in any array
production {(v, A; (v)) |v € W} — {(v, 42 (v)) | v € W} we find at least one
v1 € W such that A (v1) € N.

Therefore, throughout the rest of the paper, when using the notion of an
array grammar of type C' (G)-ARBA we will assume this condition to hold.

4 Standard Control Mechanisms

In this section we recall the notions and basic results for the general model of
sequential grammars equipped with specific control mechanisms as elaborated
in [21], based on the applicability of rules, as well as for the new concept of
activation and blocking of rules as exhibited in [3,4].

Although in this paper we are only dealing with array grammars (over a Cay-
ley graph C (G)), the control mechanisms will be defined for arbitrary sequential
grammars; hence, we first recall the notion of a general model for sequential
grammars, and then also the control mechanisms are introduced for this general
model.

4.1 A General Model for Sequential Grammars

We first recall the main definitions of the general model for sequential grammars
as established in [21], grammars generating a set of terminal objects by deriva-
tions where in each derivation step exactly one rule is applied to exactly one
object.

A (sequential) grammar G, is a construct (O, Or,w, P,=—>¢, ) where
— O is a set of objects;

o~ g e 1

Control Mechanisms for Array Grammars on Cayley Grids 11

w € O is the ariom (start object);
P is a finite set of rules;

d =g, C 0 X% O is the derivation relation of Gy.

) E};{:hut;c the rules p € P induces a relation =,C 0 x O with respect to
—»g,. Arulep€ P is called applicable to an object & € O if and only if
thel.é'exists at least one object y € O such that (z,y) € =>5; we also
write & =>p ¥. The derivation relation ==, is the union of all =, i.e.,
—sq.= Upep =>p. The reflexive and transitive closure of =g, is denoted
by ="‘:>G.q .

Specific conditions on the rules in P define a special type X of grammars

which then will be called grammars of type X.

The language generated by G is the set of all terminal objects that can be

derived from the axiom, i.e.,

L(Gs)z{veOT|w——*—>Gs 'v}.

The family of languages generated by grammars of type X is denoted by £ (X).

Let G, = (0,01, w, P,=>q,) be a (sequential) grammar of type X. If for
every G of type X we have Or = O, then X is called a pure type, otherwise it
is called extended; X is called strictly extended if for any grammar G of type
X, w ¢ Or and for all z € Or, no rule from P can be applied to z.

In many cases, the type X of the grammar allows for one or even both of the
following features:

A type X of grammars is called a type with unit rules if for every gram-
mar Gy = (0,0r,w,P,=>g) of type X there exists a grammar G, =
(O,OT,w,PU PH), =>G§) of type X such that =, C ==’ and

_ P = [p® [pe P,

- for all z € O, p™) is applicable to z if and only if p is applicable to z, and

— for all z € O, if p) is applicable to z, the application of p{t) to z yields
back again.

A type X of grammars is called a type with trap rules if for every gram-
mar G, = (0,07,w,P,=>g) of type X there exists a grammar G =
(O,OT,w,PUP(_),:>G/S) of type X such that =¢, € ==>¢' and

- p=) = {p(—) | p € P},

- for all z € O, p(~) is applicable to z if and only if p is applicable to x, and

- for all z € O, if p(~) is applicable to z, the application of p{~) to z yields an
object y from which no terminal object can be derived anymore.

In the following, we shall deal with array grammars of type C (G)-ARBA
and C (G) -#-CF A. In the general framework of sequential grammars as defined
above, an array grammar over C (G) of type ARBA or #-CFA originally
defined as
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should be written as
G — ((N UT)C@ TG 4, P, =>G,,)

which should be kept in mind for the definitions of the control mechanisms given
below.

For applying the general results on the relation between different contro)
mechanisms as elaborated in the rest of this section to array grammars of the
types C (G)-ARBA and C (G)-#-CF A, the following feature of these types is
essential in some cases;

Lemma 3. The types C(G)-ARBA and C (G)-#-CFA for array grammars
over a Cayley grid C (G) are strictly extended types with unit rules and trap
rules.

Proof. According to Remark 3, C (G) -ARBA can be seen as a strictly extended
type for the succeeding proofs; C (G) -#-CF A is a strictly extended type already
by definition.
Now let
Ga= (C(G) :NaT1 #’Pa {(UO)S)}a:GA)

be an array grammar of type C' (G)-ARBA or C (G)-#-CFA.

Then for every array production p = (W, A;, A;) the corresponding unit rule
is p* = (W, Ay, A1), which, when being applied, obviously does not change the
underlying array.

Moreover, for the trap rules, take a new non-terminal symbol F, the trap
symbol, which never can be erased any more, and for every array production
p = (W, Ay, A2) we then define the corresponding trap rule p~ = (W, A1, Fw)
with Fw (v) = F for all v € W, which, when being applied, prohibits the derived
array to become terminal no matter how the derivation proceeds.

In sum, we conclude that both C'(G)-ARBA and C (G)-#-CF A are strictly
extended types with unit rules and trap rules. O

Remark 4. The constructions given in the preceding proof verbatim hold true for
the type C' (G)-CF A, as the additional restriction that the non-terminal symbol
in the array on the left-hand side of the array production must not be replaced
by the blank symbol # does not affect the validity of the construction, hence,
C(G)-CFA is a strictly extended type with unit rules and trap rules, too.

On the other hand, C (G) -SCF A only is a strictly extended type with trap
rules, as for a rule p = (W, Ay, A3) with [W| > 1 no unit rule p* not changing
the underlying array can be found, as this would violate the condition that all
positions # e in W have to be occupied by non-blank symbols in A,.

