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Abstract. We introduce new possibilities to control the application of
rules based on the preceding application of rules which can be defined
for a general model of sequential grammars and we show some similar-
ities with other control mechanisms such as graph-controlled grammars
and matrix grammars with and without appearance checking, as well as
grammars with random context conditions. Using both activation and
blocking of rules, in the string and in the multiset case we can show com-
putational completeness of context-free grammars equipped with the con-
trol mechanism of activation and blocking of rules even when using only
two nonterminal symbols. With one- and two-dimensional #-context-free
atray grammars, computational completeness can already be obtained by
only using activation of rules.

1 Introduction

Nearly thirty years ago, the monograph on regulated rewriting by Dassow and
Piun [2] already gave a first comprehensive overview on many concepts of regu-
lated rewriting, especially for the string case. Yet as it turned out later, many of
the mechanisms considered there for guiding the application of productions/rules
can also be applied to other objects than strings, e.g., to n-dimensional arrays
[4]. Even in the field of P systems [9,13] where mostly multisets are considered,
such regulating mechanisms were used [1]. As exhibited in [5], for comparing
the generating power of grammars working in the sequential derivation mode,
many relations between various regulating mechanisms can be established in a
very general setting without any reference to the underlying objects the rules are
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working on, using a general model for graph-controlled, programmed, randoy,
context, and ordered grammars of arbitrary type based on the applicability OE
rules. '

In the following section, we recall some notions from formal language thegy,
as well as the main definitions of the general framework for sequential grammg.,
elaborated in [5]. Then we define the new concept of activation and blocking of
rules based on the applicability of rules within this general framework for reg,
lated rewriting. In Sect. 3 some general results for sequential grammars using the\:
control mechanism of activation or activation and blocking of rules are estaly.
lished. Specific results on computational completeness for strings, multisets, an'di
arrays as underlying objects then are shown in Sect.4. In Sect.5 we establigy
our main results for strings and multisets showing that context-free (string and.
multiset) grammars with activation and blocking of rules are computationally
complete even when only two non-terminal symbols are used, which establisheg
a sharp border as one non-terminal symbol is not sufficient. Finally, a summary
of the shown results and some future research topics extending the notions anq
results established in this paper are given in Sect. 6.

2 Definitions

After some preliminaries from formal language theory, we define our general
model for sequential grammars and recall some notions for string, array, and
multiset grammars in the general setting of this paper. Then we formulate the
models of graph-controlled, programmed, matrix grammars with and without
appearance checking, as well as random-context grammars, based on the appli-
cability of rules.

2.1 Preliminaries

The set of integers is denoted by Z, the set of non-negative integers by Ny, and
the set of positive integers (natural numbers) by N. An alphabet V is a finite
non-empty set of abstract symbols. Given V, the free monoid generated by V'
under the operation of concatenation is denoted by V*; the elements of V* are
called strings, and the empty string is denoted by A; V*\ {)\} is denoted by V1.
Let {a1, ..., an} be an arbitrary alphabet; the number of occurrences of a symbol
a; in x is denoted by ||, ; the Parikh vector associated with x with respect t0
A1y .y Oy 1S (|:v|a1 s ey |x|an). The Parikh image of a language L over {ay,...,an}
is the set of all Parikh vectors of strings in L, and we denote it by Ps (L). For
a family of languages FL, the family of Parikh images of languages in FL i8
denoted by PsFL.

A finite multiset over the finite alphabet V, V = {ai,...,a,}, is a mapping
f V. — Ny and represented by (f (a1),a1)...{f (an),a,) or by any string
z the Parikh vector of which with respect to ai,...,an is (f (a1),..., f (an)). I
the following we will not distinguish between a vector (my,...,my), its reprée:

Sequential Grammars with Activation and Blocking of Rules 53

.. the Parikh vector (|9U|a1 s |Zl, ) = (m1,...,my). Fixing the sequence of
4 vl;fis A1y es On 10 the alphabet V in advance, the representation of the mul-
. (mual) ... (Mn,an) by the string a7*...a™" is unique. The set of all finite
. ultisets over an alphabet V is denoted by V°.

# For more details of formal language theory the reader is referred to the mono-
graphﬂ and handbooks in this area (2,11].

92 A General Model for Sequential Grammars

2
We first recall the main definitions of the general model for sequential grammars
” established in [5], grammars generating a set of terminal objects by derivations
;ﬁ!here in each derivation step exactly one rule is applied to exactly one object.
ﬁ‘ﬁjs does not cover rules involving more than one object — as, for example,
ﬁiﬁ[iciﬂg rules — or other derivation modes — as, for example, the maximally
--I-)-am{]el mode considered in many variants of P systems [9].

A (sequential) grammar G is a construct (O, Or,w, P,=>¢) where

_ O is a set of objects (often an infinite set);

_ Or C O is a set of terminal objects;

_ w € O is the aziom (start object);

_ P is a finite set of rules;

~ —>cC O x O is the derivation relation of G.
We assume that each of the rules p € P induces a relation =,C O x O with
respect to =>¢ fulfilling at least the following conditions: (i) for each object
z €0, (x,y) € = for only finitely many objects y € O; (ii) there exists a
finitely described mechanism as, for example, a Turing machine, which, given
an object © € O, computes all objects y € O such that (z,y) € =>p. A rule
p € P is called applicable to an object z € O if and only if there exists at
least one object y € O such that (z,y) € =p; we also write # =>p y. The
derivation relation =>¢ is the union of all =, i.e., =>g= Upep =,. The

reflexive and transitive closure of =>¢ is denoted by =>¢.

