
Comparison of Code Measures of IEC 61131-3 and
61499 standards for Typical Automation

Applications
Peter Gsellmann

Automation and Control Institute
TU Wien

Vienna, Austria
gsellmann@acin.tuwien.ac.at

Martin Melik-Merkumians
Automation and Control Institute

TU Wien
Vienna, Austria

melik-merkumians@acin.tuwien.ac.at

Georg Schitter
Automation and Control Institute

TU Wien
Vienna, Austria

schitter@acin.tuwien.ac.at

Abstract—The IEC 61131-3 and IEC 61499 standards are
currently used to implement automation systems. Although
aspects as reuseability, execution models, and component-based
design have been discussed and analyzed for both standards, the
programming effort and complexity of implementation for typical
tasks in industrial automation have not been compared so far.
This work proposes two typical application classes of industrial
automation systems and implements one concrete application for
each class with IEC 61131-3 and IEC 61499, respectively. Both
implementations are then evaluated via McCabe’s Cyclomatic
Complexity and Halstead software measures, providing an ob-
jective comparison on the implementations.

Index Terms—IEC 61131, IEC 61499, software metric, com-
parison

I. INTRODUCTION

Control software is a central component in today’s automa-
tion systems and its complexity is continuously increasing
[1]. Industry developed two different standards to cope with
software development in industrial automation, the IEC 61131-
3 – Programmable controllers: Programming languages [2]
for centralized, cyclic Programmable Logic Controller (PLC)
systems, and the IEC 61499 – Function blocks [3] for dis-
tributed, event-driven automation systems. The IEC 61499
was originally devised for modeling distributed systems and
coordination between classic IEC 61131-3 driven PLC devices
[4], but the first reference implementations of the IEC 61499,
FBDK [5] and Eclipse 4diac [6], instead implemented full
development and run-time environment for automation sys-
tems without the need for IEC 61131-3 devices. This enabled
the development of complete automation solutions within
the IEC 61499 standard. As both standards can be used
to implement automation control code, the advantages and
disadvantages of IEC 61499 and IEC 61131-3 regarding the
aspects of reuseability, execution models, and component-
based design [7–10] have been evaluated and discussed, but
so far the comparison of programming complexity and pro-
gramming effort for typical automation applications has been
neglected. The aim of this work is to evaluate the complexity
and programming effort of implementations in IEC 61131-3
Function Block Diagram (FBD) and Structured Text (ST), and

IEC 61499 in order to give first results which programming
model is better qualified for certain kinds of typical automation
tasks.

II. RELATED WORK

The application of software metrics is an established method
of evaluating code complexity, quality, and effort via certain
code characteristics [11]. For the evaluation on the suitability
of the different standards, measures are needed which quantify
the general complexity of the program structure, in order to
be sure that both programs have the same number of decision
points. This is important for a valid comparison, as programs
which provide more functionality, will tend to be larger and
more complex than programs with less functionality. Only if
both implementations can be considered equal in terms of
implemented functionality, a metric can be applied to compare
programming effort in order to identify the more eligible
language.

A. Software Metrics

A software metric is a function, with software data as
input quantity, and a numerical value as the output [12]. The
resulting assessment value gives a quantitative evaluation of
the examined program. Since it is not possible to define a
reference value, and subsequently introduce units, software
metrics only serve to compare applications against each other.

One of the oldest and widely used metrics is Lines of Code
(LOC), and was initially used to measure the productivity of
programmers. The calculation is quite simple, as the metric’s
resulting value is the aggregate of the lines of the source code.
One major drawback of this metric is, that the computational
effort for a line of code is not considered in the metric, which
hampers its ability to give an accurate measure of software
complexity. Another problem is, that it cannot be directly
applied to graphical programming languages [13], such as
IEC 61131-3 FBD.