4.2 Graph-Controlled and Programmed Grammars
A graph-controlled grammar (with applicability checking) of type X is a con-

struct

~~ o T T TS,
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= (0,0, w, P,=>g) is a grammar of type X; g = (H,E,K) is a
h where H is the set of node labels identifying the nodes of the
»-one manner, £ C H x {Y, N} x H is the set of edges labeled

where Gs
labelefl grap.

i one-tc
graph In & 00 . H — 2% is a function assigning a subset of P to each node of

¥ \ .
by Y OCr H is the set of initial labels, and Hy C H is the set of final labels. The
! Hiai_ion relation =>@¢ is defined based on =3¢, and the control graph g as

d:griv
f{)HO’WS: For a
' ,Y,J) € E (success case), or
_ ., —>_ v by some rule p € K (i) and ('L,Y,j)‘e ' ase),
Z = vp no p € K (i) is applicable to u, and (i, N, j) € E (failure case).

ny 4,j € H and any u,v € O, (u,1) =>gc (v, ) if and only if

The language generated by Ggc is defined by
L(Ggc) = {veOr | (w,i) =, ,4), i€ Hyj € H¢}.

It H; = Hy = H, then Gge is called a programmed grammar. The families of
languages generated by graph-controlled and prografnmed grammars of type'X
are denoted by £ (X-GCq) and L (X-P,), respectively. If the set E contains
no edges of the form (i, N,j), then the graph-co.ntrollecl' grammar is said to
be without applicability checking; the corresponding families of languages are
denoted by £ (X-GC) and L (X-P), respectively. ‘

As a special variant of graph-controlled grammars we consider those where
all labels are final; the corresponding family of languages geneyated by grapl}—
controlled grammars of type X is abbreviated by L (X-Gcgilf ”‘al). By defini-
tion, programmed grammars are just a subvariant where in addition all labels
are also initial.

The notions with/without applicability checking in the original definition for
string grammars were introduced as with/without appearance checking because
the appearance of the non-terminal symbol on the left-hand side of a context-
free rule was checked, which coincides with checking for the applicability of this
rule in our general model; in both cases — applicability checking and appearance
checking — we can use the abbreviation ac.

4.3 Matrix Grammars

A matriz grammar (with applicability checking) of type X is a construct
GM . (GsaM,F):Gm)

where G, = (0,07, w,P,=¢) is a grammar of type X, M is a finite set of
sequences of the form (p1,...,pp), n > 1, of rulesin P, and F C P. For w,z € O
we write w = q,, z if there are a matrix (p1,...,pn) in M and objects w; € O,
1 <4< n+41,such that w = w1, 2 = wpy1, and, for all 1 < < n, either

T Wy =g, Wiy OF
T Wy = w41, p; is not applicable to w;, and p; € F.
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L(Gy) = {veOr|w=>f,, v} is the language generated by Gps. The
family of languages generated by matrix grammars of type X is denoted by
L(X-MAT,.). If the set F is empty, then the grammar is said to be without
applicability checking (without ac for short); the corresponding family of lan-
guages is denoted by £ (X-MAT).

We mention that in this paper we choose the definition where the sequentia}
application of the rules of the final matrix may stop at any moment.

4.4 Random-Context Grammars

A random-context grammar Gro of type X is a construct
(Gs, Ply=rG,0)

where

- G5 =(0,07p,w, P,=>¢) is a grammar of type X;

~ P’ is a set of rules of the form (¢, R, Q) where g € P, RUQ C P;

— ==Grc 8 the derivation relation assigned to G'rc such that for any z,y € O,
T =>Gpe Y if and only if for some rule (¢, R, Q) € P’, x =>; y and, moreover,
all rules from R are applicable to z as well as no rule from Q is applicable
to z.

A random-context grammar Grc = (G4, P!/, =>g,.) of type X is called a
grammar with permitting contexts of type X if for all rules (¢, R, Q) in P’ we
have @ = 0, i.e., we only check for the applicability of the rules in R.

A random-context grammar Grc = (Gs, P/, =g, ) of type X is called a
grammar with forbidden contexts of type X if for all rules (¢, R,Q) in P’ we
have R = (), i.e., we only check for the non-applicability of the rules in Q.

L(Gge) = {u € Or|w =& e U} is the language generated by Gro. The
families of languages generated by random context grammars, grammars with
permitting contexts, and grammars with forbidden contexts of type X are
denoted by £ (X-RC), £ (X -pC), and L (X-fC), respectively.

4,5 Ordered Grammars

An ordered grammar Go of type X is a construct
(G57 = :>Go)

where

- G5 = (0,07, w,P,=) is a grammar of type X;

— < is a partial order relation on the rules in P;

— =G, Is the derivation relation assigned to Go such that for any z,y € O,
T =@, Y if and only if for some rule ¢ € P x =, y and, moreover, no rule
p from P with ¢ < p is applicable to z.

L(Go)={veOr|w =%, v} is the language generated by Go. The fam-

.7
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g General Results

4.

We now recall the main results and proofs established for the control mechanisms
e .
introduced so far in [21].

heorem 1. For any arbitrary type X,
L(X-MAT,.) C L (X-GCinel) C £(X-GCqe) and
L(X-MAT) C £ (X-Geelinaly ¢ £(X-GC).