In the following we shall consider different types of grammars depending on

the components of G (where the set of objects O is infinite, e.g., V*, the set of
strings over the alphabet V'), especially with respect to different types of rules

(e.g., context-free string rules). Some specific conditions on the elements of G,
especially on the rules in P, may define a special type X of grammars which
then will be called grammars of type X . The language generated by G is the set

of afll terminal objects (we also assume v € O to be decidable for every v € O)
“derwahle from the axiom, i.e.,

L(G)z{veOT|w:*>Gv}.

- The fanﬁly of languages generated by grammars of type X is denoted by £ (X).

3 Le!; G = (0,0r,w, P,=>¢) be a grammar of type X. If for every G of type
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X is called strictly extended if for any grammar G of type X, w ¢ Or and f
all z € Or, no rule from P can be applied to z. :

In many cases, the type X of the grammar allows for one or even both of the
following features:
A type X of grammars is called a type with unit rules if for every grammy,
G = (0,0r,w, P,=>¢) of type X a grammar G’ = (O,Or,w,PU P, :>G,)f
of type X exists such that = C == and i

- P = [p®) |pe P},

— for all z € O, p{t) is applicable to x if and only if p is applicable to z, ang

~ for all z € O, if p{*) is applicable to x, the application of pt) to z yields 2
back again. i

A type X of grammars is called a type with trap rules if for every grammgy
G = (0,0r1,w, P,=¢) of type X a grammar G’ = (O, Or,w,PU P&, :G,')*
of type X exists such that =¢ C == and '

— p=) = {p(—) Ipe P},

— for all z € O, p{) is applicable to z if and only if p is applicable to x, and

— for all z € O, if p{~) is applicable to z, the application of p(=) to z yields ay
object y from which no terminal object can be derived anymore.

2.3 Specific Types of Objects

String Grammars. In the general notion as defined above, a string grammap

Gy is represented as
((N U T)* ,T*,’U), Pa :>P)

where NN is the alphabet of non-terminal symbols, T is the alphabet of terminal
symbols, NNT =0, w € (NU T)", P is a finite set of rules of the form u — 4!
with v € V* (for generating grammars, v € V*) and v € V* (for accepting.
grammars, v € V1), with V' := N U T} the derivation relation for u — v € P
is defined by zuy =y, zvy for all z,y € V*, thus yielding the well-known:
derivation relation =g, for the string grammar Gg. In the following, we shall:
also use the common notation Gg = (N, T, w, P) instead, too. We remark that;
usually, the axiom w is supposed to be a non-terminal symbol, ie., w € V'\ Ty
and is called the start symbol.

As special types of string grammars we consider string grammars with arbis
trary rules and context-free rules of the form A — v with A € N and v € V*.
The corresponding types of grammars are denoted by ARB an CF, thus yielding
the families of languages £ (ARB), i.e., the family of recursively enumerable lan-
guages (also denoted by RE), as well as £ (CF), i.e., the family of context-free’
languages, respectively. Observe that the types ARB and CF are types with
unit rules and trap rules (for p = w — v € P, we can take p(t) = — w and’
p(=) =w — F where F ¢ T is a new symbol — the trap symbol).

We refer to [5] where some examples for string grammars of specific types:

: ?;:;z\ {Ad}

_gorresp
for all w €
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v Grammars. We now introduce the basic notions for n-dimensional
d array grammars, for example, see [4,10,12].

arrays A% _di 3 :
d € N. Then a d-dimensional array A over an alphabet V is a func-

A 78 — V U {#}, where shape(A4) = {veZ%| A(v) # #} is finite
! V is called the background or blank symbol. We usually write 4 =

5‘2?3’/4(0)) | v € shape (A)}.

The set of all d-dimensional arrays over V is denoted by V*?. The empty
yinV *d with empty shape is denoted by Aq4. Moreover, we define V¢ =

Let v € 7%, v = (v1y...,v4). The translation 7, : Z¢ — Z& is defined by
— w4 for all w € Z4, and for any array A € V*? we define 7, (A), the
onding d-dimensional array translated by v, by (7, (A)) (w) = A (w —v)
74, The vector (0,...,0) € Z¢ is denoted by £2;.

A d-dimensional array rule p over V is a triple (W, A, Az), where W C Z¢

7o (W)

s a finite set and A; and Ay are mappings from W to V U {#} such that

shape (A1) # (. We say that the array B; € V*d is directly derivable from the
array B € V*¢ by the d-dimensional array rule (W, 4y, A2), i.e., By =, B,

if and only if there exists a vector v € Z% such that By (w) = Bs (w) for all
we 28\ 1y (W) as well as By (w) = Ay (T (w)) and By (w) = A; (1o (w)) for

all w € 7 (W), i.e., the subarray of B corresponding to A; is replaced by A,

thus yielding Bs. In the following, we shall also write A; — Az, because W is
implicitly given by the finite arrays A1, As.