A metric which also takes the complexity of program
statements into account are the Halstead complexity measures
[14], defining a class of metrics, that rely on the classification

Post-print version (generated on 20.03.2020)
This and other publications are available at:
http://www.acin.tuwien.ac.at/publikationen/ams/

Post-print version of the article: P. Gsellmann, M. Melik-Merkumians, and G. Schitter, “Comparison of Code Measures of
IEC 61131-3 and 61499 standards for Typical Automation Applications,”IEEE 23rd International Conference on Emerging
Technologies and Factory Automation (ETFA), 2018. DOI: 10.1109/ETFA.2018.8502464
c©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.

http://www.acin.tuwien.ac.at/en/publikationen/ams/
https://doi.org/10.1109/ETFA.2018.8502464


Table I
HALSTEAD SOFTWARE MEASURES AND CALCULATION FORMULAS

Metric Calculation formula

Program vocabulary n = n1 + n2

Program length N = N1 +N2

Estimated length N̂ = n1 log2 n1 + n2 log2 n2

Purity ratio PR = N̂
N

Program volume V = N · log2 n
Program difficulty D = n1

2
· N2

n2

Program effort E = D · V

of program tokens as operators or operands. The software
measures (cf. Table I) of this metric depend on the count of
these tokens, as defined in Eqs. (1a) - (1d).

n1 = number of unique operators (1a)
n2 = number of unique operands (1b)
N1 = total number of operators (1c)
N2 = total number of operands (1d)

The goal of the Halstead complexity measures is to give
estimates on the difficulty to understand or write a program
(D) and the effort to write the program (E).

Another widely used software metric is McCabe’s Cyclo-
matic Complexity (CC) [15]. The CC indicates the number
of linearly independent paths in the control flow. McCabe’s
CC hereby counts the number of decisions d in a program, or
respectively the number of edges e and nodes n in a graphical
representation, shown in Eq. (2), as a measure of program
complexity.

CC = d+ 1 = e− n+ 2 (2)

B. Software metrics adapted to IEC 61131-3

With a view to use software metrics as an indicator for
Technical Debt (TD), [13] published an adaption of the code
metrics, presented in Section II-A, to IEC 61131-3 applica-
tions.

Since Halstead’s metric relies on the unique and total
number of operators and operands, these tokens have to be
related to the elements of a FBD. According to [16], the
relation is as follows: All connections count as operators while
all used Function Blocks (FBs) count as operands. In contrast,
the metric can be directly applied to ST, since the tokens are
apparent.

For the elicitation of the CC number, [13] used the co-
herence from Eq. (2). The application of the metric on ST
is again direct, as only the conditional statements, such as
IF-THEN-ELSE or CASE-OF, have to be counted. The
method for FBD figures similar, because the IEC 61131-3
defines FBs, which represent conditional statements, such as
SEL and MUX [17].

C. Software Metrics Adapted to IEC 61499

A set of rules to obtain the number of operators and
operands for IEC 61499 applications was presented in [18].

For algorithms implemented in ST, which are combinations
of valid operators and operands, the metric can be applied
directly. For the evaluation of the Execution Control Chart
(ECC) the metric needs to be adapted. An ECC state with its
transitions is comparable to a decision point, where, depending
on the transition, the program flow proceeds to a new state.
Therefore, a combination of a state and a transition is counted
as one operator. Additionally, an action, consisting of an
output event and/or an algorithm, is considered as an operator
too. Operators act upon operands. This means, transitions, as
well as algorithms and output events of actions assigned to
states, are considered as operands.

The determination of the CC measure for IEC 61499 ECCs
is an adaptation of the general rules for evaluating graphical
program representations. All states are hereby considered as
nodes and all transitions are considered as edges, enabling the
calculation of CC via Eq. (2). For algorithms in ST, the metric
can be again applied direct, as only the conditional statements
have to be counted. According to [18], the combination of
algorithm and ECC measures gives an idea of the overall
complexity, but does not indicate where it is hidden. For the
present analysis, the location of the complexity is negligible.