T

Proof (see [21]). Let Gy = (G5, M, F,=>g,,) be a matrix grammar with
G, = (0,0r,w,P,=>g¢, ) being a grammar of type X; let

M= {(pi,lv 500

with p;; € P, 1 < j < mn; 1 <4 < n. Then we construct the graph-
controlled grammar Ggc = (Gs, g, Hi, Hf,=>gc) with g = (H,_E,K), H =
{G,7) 1< <n,1<i<n}, K((,7) ={ps;}, 1 <7 <n; 1 <i<n, and

E:{((Zj)’Yv a.7+1))|1§j<ni71§7:§n}

U (7)), Ny @i+ 1) [1<i<n,1<i<np;€F}
U{((ang,Y( ))[1<j<n,1<i<n}
{(«

Pim;) | 1< i <n}

i,ni),N,(4,1)) |1 <ji<n,1<i<n,p; € F}

as well as H; = {(4,1) |1 <i <n}. As we have assumed that the sequential
application of the rules of the chosen matrix may stop at any moment, we have
to take Hy = H. By this construction it is guaranteed that Ggc simulates
a derivation in Gy correctly by choosing a matrix to be simulated in a non-
deterministic way and then applying the rules from this matrix in the desired
sequence; the application of & rule p; ; may be skipped if and only if p; ; €
F; hence, Ggc is without applicability checking if and only if Gy is without
applicability checking, which observation completes the proof. O

The following theorem shows that forbidden contexts can simulate a partial
order relation on the rules:

Theorem 2. For any arbitmr.{; type X, L (X-0) C L(X-fC).

Proof (see [21]). Let G, = (O,Or,w, P,==¢) be a grammar of type X. Con-
sider the ordered grammar Go = (G5, <,=>¢q,,) of type X and the correspond-
ing grammar with forbidden contexts Gyc = (Gs,Pfc,=>G fc) of type X
where

Pio ={(»,0,Q (p)) | p € P} with
Q) ={qlqePp=<q}.

It is easy to see that L (Gyc) = L (Go), because a rule p € P can be applied in
Gyc if and only if no rule from Q (p) is applicable which is the same condition
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Yet also the reverse inclusion holds, provided the type X allows for trap rules:

Theorem 3. For any type X with trap rules, £L(X-fC) C L(X-O).

Proof. Let G; = (O,Op,w, P,=>g) be a grammar of type X and consider the
grammar with forbidden contexts Gyc = (Gs, Pre, =g, ) of type X with

Pio ={(p0,Q(p)|pe P}.

We now extend the underlying grammar G, by the trap rules p~ for all rules p
in P, thus obtaining the grammar

G = (o, Or,w, PU P, =>G;)

where, according to the definition of grammars with trap rules,

- p=) = {p(—) [pe p},

— for all z € O, p(7) is applicable to z if and only if p is applicable to z, and

— for all z € O, if p{~) is applicable to z, the application of p(~) to z yields an
object y from which no terminal object can be derived anymore.

As X is a type with trap rules, G/, again is of type X.
We now define the ordered grammar

Go = (Gls, =, :>Go)

which by definition again is of type X, with the partial order < on the rules in
P U P as follows:

foranype Pp< ¢~ forallqe Q(p).

This guarantees that L (Gyc) = L (Go), as a rule p € P can be applied in
Go if and only if no rule from @ (p) is applicable which is the same condition as
for the applicability of p in G¢c. On the other hand, the application of a rule in
P() can never lead to a terminal result. O

The following result is an immediate consequence of the two previous theo-
rems:

Corollary 1. For any type X with trap rules, £L(X-fC) = £ (X-0).

As all the types defined for array grammars on Cayley grids in this paper
are at least types with trap rules as argued above, see Lemma3 and Remark 4,
we obtain:

Corollary 2. £L(X-fC) = L(X-O) for all types C(G)-Y with ¥ €
{ARBA,#-CFA,CFA,SCFA}.

Matrix grammars (with applicability checking) can simulate random context
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m 4. For any arbitrary type X with unit rules and trap rules,

Theore

L(X-RC) C L(X-MAT,,).

Congider a random-context grammar Gre = (Gs, Proy,=>G ) Where
~ (0,0r,w, P,=>¢) is a grammar of a type X with unit rules and
trap rules; then we define the matriz grammar with appearance checking
't M,F,=>py) of type X as follows: for each rule (p,R,Q) €

GM = (Gs ; ;
Pogy R = {rp]1<i<m}, Q = {g;|1<j<n}, mn > 0, we take the
Syt ("1+ T S e ,qﬁ—),p) into M. In that way we obtain G =

(0,0r,w, P!,=>¢) where

Pmof-

—

P =PU {r(+),q(_) |7 € R,q€Q forsome (p,R,Q) € PRC}

and F = {¢" | g € Q for some (p,R,Q) € Prc}. As X is a type with unit
rules and trap rules, all the elements of G are well defined. Obviously, for all
z,y € O we have & ==(p,r,@) ¥ if and only if z :>(r§+’,...,r5$),q§",...,q(n“).p) Y,

which implies L (Gum) = L (Gro)-
As a technical detail we mention that when the application of rules in

§+),-~,r5n+),q§—),---,qff),p)

ing reached the end with applying p, either the underlying object has not yet
changed as long as only the unit rules have been applied or else has already been
trapped by the application of one of the trap rules, hence, no additional terminal
results can arise from such situations. O

the sequence of the matrix (r stops before hav-

Omitting the forbidden rules and applicability checking, respectively, from
the (proof of the) preceding theorem we immediately obtain the following result:

Corollary 3. For any arbitrary type X with unit rules,
L(X-pC)C L(X-MAT).