A d-dimensional array grammar G 4 is represented as
((N uUT)*, 7%, {(vg, S)}, P, :>GA) where

— N is the alphabet of non-terminal symbols;

- T is the alphabet of terminal symbols, NNT = {;

— {(vo, S)} is the start array (axiom) with S € N and vy € Z4;

- P is a finite set of d-dimensional array rules over V, V := NUT;

- =, is the derivation relation induced by the array rules in P according to
the explanations given above, i.e., for arbitrary By, By € V*¢, B =g, Bz if
and only if there exists a d-dimensional array rule p = (W, 4, 42) in P such
that B; =y Bs.

A d-dimensional array rule p = (W, Ay, A3) in P is called #-context-free,
if shape (A1) = {24} and A; (£25) € N. A d-dimensional array grammar is
said to be of type d-ARBA, d-#-CF A if every array rule in P is of the corre-
sponding type, i.e., an arbitrary and #-context-free d-dimensional array rule,
respectively. The corresponding families of d-dimensional array languages of
t'ype X are denoted by £ (X), i.e., L (d-ARBA) and L (d-#-CF A) are the fami-
lies of recursively enumerable and #-context-free d-dimensional array languages,
respectively.

Observe that the types d-ARBA and d-#-CFA are types with unit rules
and trap rules - for p = (W, A1, 4;), we can take pt) = (W, .4;, 4;) and

p _)‘=‘(VV, A1, Ar) with Ap (v) = F for v € W, where F is a new non-terminal

ISR 1
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Multiset Grammars. G,, = ((N uT)®,T°, w, P, :>Gm) is called a multig,
grammar; N is the alphabet of non-terminal symbols, T is the alphabet of fen
minal symbols, NNT = (), w is a non-empty multiset over V, V := N U TA ang
P is a finite set of multiset rules yielding a derivation relation =>¢,, on g},
multisets over V; the application of the rule u — v to a multiset  has the effeoy
of replacing the multiset u contained in z by the multiset v. For the multigeg
grammar G,, we also write (N, T,w, P,=>¢, ).

As special types of multiset grammars we consider multiset grammars With
arbitrary rules as well as context-free (non-cooperative) rules of the form A -7y
with A € N and v € V°; the corresponding types X of multiset grammars ate
denoted by mARB and mCF, thus yielding the families of multiset languages
L (X). Observe that mARB and mCF are types with unit rules and trap ruleg
(for p = w — v € P, we can take p{*) = w — w and p(~) = w — F where Fig
a new symbol — the trap symbol). Even with arbitrary multiset rules, it is nog
possible to get Ps (L (ARB)) [7]: :

L (mCF) = Ps(L(CF)) G £(mARB) S Ps(L(ARB)).

2.4 Register Machines

As a computationally complete model able to generate/accept all sets in PsRE =
Ps(L(ARB)) we use register machines/deterministic register machines:

A register machine is a construct M = (n, Lps, Rar, po, h) where n, n > 1, is
the number of registers, Ly is the set of instruction labels, po is the start label,
h is the halting label (only used for the HALT instruction), and Ry is a set of
(labeled) instructions being of one of the following forms:

- p: (ADD(r),q,s) increments the value in register r and continues with the
instruction labeled by ¢ or s,

- p: (SUB(r),q,s) decrements the value in register » and continues the com-
putation with the instruction labeled by ¢ if the register was non-empty,
otherwise it continues with the instruction labeled by s;

— h : HALT halts the machine.

M is called deterministic if in all ADD-instructions p : (ADD (r),q,s) ¢ = §;
in this case we write p : (ADD (r), q). Deterministic register machines can accept
all recursively enumerable sets of vectors of natural numbers with ¥ components
using exactly k + 2 registers, for instance, see [8].

2.5 Graph-Controlled and Programmed Grammars

A graph-controlled grammar (with applicability checking) of type X is a con-
struct

Gee = (G7g,HiaHf7=>GC’)
where G = (O,Or,w, P,==¢) is a grammar of type X; g = (H,E,K) is &
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. 5 one-to-one manner, E C H x {Y, N} x H is the set of edges labeled
S"ﬂ‘ph s N, K:H-— 2F is a function assigning a subset of P to each node of
i‘.ﬁY Y (ér H !is the set of initial labels, and Hy C H is the set of final labels. The
g; .‘fat’ioll relation =>g¢ is defined based on =>¢ and the control graph g as
T;;:)w-‘i: For any %,j € H and any u,v € O, (u,%) =>gc (v, J) if and only if
| =>p v by some rule p € K (i) and (4,Y, j) € E (success cgse}, or
: u="0,00PE K (i) is applicable to u, and (i, N, j) € E (failure case).

The language generated by Gge is defined by
L(GGC) = {U € OT l (w’l) =>EGC (’U,j), ie H""j € Hf} *

i H = Hy = H, then Ggc is called a programmed grammar. The families of
:ignguagﬁs generated by graph-controlled and programmed grammars of type.X
Ip;te denoted by £ (X-GC,¢) and L (X-P,.), respectively. If the set E contains
fno. edges of the form (1, N,7), then the graph-controlled grammar is said to
e without applicability checking; the corresponding families of languages are
denoted by £ (X-GC) and L (X-P), respectively.

" The notions and concepts with/without applicability checking were introduced
as with/without appearance checking in the original definition for string gram-
mars because the appearance of the non-terminal symbol on the left-hand side
of a context-free rule was checked, which coincides with checking for the appli-
cability of this rule in our general model; in both cases — applicability checking
and appearance checking — we can use the abbreviation ac.