III. EXAMPLE APPLICATION

In order to evaluate the languages of IEC 61131-3 and
IEC 61499 in respect to their suitability for the implementation
of typical application classes in industrial automation, a typical
flow control application and a cyclic application have been
chosen as first evaluation scenarios. The implementations of
the two applications are compared in respect to their amount
of linearly independent application paths via McCabe’s CC
and their understandability and effort of implementation via
Halstead complexity measures. It is expected that the im-
plementations in both standards exhibit a similar CC, as
both implementation shall perform the same task. If the CC
is similar or equal, the Halstead complexity measures can
give comparable estimates for program understandability and
programming effort, although we compare different languages
[14]. For all IEC 61131-3 implementations, the periodic ex-
ecution behavior, as defined in [19], is used. All IEC 61499
Basic Function Block (BFB) algorithms are programmed in
ST.

The first example application is a pick-and-place task for a
resistor sorting plant, shown in Fig. 1. It is one instance of
the application class of sequencer applications, a typical task
in the industrial automation. The task is defined as follows:

• The vibrator unit shakes a separated resistance piece to
the outlet, from where the portal robot can pick it up.

• Afterwards, the resistance piece is placed in the measure-
ment station, where its resistance value is measured.

• If the resistance is within or outside a certain tolerance
range, the piece gets carried to the first or second palette,
respectively.

Post-print version (generated on 20.03.2020)
This and other publications are available at:
http://www.acin.tuwien.ac.at/publikationen/ams/

Post-print version of the article: P. Gsellmann, M. Melik-Merkumians, and G. Schitter, “Comparison of Code Measures of
IEC 61131-3 and 61499 standards for Typical Automation Applications,”IEEE 23rd International Conference on Emerging
Technologies and Factory Automation (ETFA), 2018. DOI: 10.1109/ETFA.2018.8502464
c©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.

http://www.acin.tuwien.ac.at/en/publikationen/ams/
https://doi.org/10.1109/ETFA.2018.8502464


A second typical application class is the control of process
variables, hence the second sample application is the tank
level control of a process tank system, shown in Fig. 2. In
this example a Proportional-Integral (PI) controller controls
the level of upper tank T102 to a certain level, via the pump
P101, while the liquid runs off into the lower tank T101 via
valve V102.

IV. RESULTS AND DISCUSSION

For the resistor sorting application in IEC 61499, three FBs
are developed, a sequence control FB, a movement control
FB and a measurement station control FB, while for the
case of IEC 61131-3, only one FB with an internal ST
algorithm is designed. Table II shows the resulting software
measures for the resistor sorter application, implemented in the
standards IEC 61131-3 and IEC 61499. The complexity for the
IEC 61131-3 application is, against expectation, lower than for
the IEC 61499 application. The reason for the higher complex-
ity are the additional CYCLE FBs, used for the periodic scan
of the sensors. If the complexity added by these FBs, which
add nothing to the programs base functionality, is ignored, the
CCs for both applications are equal. The measures for program
length, program vocabulary, program difficulty, and program
effort are significantly higher from the IEC 61131-3 than from
the IEC 61499 application. Considering that the IEC 61131-3
program is implemented in FBD and ST, and not in the likely
more suitable Sequential Function Chart (SFC), these results
are comprehensible.

In the second test case, the tank level control, both, the
IEC 61499 and the IEC 61131-3 application consist of one
FB, which has the same PI control algorithm implemented.
Table III shows the resulting software metric values for the
tank level controller, implemented in the standards IEC 61131-
3 and IEC 61499. For the implementation in IEC 61499, the
Halstead complexity measures are significantly higher. This is
due to the fact that in IEC 61131-3, the controlling algorithm
implementation is just one calculation, whereas in a IEC 61499
FB, it also needs an ECC. Again, with the neglection of the
CYCLE FB the CC number is the same.

Figure 1. Example application: Resistor sorter

Figure 2. Example application: Tank level control

The results show, that IEC 61131-3 and IEC 61499 lan-
guages have their pros and cons, based on the application
type. This is partly due to the language, partly based on
the underlying execution semantics. As expected for the used
IEC 61131-3 languages, the IEC 61499 is better suited for
sequencer applications, whereas IEC 61131-3 is preferably
used for periodic controller applications.