The main results elaborated for the relations between the specific regulating
mechanisms in [21] and in this paper are depicted in the following diagram; most
of these relations even hold for arbitrary types X.

Theorem 5. The inclusions indicated by vectors as depicted in Fig. 1 hold, the
additionally needed features of having unit and/or trap rules indicated by w and
t, respectively, aside the vector:
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L(X-GCqc)
L (X_Gcg,(lzlfinal)
L(X-P,e) L(X-MAT,.)
L(X-GCeifinat) \
1 L(X-RC)
L(X-P) T
L(X-MAT)
\ (X-£C)
R
L(X-pC)
L(X-0)
L(X)

Fig. 1. Hierarchy of control mechanisms for grammars of type X.

5 Grammars with Activation and Blocking of Rules

We now recall the definition of sequential grammars with activation and blocking
of rules in a similar way as introduced in [3-5].

A grammar with activation and blocking of rules (an AB-grammar for short)
of type X is a construct

C;’AB = (GsaLafL’AvBaLO?:>GAB)

where G5 = (0, Or,w, P,=>¢) is a grammar of type X, L is a finite set of labels
with each label having assigned one rule from P by the function f, A, B are
finite subsets of L x L x N, and Lyg is a finite set of tuples of the form (q, Q, Q),
g € L, with the elements of @, Q) being of the form (I,t), where | € L and t € N,
t>1.

A derivation in G 4p starts with one element (g, @, Q) from Ly which means
that the rule labeled by ¢ has to be applied to the initial object w in the first step
and for the following derivation steps the conditions given by Q as activations
of rules and @ as blockings of rules have to be taken into account in addition
to the activations and blockmgs commg along w1th the apphcatlon of the rule

17 1 1 11 M1 T . B 11 15
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he first step(s) although no rule has been applied so far, but probably also

o t-ldc g additional activations and blockings for further derivation steps.
rm;{ (:(l)nflgumnon of G ap in general can be described by the object derived so
far and the activations @ and blockings @ for the next steps. In that sense, the
carting tuple (4, @ Q) can be interpreted as ({(g,1)} U @, @), and we may also
b ly write (@, Q) with Q" = {(g,1)} UQ. We mostly will assume Q and @ to
Ebl;nfon.conﬂwtmg, i.e., QNQ = 0; otherwise, we interpret (Q', Q) as (Q'\ Q,Q).

Given a configuration (u, @, @), in one step we can derive (v, R, R), and we

also write

(U7Q7Q) ==Gan (’U,R,R),

if and only if

_ y =>¢ v using the rule r such that (¢,1) € Q and (q,7) € fI, i.e, we apply
the rule labeled by g activated for this next derivation step to u; the new sets
of activations and blockings are defined by

) 1 ( i) | (q,2,7) € B},
\={{ 3?,1))|| (z, 1+1) €Q, i>0yU{(z,1) | (¢ 7,1) € A})

(observe that R and R are made non-conflicting by eliminating rule labels
which are activated and blocked at the same time);
or

— no rule r is activated to be applied in the next derivation step; in this case
we take v = u and continue with (v, R, R) constructed as before provided R
is not empty, i.e., there are rules activated in some further derivation steps;
otherwise the derivation stops.

R={(z,1) | (,i+1)€Q, i>0}U{(,
R=(

The language generated by Gap is defined by
L(Ga) ={veOr| (w,Q,Q) =¢,, (v,R,R) for some (Q,Q) € Lo} .

The family of languages generated by AB-grammars of type X is denoted by
L (X-AB). If the set B of blocking relations is empty, then the grammar is said
to be a grammar with activation of rules (an A-grammar for short) of type X;
the corresponding family of languages is denoted by £ (X-A).

5.1 AB-Grammars and Graph-Controlled Grammars

Already in [21) graph-controlled grammars have been shown to be the most
powerful control mechanism, and they can also simulate AB-grammars with the
underlying grammar being of any arbitrary type X.

Theorem 6. For any type X, L (X-AB) C L(X-GCy.).
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Proof. Let Gap = (G, L, J1,A4,B,Ly,=>g,) be an AB-grammar with the
underlying grammar G = (0,07, w, P,==¢) being of any type X. Then .
construct a graph-controlled grammar

Geo = (G,9,H;, Hy, =>gc)

with the same underlying grammar G. The simulation power is captured by the
structure of the control graph ¢ = (H,E,K). The node labels in H : identifying
the nodes of the graph in a one-to-one manner, are obtained from G4p as al]
possible triples of the forms (g,Q,Q) or (2,Q,Q) with q € L and the elementg
of Q, Q) being of the form (ryt), 7 € L and t € N such that ¢ does not exceeq
the maximum time occurring in the relations in A and B, hence this in total is
a bounded number. We also need a special node labeled (), where a computatiop
in Gge ends in any case when this node is reached.

All nodes can be chosen to be final, i.e., Hf = H. H; = L is the set of initig)
labels, i.e., we start with one of the initial conditions as in the AB-grammar.

The idea behind the node (9,Q,Q) is to describe the situation of a configy.
ration derived in the AB-grammar where q is the label of the rule to be applied

and @, Q describe the activated and blocked rules for the further derivation steps:

in the AB-grammar. Hence, as already in the definition of an AB-grammar, we
therefore assume Q N Q = §).

Now let g(l) denote the rule r assigned to label [, i.e., (I,7) € fr. Then, the
set of rules assigned to (q, Q, Q) is taken to be {9(q)}. The set of rules assigned
to () is taken to be 0.