2.6 Matrix Grammars

A matriz grammar (with applicability checking) of type X is a construct
Gy = (G,M,F,=q,,)

where G = (0, Or,w, P,=>¢) is a grammar of type X, M is a finite set of
sequences of the form (py,...,pn), n > 1, of rulesin P, and F C P. For w,z € O
we write w =>¢,, 2 if there are a matrix (py,...,pn) in M and objects w; € O,
1<i<n+1,such that w = wy, 2 = wp41, and, for all 1 <4 < n, either

= Wi =@ W41 OF
- W; = w;y1, p; is not applicable to w;, and p; € F'.

L(Gy) = {veOr|w=>§,, v} is the language generated by Gps. The
family of languages generated by matrix grammars of type X is denoted by
L(X-MAT,,). If the set F is empty, then the grammar is said to be with-
out applicability checking; the corresponding family of languages is denoted by
L(X-MAT).

Remark 1. We mention that in this paper we choose the definition where the

N oy
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2.7 Random-Context Grammars

The following general notion of a random context-grammar had already |,
introduced in [1,6] in a similar way before it was formulated in [5].

A random-context grammar Gre of type X is a construct (G, P’ =g, |
where '

- G=(0,0r,w, P,=—>q) is a grammar of type X;

~ P’ is a set of rules of the form (¢, R,Q) where g € P, RUQ C P;

— ==(@gIis the derivation relation assigned to Grc such that for any z,y ¢ 0
T =>@p. ¥ if and only if for some rule (¢, R, Q) € P/, z =>4 y and, moreoye,:
all rules from R are applicable to x as well as no rule from @ is applicable 44
x.

A random-context grammar Gre = (G, P',=—=>@ps) of type X is called
grammar with permitting contexts of type X if for all rules (¢, R, Q) in P’ yq
have Q = 0, i.e., we only check for the applicability of the rules in R. A randomp.
context grammar Grc = (G, P/, =>guo) of type X is called a grammar wig
forbidden contexts of type X if for all rules (¢, R, Q) in P’ we have R = {), le.
we only check for the non-applicability of the rules in Q.

L(Gre) = {veOr|w = no v} is the language generated by Grc. The
families of languages generated by random context grammars, grammars wi

permitting contexts, and grammars with forbidden contexts of type X are
denoted by £ (X-RC), £ (X-pC), and L (X-fC), respectively.

2.8 Grammars with Activation and Blocking of Rules

We now define our new concept of regulating the application of rules at a specifie
moment by activation and blocking relations. _

A grammar with activation and blocking of rules (an AB-grammar for short)
of type X is a construct

GAB = (GaLa fLaA,B,L(% :>GAB)

where G = (O, Or,w, P,=>¢) is a grammar of type X, L is a finite set of labels
with each label having assigned one rule from P by the function fr, A, B are
finite subsets of L x L x N, and Ly is a finite set of tuples of the form (q, Q, Q),
q € L, with the elements of Q, Q being of the form (,t), where | € L and t € Nj
t > 1.

A derivation in G 4p starts with one element (g, Q, Q) from Lo which means
that the rule labeled by ¢ has to be applied to the initial object w in the first step
and for the following derivation steps the conditions given by @ as activations
of rules and @ as blockings of rules have to be taken into account in addition
to the activations and blockings coming along with the application of the ruled
labeled by ¢. The role of Lg is to get a derivation started by activating someé
rule for the first step although no rule has been applied so far, but probably also®
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conﬁgll!atlofl of G ap in general can be described by the object derived so
 and the activations @ and blockings @ for the next steps. In that sense, the
j tuple (q,Q Q) can be interpreted as ({(¢,1)} U @, Q), and we may also
ulg““ ite (@' Q) with Q' = {(¢,1)} U Q. We will always assume @Q and Q to
conflicting, i.e., @N Q = (). Given such a configuration (u, @, Q). in one

.
- derive (U,R R), and we also write

step ¥© °°
(u,Q,Q) =>a4s (v, R, R) if and only if

Lu=0cG"? using the rule r such that (¢,1) € Q and (q,7) € fr, i.e., we apply
tlle rule labeled by ¢ activated for this next derivation step to u; the new sets
of activations and blockings are defined by

R={(=1)](z,i+1)€qQ, i >0} U{(z,1) ]| (¢,2,1) € B},
R=({(z,9) | (z,i+1) € Q, i >0} U{(z,9) | (g,2,%) € A})
\ {(=,%) | (,i) € R}

(observe that R and R are made non-conflicting by eliminating rule labels
which are activated and blocked at the same time);

or
_ no rule 7 is activated to be applied in the next derivation step; in this case

we take v = u and continue with (v R R) constructed as before provided R
is not empty, i.e., there are rules activated in some further derivation steps;
otherwise the derivation stops.

The language generated by G 4p is defined by
L(Gap) ={veOr | (w,Q,Q) =¢,, (v,R,R) for some (Q,Q) € Lo} .