V. CONCLUSION & FUTURE WORK

This work proposes two typical classes of applications
in industrial automation, compares two concrete equivalent
implementations, one for each standard, and discusses the
suitability of the standards for these application classes via
software metrics. In the example of the resistor sorting pro-
cess, the CC number is equal for both programs indicating
functional equivalent implementations, whereas the Halstead
software measures, such as program length and program effort,
are significantly smaller in the case of the IEC 61499 applica-
tion. Therefore, according to the software measure results, the
IEC 61499 is more suitable for sequencer applications, than
equivalent IEC 61131-3 FBD/ST applications. For the class
of control applications, represented in the tank level control
application, the complexity is again equivalent, indicating
that both implementations are functionally equivalent. The

Table II
METRIC RESULTS OF RESISTOR SORTING APPLICATION FOR IEC 61131-3

AND IEC 61499. FOR THE IEC 61499 IMPLEMENTATION, THE
CYCLOMATIC COMPLEXITY VALUE GIVEN IN PARENTHESES EXCLUDES

THE ADDED COMPLEXITY VIA THE EXTRANEOUS CYCLE FBS.

IEC 61131-3 IEC 61499

Program vocabulary 587 217

Program length 581 439

Estimated length 4839.35 1503.98

Purity ratio 8.33 3.43

Program volume 5343.58 3407.32

Program difficulty 109.50 46.49

Program effort 585122.33 158408.48

Cyclomatic Complexity 33 45(33)

Post-print version (generated on 20.03.2020)
This and other publications are available at:
http://www.acin.tuwien.ac.at/publikationen/ams/

Post-print version of the article: P. Gsellmann, M. Melik-Merkumians, and G. Schitter, “Comparison of Code Measures of
IEC 61131-3 and 61499 standards for Typical Automation Applications,”IEEE 23rd International Conference on Emerging
Technologies and Factory Automation (ETFA), 2018. DOI: 10.1109/ETFA.2018.8502464
c©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.

http://www.acin.tuwien.ac.at/en/publikationen/ams/
https://doi.org/10.1109/ETFA.2018.8502464


Table III
METRIC RESULTS OF TANK LEVEL CONTROLLING APPLICATION FOR

IEC 61131-3 AND IEC 61499. FOR THE IEC 61499 IMPLEMENTATION,
THE CYCLOMATIC COMPLEXITY VALUE GIVEN IN PARENTHESES

EXCLUDES THE ADDED COMPLEXITY VIA THE EXTRANEOUS CYCLE
FBS.

IEC 61131-3 IEC 61499

Program vocabulary 68 82

Program length 61 117

Estimated length 346.63 455.60

Purity ratio 5.68 3.89

Program volume 371.34 743.83

Program difficulty 15 11.77

Program effort 5570.03 8758.04

Cyclomatic Complexity 3 6(3)

evaluation of the IEC 61131-3 application shows smaller
measures for most of the Halstead software measures, except
program difficulty, which is slightly higher than, but still in
the same range as the IEC 61499 implementation. From this,
it can be concluded, that the IEC 61131-3 is better suited for
control algorithm implementations.

The next step in the evaluation will be the incorporation
of the missing IEC 61131-3 languages SFC and Ladder
Diagram (LD). Additionally, also the effect of the object-
oriented extension of the IEC 61131-3 standard has to be
evaluated. Furthermore, for very simple FB implementations,
such as the PI FB from the tank level control application, the
impact of replacing the BFB implementation, with a Simple
FB is of interest, due to the decreased complexity as no ECC
is needed for this type of FB.

REFERENCES

[1] W. ElMaraghy, H. ElMaraghy, T. Tomiyama, and L.
Monostori, “Complexity in engineering design and
manufacturing”, CIRP Annals, vol. 61, no. 2, pp. 793–
814, 2012.

[2] International Electrotechnical Commission, IEC 61131
– Programmable controllers, Part 3: Programming lan-
guages, 2013.

[3] IEC TC65/WG6, IEC 61499: Function blocks for
industrial-process measurement and control systems –
Parts 1 to 4. Geneva: International Electrotechnical
Commission (IEC), 2005.

[4] R. Schoop and A. Strelzoft, “Asynchronous and syn-
chronous approahces for programming distributed con-
trol systems based on standards”, Control Engineering
Practice, vol. 4, no. 6, pp. 855–861, 1996.