As it will become clear later in the proof why, the nodes (q", Q, Q) are assigned
the set of rules {g(I) | (I,1) € Q, | # q}; we only take those nodes where this set
is not empty.

When being in node (,Q,Q), we have to distinguish between two
possibilities:

- If g(q) is applicable to the object derived so far, a Y-edge has to go to every
node which describes a situation corresponding to what would have been the
next configuration in the AB-grammar. We then compute

B={(@)]|(zi+1)€q, i >0} U{(z,i)| (g1 € B},
E=W{(d]|(@i+1) €, i>0}u{(z,i) | (g,2,i) € A})
\ {(=,9) ] (z,1) € R}

(observe that R and R are made non-conflicting) as well as — if it exists —
to :=min{t | (z,t) € R}, i.e., the next time step when the derivation in the
AB-grammar could continue. Hence, we take a Y-edge to every node (p, P, 15)
where p € {z | (z,10) € R} and

P={(z,i) | (x,i+to—1) € R, i>0},
P={(z,i) | (z,i+t —1) € R}.

If o := min{t | (z,t) € R} does not exist, this means that R is empty and
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.« not applicable to the object derived so far, we first have to Ch_eCk
-Ifg (q) 18 nof the other rules activated at this step could have been applied,
that none Kk for the applicability of the rules in the set of rules

U={g)| (L) €Q, 1 #4q}

1o to the node (g, Q, Q) with a N-edge; from therfa no Y-edge 1eavef;, as
mgl | indicate the unwanted case of the applicability of one of the rules
this wou (v.]rith a N-edge we continue the computation in any node (p, P, P)
U, bL; P computed as above in the first case. We observe that in case R
rish p; ‘we can omit the path through the node (Q,Q,Q) and directly go
e y‘des (p, P. P) which are obtained as follows: we first check whetl.ler
:o tEenr::f;!{t [ (:;:, t3 € @, t > 1} exists or not; if not, then the computation
g 1= min

has to end with a N-edge to node (). Otherwise, a N-edge goes to every node
(1; p,P) with p € {z | (2,) € Q} and

P={(x,i)|(z,i+to—1)€Q, i>0},
P={(z,i) ]| (z,5+to —1) € Q}.

ie., we chec

by £0

where the simulation may continue.

In this way, every computation in the AB-grammar can be simulated 1by thﬁ
h-controlled grammar with taking a correct path through the control grap
gr?jpﬁ ally ending in node §; due to this fact, we could also choose the node
anb rtlhe};nly final node, i.e., Hy = {0}. On the other hand, if we have made
1;::)wr(i)ng choice and wanted to apply a rule which is not applicable,. although
another rule activated at the same moment would ha.uve.been a'pphcab.le, \;re
get stuck, but the derivation simulated in this way st1l'1 is a valid one in ttle
AB-grammar, although in most standard types X, v./hlch u§ually are strl(i‘{ y
extended ones, such a derivation does not yield a terminal object. ‘Hav1‘ng C‘;a en
H; = {0}, such paths would not even lead to successful computations in Gf.
In any case, we conclude that the graph-controlled grammar Ggc generates

the same language as the AB-grammar G 45, which observation concludes the

O
proof.

We remark that in the construction of the graph-controlled grammar given
in the preceding proof, all labels could be chosen to be final. .

In the case of graph-controlled grammars with all labels 'bfemg final, for'ar.ly
strictly extended type X with trap rules, we can show an exciting result eJ'(}lelt-l
ing that the power of rule activation is really strong and that the additiona
power of blocking is not needed.

Theorem 7. For any strictly extended type X with trap rules,
L(X-Gosdimaly C £ (X-A).

Proof. Let
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be a graph-controlled grammar where G, = (O,Orp,w, P,=>¢) is a strictly
extended grammar of type X with trap rules; g = (H,E, K), E C Hx{Y,N}x R
is the set of edges labeled by Y or N, K : H — 2F is a function assigning
subset of P to each node of g; H; C H is the set of initial labels, and Hy is the
set of final labels coinciding with the whole set H, i.e., Hy = H.

Then we construct an equivalent A-grammar

GA = <G;,L7fL7A,L07 ﬁGA)

as follows:

The underlying grammar G is obtained from G, by adding all trap rules,
Le., G, = (0,07,w, P',=>¢:) with P’ = Pu{p~ | p € P}. G, again is strictly
extended and w ¢ Op, hence, also in G 4 rules have to be applied before terming]
objects are obtained. For any node in ¢ labeled by [ with the assigned set of ruleg
P, we assume it to be described by P, = {p;; | 1 <4 < m}. For all ¢ € P we
take the labels [, into L as well as (I,-,¢~) into fy.

We now sketch how the transitions from a node in g labeled by [ with the
assigned set of rules P, can be simulated. The assumption that all nodes are
final is crucial for this construction. Arriving in some node, one of the following
situations is given:

1. the underlying object is terminal and therefore no rule from P is applicable
any more, as X is a strictly extendable type; hence, we may stop in this node
and extract the underlying object as a terminal result of the derivation, as
all nodes are final;

2. the underlying object is not terminal, but no rule from Uscn Pi is applica-
ble any more; hence, even when continuing the derivation following a path
through the control graph only using N-edges, the derivation cannot vield a
terminal object any more; therefore, in such a case, we need not continue the
derivation;

3. the underlying object is not terminal, no rule p;; in P, 1 <4 < ny, is appli-
cable, but there is still some node k reachable from node [ following a path
through the control graph only using N-edges that contains an applicable T
rule;

4. the underlying object is not terminal, but there is some rule p;; in P, 1 <
1 < ny, which is applicable.