The family of languages generated by AB-grammars of type X is denoted by
L (X-AB). If the set B of blocking relations is empty, then the grammar is said
to be a grammar with activation of rules (an A-grammar for short) of type X;

" the corresponding family of languages is denoted by L (X-A). Moreover, an A-

grammar is called an Al-grammar if for all (p,q,t) € A we have t = 1, which
means that only the rule applied in one derivation step activates the rules which

~ can be applied in the next step; in this case we may only write (p, ¢) instead of
 (p,q,1). Moreover, in Ly we may simply list the labels of the rules to be applied
+ in the first step.

Ezample 1. Consider the string grammar Gg = ((N uT)*, T*,w, P,= p) with

N={A,B,C}, T = {a,b,c}, w= ABC, and the set of rules

P={A—aA B—bB,C—cC,A— \B—)\C— A}

as well as the Al-grammar

Ga=(G,L, f1, A Ly,=>q,) with

L = {pa, Py, pespasPByPc}, and, writing p

fL—{'pa A—aA,py: B —bB,p.: C — cC}
U{pa:A— \pp:B—A\pc:C— A}

A {(pa,pb) (pbapc) (pcvpa) (pCapA) (pA)pB) 3 (vapC’)}’a'nd

r for the pairs (p,r) in fr,
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The underlying string grammar generates the regular set {a}" {b}* {c],'!
whereas the Al-grammar G4 generates {a™b"c" | n € Np}: starting with t".
rule labeled by p, from Lg, the rules corresponding to the sequence of labge
PaPyPc 18 applied n > 1 times, and finally we switch to the sequence of i’l.l..
given by papppc whereafter no rule can be applied any more. Starting wit}, '_
yields the empty string. 3

The rules in the set of rules P of the underlying sequential grammar G
Pr égive n Al-grammar

Ga= (GaL’vaAa LOa :>GA)

peled by elements from the set L of labels. We extend the set of non-
al symbols NV in G to N’ by allowing the additional symbols to store the
ation which rules can be applied in the next step:

are !8

3 General Results
N =NU{{X,M)|XeNMCL}
In this section, we elaborate some general results holding true for many typeg
of grammars, some even holding for any type X, whereas some of them rely

) From Ga we then construct the equivalent matrix grammar
1§
specific conditions on X. "

Gu = (Gla M, :>GM)

follows: @' contains N’ instead of N as set of non-terminal symbols, and the
of rules R’ in G’ includes all rules from G and in addition all the rules used
o the matrices described below.

3.1 Matrix Grammars and Al-Grammars

Our first results show a close connection between matrix grammars withoy
appearance checking and Al-grammars: '
_ As starting matrix we use (S — (S, Lo)), where S is the start symbol (in G as
well as in G’). From now on, every object derived in G’ contains exactly one
symbol from {{X, M )| X € N,M C L} until in the last step the terminal
.object is derived.
A derivation step in G by applying the rule labeled by p with the non-terminal
‘gymbol X on its left-hand side now is simulated in G’ by any of the matrices

Theorem 1. For any type X, L(X-MAT) C L (X-Al).

Proof. Let Gy = (G,M,F,=>g,,) be a matrix grammar with the unde
lying grammar G = (O,Or,w,P,=>g) being a grammar of type X; l¢
M = {(pi1, -y Pin;) [1<i<n} withp;; € P, 1 < j <y, 1 <4i<

We construct the equivalent Al-grammar (X, M) — X,r(p),Y — (Y, K)).

Ga=(GL f1,4, Lo, =>¢,), withp e M and K = {q| ¢ € L,(p,q) € A} is the set of all rules enabled by

L ={li;|1<5< T, l<i< n}‘, . the application of the rule labeled by p in the Al-grammar G 4.

fo =A{(spig) |17 S n, 1<t S n}, ' In the first step, we regain the non-terminal symbol X from (X, M), then

A=Al ligen) 1 S.J <mi, 1 S i< n} the rule 7(p), ie., the rule labeled by p, is applied, and finally we non-
= {(li’”“lj’ﬁ,' 1<j=mnl<i<n}, ‘deterministically choose any non-terminal symbol Y still occurring in the

LO :{l¢,1|1315n}.

‘derived object to carry the information which rules can be applied in the

We mention that according to our definitions the sequential application of the e step.

rules of the chosen matrix may stop at any moment if the next rule cannot he'

Rl
We finally observe that only when the application of the last rule yields a terminal
applied, in which case also the simulation in the Al-grammar stops. o

f'gbject, the final rule Y — (Y, K) cannot be applied any more, thus also ending

For the special cases of strings, multisets, and arrays as underlying objects; the derivation in the matrix grammar Gy in a correct way, H

also the reverse inclusion holds: Corollary 1. For X € {CF,mCF}U {d-#-CFA|deN},

Theorem 2. For X € {CF,mCF}U{d-#-CFA|d e N}, L(X-MAT) = L (X-Al).

L(X-Al)C L(X-MAT). ]
3.2 Random Context Grammars and AB-Grammars

5?’ any type X with unit rules, random context grammars of type X can be
11T PYDRE IR T P -
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Remark 2. In order to keep proofs shorter, in the following, instead of specify:
the set of rules P, the set of labels L, and the function f1 assigning rules ¢,

labels separately, we will only specify the corresponding labeled rules of the fo f_.
€ fr. Moreover, for X € {4, B}, instea, 1

l:rwithle L, r e P, and (I,r)
(p, q’t) € X7 we Write (pa q, t)X'

Theorem 3. For any type X with unit rules, L(X-RC) C L(X-AB).

