

Georg Kartnig / Technische Universität Wien Institut für Konstruktionswissenschaften und Technische Logistik

Tagungsband zum 14. Fachkolloquium der Wissenschaftlichen Gesellschaft für Technische Logistik e. V. (WGTL)

Wien, 26. und 27. September 2018

IMPRESSUM

Tagungsband zum 14. Fachkolloquium der Wissenschaftlichen Gesellschaft für Technische Logistik e. V. (WGTL)

Herausgegeben von:

Wissenschaftliche Gesellschaft für Technische Logistik e. V. (WGTL) c/o Universität Rostock
Lehrstuhl für Produktionsorganisation und Logistik
Richard-Wagner-Straße 31
18119 Rostock-Warnemünde

Redaktion, Layout & Titelbild:

Ing. Michael Haupt
Institut für Konstruktionswissenschaften und Technische Logistik - Technische Universität Wien
Getreidemarkt 9, Hoftrakt BD, 4. OG
A-1060 Wien

Der Tagungsband wurde mit Mitteln der Wissenschaftlichen Gesellschaft für Technische Logistik finanziert.

Für den Inhalt der Beiträge sind die jeweiligen Autoren verantwortlich.

Der Herausgeber übernimmt keine Gewähr für die Richtigkeit, die Genauigkeit und die Vollständigkeit der Angaben sowie für die Beachtung der Rechte Dritter. Schadensersatz für fehlerhafte, unvollständige oder nicht abgedruckte Beiträge ist ausgeschlossen. Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdrucks, der Entnahme von Abbildungen, der Wiedergabe auf fotomechanischem oder ähnlichem Wege und der Speicherung in Datenverarbeitungsanlagen bleiben – auch bei nur auszugsweiser Verwendung – vorbehalten.

Copyright © 2018 Wissenschaftliche Gesellschaft für Technische Logistik e. V. und die Fachautoren

Druck: Dániel Dencsi, Buch und Medienwirtschaft; info@dengraf.com

Wir danken unseren Sponsoren

INHALTSVERZEICHNIS

Vorwort	
Papers zu den Vorträgen vom Mittwoch den 26.09.2018	1
Themengruppe: Konstruktion und maschinenbauliche Gestaltung	1
Experimentelle Analyse des Lenkverhaltens von Tragrollen in Gurtförderanlagen bei Gurtschieflauf	1
Hendrik Otto, Lisa Wonner, Andre Katterfeld	
Lehrstuhl für Fördertechnik Fakultät für Maschinenbau Otto-von-Guericke-Universität Magdeburg	
Kombination von Eigenspannungen und betrieblichen Spannungen in einem Kranlaufra	d 9
Georg Havlicek ¹ , Georg Kartnig ¹ , Georg Klapper ²	
¹ Institut für Konstruktionswissenschaften und Technische Logistik Forschungsbereich: Konstruktionslehre und Fördertechnik (KLFT) Technische Universität WienH	
² Leiter Entwicklung Maschinenbau Künz GmbH	
Dezentrales Steuerungskonzept für antreibende Tragrollen	19
Lars Bindszus, Daniel Hötte, Ludger Overmeyer	
Institut für Transport- und Automatisierungstechnik Gottfried Wilhelm Leibniz Universität Hannover	
Parameteridentifikation mit Hilfe eines strukturmechanischen Modells für Superelastikreifen	31
Arne Pross, Rainer Bruns	
Lehrstuhl für Maschinenelemente und Technische Logistik Fakultät für Maschinenbau Helmut-Schmidt-Universität, Universität der Bundeswehr, Hamburg	
Schwingungsmodell zur Abbildung der dynamischen Beanspruchung von Gittermast- Fahrzeugkranen und Lkw-Ladekranen	41
Manuel Stölzner, Michael Kleeberger, Willibald A. Günthner, Johannes Fottner	
Lehrstuhl für Fördertechnik Materialfluss Logistik Fakultät Maschinenwesen Technische Universität München	

Themengruppe: Steuerungstechnik und IT-Systeme	53
Towards an approach for assuring machinery safety in the HoT-age	53
Tommi Kivelä, Markus Golder, Kai Furmans	
Institute for Material Handling and Logistics (IFL) Karlsruhe Institute of Technology (KIT)	
Deep-Learning-Verfahren zur 3D-Objekterkennung in der Logistik	69
Marko Thiel, Johannes Hinckeldeyn, Jochen Kreutzfeldt	
Institut für Technische Logistik Technische Universität Hamburg	
Papers zu den Vorträgen vom Donnerstag den 27.09.2018	79
Themengruppe: Konstruktion und maschinenbauliche Gestaltung	79
Potentiale und Möglichkeiten einer Energieeffizienzsteigerung von Stückgutstetigförderern durch optimierte Antriebssystemauswahl	79
Thomas Stöhr, Norbert Hafner	
Institut für Technische Logistik (ITL) Fakultät Maschinenbau und Wirtschaftswissenschaften Technische Universität Graz	
Rollende Abstützung von Transportzahnriemen in der Anwendung	87
Jan Finke ¹ , Jens Sumpf ¹ , Carl Conrad Mäder ²	
¹ Professur Förder- und Materialflusstechnik Institut für Fördertechnik und Kunststoffe Fakültät Maschinenbau Technische Universität Chemnitz	
² WRH Corporate Services AG	
Lebensdauer kunststoffummantelter Drahtseile	97
Toni Recknagel, Thorsten Schmidt	
Professur für Technische Logistik Institut für Technische Logistik und Arbeitssysteme Fakultät Maschinenwesen Technische Universität Dresden	
Das laterale Laufverhalten von Stahlprozessbändern - Erweiterung der Betrachtungen auf	
Bänder mit geringer Bandspannung	105
FranzPaulischin, Georg Kartnig	
Forschungsbereich Fördertechnik und Konstruktionslehre Institut für Konstruktionswissenschaften und Technische Logistik Technische Universität Wien	