For the simulation’of these situations by the A-grammar, we therefore can
restrict ourselves to the cases where when applying a rule we follow a path
starting with a Y-edge and continuing with only N-edges until we reach a node
containing a probably applicable rule; observe that such a path can only consist
of the Y-edge, too.

In order to simulate a rule p;; in P, 1 < i < n, we take all activations
into A which allow us to simulate the application of p;; and to guess with
which py ; probably to continue afterwards. Hence, we consider all paths without
loops hg = [ — hy — -+ — hy = k in the control graph g which start with a
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., (k, 7)) in L and ((l,2),hay...,(k, 7)) : prs in fr; the set of all labels
ch paths from node ! to any node k is denoted by L;;. Moreover,
llowing activations in A:

() o
describmg su
e use the f0

(1,%) Biserer (Bsd))s {lg= 19 € Ujcicno1 Pri}s1) is used to check in the next
y (te, that no rule along the path from node [ to node k is applicable; observe
ihaz for n = 1 the set {J,c;<,_y P, is empty and the whole activation can

be omitted; ) o
in the second next step only the designated rule pg ; can be applied, i.e., we

(DR (k,3))s Ly, 2) into A; as with every label in Ly ; the rule

take ; et Vi
igned, the intended continuation is prepared.

Pi.j is ass

How can a derivation in the A-grammar be started? As w ¢ Or, at least one
rule must be applied to obtain a terminal object; henf:e, we (:he({k all possibilities
that a rule in an initial node in H; or along a path in g following only N-(-}fige.‘i
from such an initial node can be applied (observe that there are only finitely
many paths without loops of that kind through the control graph); for (?ach suc.h
rule pr,; in node | we take all labels from Iy ; into Lo. As by construction py,; is
applicable it is guaranteed that any continuation of the computation will follow
a Y-edge in ¢ and thus the simulation in G4, will follow the simulation of an
applicable rule as described above.

In total, the construction given above guarantees that the simulation of a
computation in Gao by a computation in G4 starts correctly and continues
until no rule can be applied any more. As we have assumed all nodes in g to
be final and X to be a strictly extended type, i.e., no rules can be applied to
a terminal object any more, the only condition to get a result is to obtain a
terminal object at the end of a computation. This observation completes our
proof. O

As programmed grammars are just a special case of graph-controlled gram-
mars with all labels being final, we immediately infer the following result:

Corollary 4. For any strictly extended type X with trap rules,
L(X-P,.) CL(X-A4).
Combining Theorems 6 and 7, we infer the following equality:
Corollary 5. For any strictly extended type X with trap rules,

L(X-Geelifinaly = £(X-A).

6 Results for Array Grammars on Cayley Grids

In many papers on control mechanisms for string grammars, the proof for show-

Ing that when using arbitrary productions any new control mechanism can be
SIMnilated 2o mevmitbnd ~Fram civridr Attt +ha Mhrnh Tyieim o thoactia wrhiah 11e110 ]l
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is a legitimate claim as any formal proof would be tedious although bringing nq
new insights.

In case of array grammars on Cayley graphs the situation is more delicate: ag
long as the underlying group presentation is computable, one might still easily
argue with the Church-Turing thesis as long as — for infinite groups — there ig
also an infinite path in the Cayley graph, which is obvious if there is a group
element of infinite order - see the examples in Subsect. 2.2 and Example 10 ag
well as Remark 2. Yet even if there is no such element (for examples of such group
presentations we refer to [23]), in a nondeterministic way, we can find lines of
arbitrary length for the necessary computations, as by definition the out-degree
of every node is bounded, hence, by Koénig’s infinity lemma such a path must
exist; it is important to observe that these paths need not be computable in the
general case. Therefore, in the general case of Cayley grids we need an algorithm
that works directly with the power inherent to arbitrary array productions.

Theorem 8. For any control mechanism 'Y,

Y € {0, fC,pC, RC, P, Py, MAT, M AT, GC, GCle, A, AB},
L(C(G)-ARBAY) C L (C(G)-ARBA).

Proof (sketch). Given any array grammar with the control mechanism Y and
with the underlying sequential array grammar being of type ARBA, we can
construct an equivalent sequential array grammar of type ARBA as follows:

The simulation of the application of an array production is obvious. The main
difficulty which usually arises is to check that a specific array production is not
applicable at any position in the array derived so far. In order to accomplish
this task, from the beginning of the derivation we mark all positions ever visited
by an array production with non-blank symbols which store the parent-children
relation, i.e., as a child the information from where the underlying position has
been affected is stored, and as a parent the information which children have
been“born” is stored. Then, whenever we want to check that a specific array
production is not applicable at any position in the Cayley grid, we send out a
checking signal which propagates from the start node along the parent-children
relations; whenever a node in the Cayley graph has no children any more and the
array production under question is not applicable from that node, a No-signal
is back-propagated along the children-parent relations, i.e., when all children
have answered No and the rule under consideration is also not applicable at
this current position in the Cayley graph, a signal No can be sent back from
this parent node to its own parent. This algorithm ends in a successful way if
the start node has received all No-answers from its children and the rule under
consideration is also not applicable from the start node. Such information then
can be moved along in the Cayley grid to a node where an array production is to
be applied under the condition that specific other productions are not applicable
in the whole current array.