Proof. Let (G, R,=>Gy) be a random context grammar with the under]y;

grammar G = (O, Or,w, P,=>¢) being of a type X with unit rules, where

R ={(ri,P,,Q:) |1<i<n},r;€P, 1<i<n,
Po={p; |1<j<my, 1<i<n},m>0,1<i<mn,
Qi={a;|1<j<n;, 1<i<n},n;>0,1<i<n

Then we construct an AB-grammar G 4p of type X as follows:

Gap = (G, L, fr,A,B,Ly,=>q,),

G’ = (O7OT7w)Pl7:G’)7
P =PU{rt|re P},
Ly ={,,11<i<n};

the application of a random context rule (r;, P;, Q;) is simulated by the following
sequence of labeled rules together with suitable activations and blockings of rulesy

=

sequence of applicability checkings for the rules in P; is started;
= iy 1 Pig T (i b ja1) 4y 1S <

= lriyms @ Pigmi Ty (g maylr;y i + 1) 4; when all rules in P; have been checked’
to be applicable, the application of rule r; after further n; steps is activateds
yet if any of the rules in @); is applicable, then this application of rule r; is

blocked; _
- l"i,j : Qi,j+, (lri,jvlrnni -Jj+ 1)Ba 1<7 <ny;

~

~

=y, i 14, (fri,lrk), 1 < k < n; after the successful application of rule r we may:

continue with trying to apply any random context rule from R.

We finally observe that only unit rules and no trap rules as in other simulations

known from [5] are needed to obtain this result.

3.3 AB-Grammars and Graph-Controlled Grammars

Already in [5] graph-controlled grammars have been shown to be the most pow=
erful control mechanism, and they can also simulate AB-grammars with the

underlying grammar being of any arbitrary type X.
Theorem 4. For any tupve X, L(X-AB) C L(X-GC..).

TS (A P (lml_mj,m,- +7)a, 1 < j < ng; at the beginning, t;
checking of all rules which should not be applicable is initiated, and the
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ot GaAB = (G, L, fr, A, B, Lo,=>¢,,) be an AB-grammar with the
mmar G = (0,07, w, P,==¢) being of any type X. Then we
uct & graph-coutrolled grammar Gge = (G,9, H;, Hp,=>q¢) with the
3 pderlying grammar G. The simulation power is captured by the structure
ucgutrol graph g = (H, E, K). The node labels in H, identifying the nodes
a one-to-one manner, are obtained from G 4 p as all possible triples
e forms (9,@,Q) or (7, Q, Q) with ¢ € L and the elements of Q, @ being of
mm () 7€ L and t € N such that { does not exceed the maximum time
arying in the relations in A and B, hence, this in total is a bounded number.
also need 2 special node labeled @, where a computation in Gge ends in any
» when this node is reached.
All nodes can be chosen to be final, i.e., Hf = H. H; = Lg is the set of initial
gls, i.e., W€ start with one of the initial conditions as in the AB-grammar.
The idea behind the node (g, Q, Q) is to describe the situation of a configu-
ation derived in the AB-grammar where ¢ is the label of the rule to be applied
Q, @ describe the activated and blocked rules for the further derivation steps
the AB-grammar. Hence, as already in the definition of an AB-grammar, we

wsume QN Q = 0.
‘Now let g(I) denote the rule r assigned to label [, i.e., (I,r) € fr. Then, the
ot of rules assigned to (¢, @, Q) is taken to be {g(g)}. The set of rules assigned
is taken to be §. As it will become clear later in the proof why, the nodes
(3,Q,Q) are assigned the set of rules {g(I) | (1,1) € @, [ # q}; we only take
those nodes where this set is not empty.
In node (q, Q, Q), we have to distinguish between two possibilities:

- If g(g) is applicable to the object derived so far, a Y-edge has to go to every
node which describes a situation corresponding to what would have been the
next configuration in the AB-grammar. We then compute

z,1 |(x,i+1)€Q, i>0}U{(m,i)|(q,m,i)€B},
z,4) | (z,i+1) € Q, i >0}U{(z,1) | (g,2,7) € A})
{(z,) | (z,7) € R}

(observe that R and R are made non-conflicting) as well as — if it exists —
ty := min{t | (z,t) € R}, i.e., the next time step when the derivation in the
AB-grammar could continue. Hence, we take a Y-edge to every node (p, P, ]3)
where p € {z | (z,t9) € R} and

)
)

P={(z,1)|(z,i+to—1) € R, i>0},
P ={(z,i) | (z,i+to — 1) € R}.

If to := min{t | (z,t) € R} does not exist, this means that R is empty and
we have to make a Y-edge to the node 0.