[5] I. HOLOBLOC. (May 29, 2018). Fbdk 2.6 - the func-
tion block development kit, [Online]. Available: http :
//www.holobloc.com/fbdk2/.

[6] Eclipse. (2016). 4diac - Framework for Industrial Au-
tomation & Control, [Online]. Available: https://eclipse.
org/4diac/.

[7] A. Zoitl and V. Vyatkin, “Different perspectives [face
to face; "IEC 61499 architecture for distributed au-
tomation: The ‘"glass half full" view]”, IEEE Industrial
Electronics Magazine, vol. 3, no. 4, pp. 7–23, 2009.

[8] L. A. C. Salazar and O. A. R. Alvarado, “The future
of industrial automation and IEC 614993 standard”, in
2014 III International Congress of Engineering Mecha-
tronics and Automation (CIIMA), Oct. 2014, pp. 1–5.

[9] K. Thramboulidis, “Different perspectives [face to face;
"IEC 61499 function block model: Facts and fallacies"
]”, IEEE Industrial Electronics Magazine, vol. 3, no. 4,
pp. 7–26, Dec. 2009.

[10] ——, “IEC 61499: Back to the well proven practice
of IEC 61131?”, in Proceedings of 2012 IEEE 17th
International Conference on Emerging Technologies
Factory Automation (ETFA 2012), Sep. 2012, pp. 1–8.

[11] R. Lincke, J. Lundberg, and W. Löwe, “Comparing
software metrics tools”, in Proceedings of the 2008
International Symposium on Software Testing and Anal-
ysis, ser. ISSTA ’08, Seattle, WA, USA: ACM, 2008,
pp. 131–142.

[12] T. Honglei, S. Wei, and Z. Yanan, “The research on soft-
ware metrics and software complexity metrics”, in 2009
International Forum on Computer Science-Technology
and Applications, vol. 1, Dec. 2009, pp. 131–136.

[13] L. Capitán and B. Vogel-Heuser, “Metrics for software
quality in automated production systems as an indicator
for technical debt”, in 2017 13th IEEE Conference
on Automation Science and Engineering (CASE), Aug.
2017, pp. 709–716.

[14] M. H. Halstead, “Elements of software science”, Else-
vier New York, 1977.

[15] T. J. McCabe, “A complexity measure”, in Proceedings
of the 2Nd International Conference on Software Engi-
neering, ser. ICSE ’76, San Francisco, California, USA:
IEEE Computer Society Press, 1976, pp. 407–.

[16] A. Muslija, “On the complexity measurement of indus-
trial control software”, Master Thesis, Mälardalen Uni-
versity, School of Innovation Design and Engineering,
Västeras, Sweden, 2017.

[17] K. H. John and M. Tiegelkamp, IEC 61131-3: Pro-
gramming Industrial Automation Systems Concepts and
Programming Languages, Requirements for Program-
ming Systems, Decision-Making Aids, 2nd. Springer
Publishing Company, Incorporated, 2010.

[18] G. Zhabelova and V. Vyatkin, “Towards software met-
rics for evaluating quality of IEC 61499 automation
software”, in 2015 IEEE 20th Conference on Emerging
Technologies Factory Automation (ETFA), Sep. 2015,
pp. 1–8.

[19] International Electrotechnical Commission, IEC TR
61131 – Industrial-process measurement and control
- Programmable controllers, Part 8: Guidelines for
the application and implementation of programming
languages, 2017.

Post-print version (generated on 20.03.2020)
This and other publications are available at:
http://www.acin.tuwien.ac.at/publikationen/ams/

Post-print version of the article: P. Gsellmann, M. Melik-Merkumians, and G. Schitter, “Comparison of Code Measures of
IEC 61131-3 and 61499 standards for Typical Automation Applications,”IEEE 23rd International Conference on Emerging
Technologies and Factory Automation (ETFA), 2018. DOI: 10.1109/ETFA.2018.8502464
c©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.

http://www.acin.tuwien.ac.at/en/publikationen/ams/
https://doi.org/10.1109/ETFA.2018.8502464