This idea not only works for forbidding rules or for array grammars with a
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other one in the control graph of a graph-controlled grammar along an
on Il as for checking that no activated rule is applicable.

to
N-edge as We 5 . : ) :
At the end of the simulation, the intermediate non-terminal symbols have to

erased or to be changed into their corresponding terminal symbols including
Elfe plank symbol; we here also refer to the algorithm described in the proof of
Lemma 2. O

Already an order relation on the rules is sufficient as a control mechanism to
obtain £ (C(G) -ARBA):

Theorem 9. L(C(G)-ARBA) C L(C(G)-#-CFA-0).
Proof (sketch). Let the array language be given by an array grammar
GA = (C(G),N,T,#,P,{(Uo,S)},:}GA)

on C (@) in marked normal form, see Lemma 1. The underlying finitely presented
group is G = (B | R), G' denotes the set of group elements.
We now sketch how to construct an equivalent array grammar

Go = (G’s, = :>G()) .

simulating the derivations in G 4.

The main idea is to first generate a workspace of non-terminal symbols X4
representing the blank symbol; such symbols Xy still occurring in the derived
array at the end of a simulation of a derivation in G 4 finally will be erased as to
be described later in the proof. Moreover, at the very beginning we generate a
control symbol at some place, chosen in a non-deterministic way, not interfering
with the workspace needed for the simulations of the application of rules in
G 4. In the general case, another construction is needed for that than the one
exhibited in [16] for 1- and 2-dimensional array grammars. The main task then
is to show how a marked array production AvB — CD, where A, B,C,D € N/,
can be simulated by using a suitable order relation on the rules in Go.

We first sketch how to obtain the control symbol and the workspace: Instead
of starting with {(vg, S)} we use a new start symbol S and the new initial array
{(v0,8")}. Using one of the rules S"v# — S”H, and then the rules Hav# —
#H, for any v € B, the initial control symbol H4 can move to any position
(node) in the Cayley graph. At some moment we use the rule H4 — Hp, which
ends this travel and then allows the rule S — S to be applied; this rule is
“dominated” by the rules in H~ \ {Hy — F}, ie, S — S < pforall p €
H=\{Hy — F}, where H~ = {X — F | X € Vy} and Vy denotes the set of
all variants of the control variable H like H 4 at the beginning.

Notation: In the following, the set of rules “dominating” a rule p will be written
as P(p <), ie., P(p <) ={q|p < q}.

In general, the idea with the variants of the control variable H is to g_uifie
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specific variant H, of H, ensuring the absence of all other variants of H, usiy,
the rule relations p < g for allg € {X — F | X € Vy \ {H,}}; hence, we a]
write P(p <) ={X — F | X € Vg \ {H,}}.

The next task is to generate sufficient workspace of symbols Xy surroundeg
by a layer of symbols X# on the border to the remaining environment of blag
symbols:

We start with

pgz{(e,g}u{(v,#|veB}—>{(e,5’}U{(v,X’# | v e B}
P(po <) ={X - F| X € Vyu \ {Ho}}.

Iteratlvely, Now a new “layer of symbols Xy is added by first generating
symbols X# from the symbols X#, then renaming the symbols X# to Xu ang.

finally renaming the symbols X# to X#, which is accomplished by the following
rules p and the corresponding “dominating” set of rules P(p <):

1. Hy— Hy, P(Hy — H, <) = {8 — F};
2. for allv € B,

o ={(e, Xp), (v, #)} = {(e, Xp), (v, X))},

Ppy <) ={X = F| X € Vg \ {H}},
Hi — HQ, P(Hl — Hy -<) = {p})— | RS B},
where pl” is the trap rule corresponding to the rule D}, ie.,
T = {(e7 X#): (U’#)} - {(eaF), ('UaF)};
3. for allv € B,
P2 <)={X > F| X € Vg \ {H2}},
Hy — H3, P(H; — H3 <) = {p3” | v € B};
4. for all v € B,
= X# — X#,

P(p; <) =

H; — Hjy, P(H3 — H; -<) :{pf’,_ |’U EB};
the iteration can start again with 2.

5. In order to stop the iteration, instead of H3 — H; we use the rule
Hy — H, P(H; » H <) ={p}" |ve B}.

{X = F|X e Vu\{Hs}},

For the simulation in Go We assume th(i marked array productions in G4 to
be labeled, i.e., we write p : Ayv,B, — CpD,.

1. We start the simulation of the application of p : A,vpB, — C,D, with
indicating the intention to do that by the rule H — H; for the control
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9. we continue with marking exactly one symbol B, as By, by
= BP - Bg,)a

P(p1 <) ={X = F| X € (Vu \{H;}) U{B,}},

1_.,H, P(H, — H2 <) = Pp,
_ ({{e, ), (v, #)} = FF | X € NU{X4}}},
c no blank symbol inside the workspace is allowed yet;
L;e now make a “f#-hole” inside the workspace in such a way that the only

¥ non-terminal symbol having “access” to this blank position should be A, by
— B #,
P(ps <) ={X = F| X € (Ve \{H; D},
H2—>H3 (Hz‘_’HS <) = PF\{ApUp#“’FF}:

4 the = hole made in the previous step now is filled correctly by

pP3 = Ap’Up# — Opr,
P(ps <) ={X - F | X € (Vu \ {H; 1)},

H: — H, P(H3 — H <) = Pr.