= If g(q) is not applicable to the object derived so far, we first have to check
Fhat' none of the other rules activated at this step could have been applied,
Le., we check for the applicability of the rules in the set of rules

- —y -
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by going to the node (g, Q, Q) with a N-edge; from there no Y-edge leaveg SPGCial Results for Multisets
g

this would indicate the unwanted case of the applicability of one of the pal . } . ; g
in U, but with a N-edge we continue the computation in any node y he case of multisets the structural.mformatlon contained in the sequence of
i o tls cannot be used, arbitrary multiset rules are not sufficient for obtaining
0

with p, P, P computed as above in the first case. We observe that in ¢ . .
’ = B that with AB-grammars we
is empty, we can omit the path through the node (Q.Q,Q) and dirﬂcr,ly - " e in Ps(L _(ARB))- Yet we can easily show that wi g

! 5 " the following:

to the nodes (p, P, ]5) which are obtained as follows: we first check When
to := min{t | (z,t) € Q, t > 1} exists or not; if not, then the computag 7. PsRE = Ps(L(ARB)) = L(mARB-AB).
has to end with a N-edge to node §). Otherwise, a N-edge goes to every 110" m

(p, P, P) with p € {z | (,to) € Q} and "

ore
¢ It is folklore, for example see 7] and [5], that
P={(@i)|(@itto-1)€d, i>0}, PpsRE = Ps(L (ARB)) = £ (mARB-fC) = £ (mARB-RC),
P={@il@itt-1)ea}. 6. by Theorem 3, we also obtain PsRE = L (mARB-AB). a

where the simulation may continue. hence:
In this way, every computation in the AB-grammar can be simulated by tjg
graph-controlled grammar with taking a correct path through the control graph
and finally ending in node @; due to this fact, we could also choose the nOde'
to be the only final node, i.e., Hy = {#}. On the other hand, if we have magdy
a wrong choice and wanted to apply a rule which is not applicable, althoygh
another rule activated at the same moment would have been applicable, wa
get stuck, but the derivation simulated in this way still is a valid one in the
AB-grammar, although in most standard types X, which usually are strictly
extended ones, such a derivation does not yield a terminal object. Having takey
H; = {0}, such paths would not even lead to successful computations in Gao
In any case, we conclude that the graph-controlled grammar Ggc generates
the same language as the AB-grammar G 4p.

Computational Completeness for Context-Free
AB-Grammars with Two Non-terminal Symbols

‘o this section, we state our main results for context-free string and multiset
- mars showing that computational completeness can already be obtained

text-free AB-grammar using only two non-terminal symbols.

p vof. (Sketch) The main technical details of how to use only two non-terminal
‘gymbols A and B for generating a given recursively enumerable language follow
‘the construction given in [5] for graph-controlled grammars. The most impor-
“tant to be shown here is how to simulate the ADD- and SUB-instructions of
4 deterministic register machine with the contents of the two working registers
heing given by the number of symbols A and B; only at the end, both numbers
‘are zero, whereas in between, during the whole computation, at least one symbol
‘A or B is present. The initial string is A4, and one A is also the last symbol to
‘be erased at the end in order to obtain a terminal string.

In the following, we use X to specify one of the two non-terminal symbols
‘A and B, and Y then stands for the other one. For any label p of the register
‘machine we use two labels p and p’. The simulations in the AB-grammar work
28 follows:

4 Special Results for Specific Objects

4.1 Special Results for Arrays

In both the one- and the two-dimensional case, it has been shown, see [4], that
even matrix grammars without ac are sufficient to generate any recursively enu-
merable array language, i.e., for d € {1,2}, L(d-#-CFA-MAT) = L (d—ARBA)f
(the main reason for such a result is the “#-sensing” ability of the rules of type
d-#-CFA). Based on Theorem 1, we immediately infer the following result:

Theorem 5. Ford € {1,2},

L (d-#-CFA-Al) = L (d-#-CFA-MAT) = L (d-ARBA). =~ p:(ADD(X),q) is simulated by p: X - XX andp’: Y — Y;X with
(p’p/’ 1)3 as well as (pa q, 2)A3 (P, qla 3)A7 and (p/a q, 1)A7 (p,, q 72)ﬁ)
i i = p: (SUB(X),q,s) is simulated by p: X > Aand p': Y — Y wit
4.2 Special Results for Strings (0. 1) a5 sl o5 (p.9.2)5. (pog’ 3}, 00 (5. 1) s (8> #22)
It is well-known, for example see [2], that £ (CF-RC) = L (ARB). Based ol

in icati le labeled
Theorem 3, we immediately infer the following result: both cases, the application of the rule labeled by p blocks the rule labele

by p'; in any case, for the next rule labeled r to be simulated, both r and ¢’ are

F= = P o~ P e e et A I g e e
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For the halting label h, only the labeled rule h : A — )\ is to be activated

This result is optimal with respect to the number of non-terminal syyyj,
as it has been shown in [3], even for graph-controlled context-free grammayg n,::'.
non-terminal symbol is not enough, hence, the statement immediately follom
from Theorem 4. '

We now show a similar result for multiset grammars.

Theorem 9. Any recursively enumerable set of multisets can be generated
an AB-grammar using context-free multiset rules and only two non-tennia
symbols. y

Proof. Given a recursively enumerable set of multisets L over the terminal alphge
bet T = {a1,...,ax}, we can construct a register machine My, generating [, i
the following way: instead of speaking of a number n in register r we use the notg,
tion a.", i.e., a configuration of My, is represented as a string over the alphajas
V =T U {ag+1, ak+2} with the two non-terminal symbols akt1,ag4o. '