Using the sequence of rules as described above, we finally have simulated
the application of the rule p : Ayv, B, — C,D, and reached the control symbol
H again, which allows us to continue with simulating the next rule. At some
moment we have to guess whether we can switch to the terminal procedure
eliminating all non-terminal symbols:

1. We start with H — H;; the only symbols allowed in the current array in order
to obtain a terminal array are terminal symbols, the workspace symbols Xu
and Xy as well as (one) symbol Xy indicating that in the simulated array
grammar G 4 in marked normal form the final rule X4 — # could be applied,;
hence, we take

P(H — H, {) = {)E—) F | X e (V\ (TU{X#vX#aX#}))};
2. for all X € {Xy, Xy, X4}, we take

x ={X — #},
Plpx <) ={X = F|X e (Vg \{H:})}

3. if all other non-terminal symbols have been erased, finally the control symbol
H; can be erased, too, using the rule H — #, with

PH—#<)={X - F|X e (V\{H:}}
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According to the construction of Go and the explanation given above Wa.

conclude that L(Go) = L(G4).

Looking at the general results collected in Theorem 5 we see that a partig]

order on the rules is the weakest control mechanism in the inclusion line of the
control mechanisms

O — fC - RC — MAT,, - Ge¥tfinal _ qc,,
and therefore we immediately infer the following result:

Corollary 6. For any control mechanism Y,

Y € {0, fC,RC, M AT, GOiinal GC,, Y,
L(C(G)-ARBA) C L(C (G)-#-CFA-Y).

A similar result can be shown for programmed array grammars by proving
the following equality:

Lemma 4.

L(C(G) -#-CFA-PCy) = L (C (G) -#-CFA-GCUfinaly
Proof. Tt is sufficient to show

L(C(G)-#-CFA-PCy.) 2 L (C(G)-#-CFA-GC2ifinaly

which can be proved using standard arguments already used for proving similar
results for strings in [8] and for 1- and 2-dimensional arrays in [16]:

Given a graph-controlled array grammar with all nodes being final, we take
a new non-terminal symbol S as the new start symbol, i.e., instead of starting
with {(vo, )} we use new initial array {(vo, ")}, and add one additional node
to the control graph, to which we assign the new array production ' — S from
this new node, Y-edges lead to every initial node in the original control graph.

As the new set of initial nodes we now can take every node in the new control
graph, as the only array production applicable to the new initial array {(vo, S’)}
is the new array production S’ — S assigned to the new node (which in fact
could be the only initial node). Having all nodes being initial and final ones, the
constructed new graph-controlled array grammar is a programmed one, too. O

Combining all the general results elaborated in this section, we obtain the
main theorem of this paper for sequential array grammars on Cayley graphs with
control mechanisms:

Theorem 10. For any control mechanism Y,

Y € {O, fC,RC, Pye, M AT, ., GCSinal GO, A, AB},
LIC(R)-#-CFAYYN=7(C(C)-ARPBAY
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For Y € {O, fC,RC, M AT,,, GC’gélﬁ”al,GCac}, the result follows from

g :;3{'1 ary 6 and Theorem 8.
For Y = P,., we apply the result stated in Lemma 4, i.e.,
o) = )

L(C(G)-#CFA-Fp) =L (C(G) —#-CFA-GCgim"al) '

For Y € {4, AB}, we can use the general result stated in Corollary 5, i.e.,

L (C(G)-#-CFA-GCZH™)y = L(C(G)-#-CFA-A).

Moreover, even using activation and blocking of rules does not add add.i—
tional computational power beyond £ (C (G)-ARBA), as has been shown in

O
Theorem 8.

Based on Lemma 2, we obtain similar results for languages of k-connected
arrays; the corresponding families of languages of k-connected arrays are marked
with subscript g, i.e., we write Ly instead of L:

Theorem 11. For any control mechanism Y,
Y € {0, fC,RC, Pye, M ATy, GCyc, A, AB},

Ly, (C(G) #-CFAY) = Ly, (C (G)-ARBA) .

7 Summary and Future Research

The notion of arrays as well as the concept of array grammars can be extended
from the d-dimensional grid Z¢ to arrays defined on Cayley graphs of finitely pre-
sented groups. We have investigated arrays defined on Cayley graphs of finitely
presented groups and shown that the families of languages of such arrays gener-
ated by arbitrary array grammars coincide with those generated by #-context-
free array grammars equipped with one out of various control mechanisms — con-
trol graphs, matrices, permitting and forbidden rules, or activation and blocking
of rules. These results only need a few direct proof constructions, yet most of
them directly follow from general results obtained for the relation between these
control mechanisms for sequential grammars of arbitrary type.

Besides #t-context-free array productions there are other types of rules to
be considered in this framework of arrays defined on Cayley graphs of finitely
presented groups together with these control mechanisms. For example, we are
going to investigate whether similar results can be obtained when using insertion
and deletion rules on arrays, for example, see [14,20]. Theorem 8 still remains
valid when using array insertion and deletion rules together with the control
mechanisms considered in this paper, yet showing that array insertion and dele-
tion rules together with different control mechanisms reach the computational
power of arbitrary array grammars needs careful proofs again.

There are also other control mechanisms to be considered, for example, using
the structural power of tissue P systems, i.e., in a network of cells different rules
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Another interesting topic is to consider accepting array grammars with cop
trol mechanisms, an investigation already having been started two decades age
see [10]: a given input array is accepted if it can be reduced to the initial arry,
(in the accepting case better called the goal array). The type of an acceptiy,
array production (W, Ay, A,) is defined as the type of the corresponding ge
erating array production (W, A, A3). In [10] specific results for d-dimensiony
accepting array grammars together with the control mechanisms of having gy
order relation on the rules or control graphs were established.
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