We start with one ag41 and first generate an arbitrary multiset over T gt
by step adding one element a,, from T" and at the same time multiply the nump
of symbols agy1 by pm, where p,, is the m-th prime number. At the end of
procedure, for the multiset a;™ ...a;™* we have obtained a,,™™ in each reg
m,1 <m < k,and agy 1P P& in register k+1. As for example, already showp
in [8], only using registers k + 1 and k + 2, a deterministic register machine 1
simulating any number of registers by this prime number encoding can compy
starting with ax1P*""P*"* and halt if and only if a;™ ...ax™ € L. Only wi !
halting, all registers of M} are cleared to zero, i.e., we end up with only one ak;
in My, when this deterministic register machine Mj has reached its halting label
h. So the last step of M}, before halting is just to eliminate this last ag41. During

the whole computation of M7, the sum of symbols a1y and ag» is greater than
zero. Hence, it only remains to show how to simulate the instructions of a register
machine, which is done in a similar way as in the preceding proof; we use X tol

specify one of the two non-terminal symbols a1 and ag42, and Y then stand§

for the other one, ie., X,Y € {ag+1,ax+2}. For any label p of the register

machine we use two labels p and p’. The simulations in the AB-grammar work
as follows:

S

~ a non-deterministic ADD-instruction p :
branching into two deterministic ADD-instructions even twice:
p:X—=Xandp :Y —Y with (p,p,1)p as well as
(pa (pa X, Q)a 2)Aa (p7 (p7 X, S), 2)A: and (p/a (pa Y, Q)7 l)Aa (p/a (pa Y, 3)7 1)1‘1;

in the third step of the simulation, we already know whether X is present 0f

else we have to use Y; this now allows us to simulate the four deterministié

ADD-instructions (p,a, 8) : (ADD(X),8), a € {X,Y}, B € {q, s}, in a sile

pler way by using the rules

(ADD(X),q,s) is simulated by*

Sequential Grammars with Activation and Blocking of Rules 67

. the activations
a_:_J a 16), ,1)Av ((p‘a”@)”@’,2)A; .
(P A’DD(X)! q) is simulated by p: X - XX and p’: Y — Y X with
'_._‘p; 1)p as well as (p,¢,2) 4, (p,¢',3) 4, and (p',¢,1)a, (¢, ¢, 2) 45
(P-’ 'S:UB(X),q, s) is simulated by p: X — A and p’' : Y — Y with
3 (P. p/ 1)3 as well as (p, q, 2)A| (p’ qla 3)A1 and (p/1 S, 1)As (p(\ Slv ZJA;
{ ’bo‘th cases, the application of the rule labeled by p blocks the rule labeled
i in any case, for the next rule labeled r to be simulated, both r and 7’
'e a,ctivated‘ again r’ following r one step later;
1 ::r the halting label h, only the labeled rule 2 : a,11 — A is to be activated.

‘When the final rule h : a,4+1 — A is applied, no further rule is activated, thus
derivation ends yielding the multiset a1™ ...ax™* € L as terminal result. O

Conclusion

have considered the concept of regulating the applicability of rules based on
application of rules in the preceding step(s) within a very general model for
uential grammars and compared the resulting computational power with var-
other control mechanisms based on the applicability of rules in the under-
‘:'g grammar, in particular with graph-controlled and matrix grammars as
: oll as random context grammars. Even only using the structural features of
o sequences of applied rules, yet not taking into account the features of the
underlying objects (e.g., strings, multisets, arrays), general simulation results
gre obtained. Then we also established some special computational complete-
ness results: for one- and two-dimensional array grammars, only the activation
of rules is needed when using #-context-free array rules; for strings and multisets,
j:nth activation and blocking of rules were needed when using only context-free
rules. For computational completeness for strings or multisets with context-free
rules, only two non-terminal symbols are necessary, which is a sharp result, as
only one non-terminal symbol is not sufficient.

The concept of activation and blocking of rules can also be used when rules
are applied in parallel, which is an attractive idea for the area of P systems
where multiple variants of parallel derivation modes are common.
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Abstract. We study languages and formal power series associated to
(variants of) the Hammersley process. We show that the ordinary Ham-
mersley process yields a regular language and the Hammersley tree pro-
cess yields deterministic context-free (but non-regular) languages. For
the Hammersley interval process we show that there are two relevant
variants of formal languages. One of them leads to the same language as
the ordinary Hammersley tree process. The other one yields non-context-
free languages.

The results are motivated by the problem of studying the analog of

the famous Ulam-Hammersley problem for heapable sequences. Towards
this goal we also give an algorithm for computing formal power series
associated to the Hammersley process. We employ this algorithm to set-
tle the nature of the scaling constant, conjectured in previous work to
be the golden ratio. Our results provide experimental support to this
conjecture.

1 Introduction

The Physics of Complex Systems and Theoretical Computing have a long

- and fruitful history of cooperation: for instance the celebrated Ising Model
can be studied combinatorially, as some of its versions naturally relate to
graph-theoretic concepts [20]. Methods from formal language theory have been
employed (even in papers published by physicists, in physics venues) to the
analysis of dynamical systems [13,21]. Sometimes the cross-fertilization goes in
the opposite direction: concepts from the theory of interacting particle systems
[12] (e.g. the voter model) have been useful in the analysis of gossiping proto-
cols. A relative of the famous TASEP process, the so-called Hammersley-Aldous-
Diaconis (HAD) process, has provided [1,2] the most illuminating solution to
the famous Ulam-Hammersley problem [17] concerning the scaling behavior of
the longest increasing subsequence of a random permutation.

This work was supported by a grant of Ministry of Research and Innovation, CNCS