Themengruppe: Planung, Analyse und Simulation logistischer Systeme	115
Entwicklung einer mehrkomponentigen Bewertungsmethodik für die Energieeffizienz von Regalbediengeräten	115
Andreas Rücker, Johannes Fottner	
Lehrstuhl für Fördertechnik Materialfluss Logistik Fakultät für Maschinenwesen Technische Universität Munchen	
Integration von Virtual Reality und optischem Motion Capturing in die Planung und Optimierung von Materialflusssystemen	127
André Terharen, Felix Feldmann, Christopher Reining, Michael ten Hompel	
Lehrstuhl für Förder- und Lagerwesen Fakultät Maschinenbau Technische Universität Dortmund	
Themengruppe: Management, Organisation und Betrieb	137
Intralogistikkomponenten für die Automobilproduktion ohne Band und Takt – erste Prototypen	137
Matthias Hofmann	
Institut für Fördertechnik und Logistik Abteilung Maschinenentwicklung und Materialflussautomatisierung Universität Stuttgart	
Ein Ansatz für ein Predictive-Monitoring-System zur Identifikation von Störungswirkungen in der Produktionslogistik mittels künstlichen neuronalen Netzen	145
Björn Erichsen, Nina Vojdani	
Lehrstuhl Produktionsorganisation und Logistik Fakultät für Maschinenbau und Schiffstechnik Universität Rostock	
Optimierung von Fabrikplanungsprozessen durch Drohneneinsatz und automatisierte Layoutdigitalisierung	153
Dominik Melcher, Benjamin Küster, Malte Stonis, Ludger Overmeyer	
IPH – Institut für Integrierter Produktion Hannover gGmbH	
Adaptive Materialbereitstellung – ein neuartiges Konzept für die Materialbereitstellungsplanung in veränderungsfähigen Produktionssystemen	161
Mathias Knop, Nina Vojdani	
Lehrstuhl Produktionsorganisation und Logistik Fakultät für Maschinenbau und Schiffstechnik Universität Rostock	

OSTERBEITRÄGE	169
hemengruppe: Konstruktion und maschinenbauliche Gestaltung	169
Einfluss der Mensch-Maschine-Interaktion auf das Maschinendesign in der Social Networked Industry	169
Dominik Borst, Christopher Reining, Michael ten Hompel	
Lehrstuhl für Förder- und Lagerwesen Fakultät Maschinenbau Technische Universität Dortmund	
Ebener Seilroboter mit HM-HT-Faserseilen als Regalbediengerät in Kommissionierlagern	177
Christoph Müller ¹ , Markus Helbig ¹ , Markus Golder ¹ , Wolf Sattler ²	
¹ Professur Förder- und Materialflusstechnik Fakultät für Maschinenbau Institut für Fördertechnik und Kunststoffe Technische Universität Chemnitz	
² Altratec Automation GmbH	
Entwicklung eines Baukastensystems für universelles Greifen mit flexiblen Aktoren	183
Stephan Ulrich, Christoph Buhrdorf, Christopher Klitsch, Rainer Bruns	
Lehrstuhl für Maschinenelemente und Technische Logistik (MTL) Fakultät für Maschinenbau Helmut-Schmidt-Universität Universität der Bundeswehr, Hamburg	
Modellierung und Untersuchung eines segmentierten Fachwerksystems für Brückenkranträger	189
Jan Oellerich, Steffen Bolender, Kai Furmans	
Institut für Fördertechnik und Logistiksysteme (IFL) Karlsruher Institut für Technologie (KIT)	
nemengruppe: Steuerungstechnik und IT-Systeme	197
Optische Energieversorgung für einen drahtlosen Sensorknoten	197
Christoph von der Ahe, Ludger Overmeyer	
Institut für Transport- und Automatisierungstechnik Leibniz Universität Hannover	
A Neural Network-Based Algorithm with Genetic Training for a Combined Job and Energy Management for AGVs	203
Paolo Pagani, Dominik Colling, Kai Furmans	
Institute for Material Handling and Logistics (IFL) Karlsruhe Institute of Technology	
Simulation model for the verification of a safety-related control system in a hoist application	213
Tommi Kivelä, Steffen Bolender, Markus Golder, Kai Furmans	
Institut für Fördertechnik und Logistiksysteme (IFL) Karlsruher Institut für Technologie (KIT)	

Autonomes Greifen mit individuell zusammengestellten Greifern des Greifer-Baukastens	223
Ilja Dick, Stephan Ulrich, Rainer Bruns	
Lehrstuhl für Maschinenelemente und Technische Logistik (MTL) Fakultät für Maschinenbau Helmut-Schmidt-Universität Universität der Bundeswehr, Hamburg	
emengruppe: Planung, Analyse und Simulation logistischer Systeme	229
Dezentrale assistierte Planung: Integrierte Layout- und Systemplanung von Intralogistiksystemen auf Grundlage einer agentenbasierten Software	229
Ruben Noortwyck ¹ , Timo Müller ² , Karl-Heinz Wehking ¹ , Michael Weyrich ²	
¹ Institut für Fördertechnik und Logistik (IFT) Fakultät für Konstruktions-, Produktions- und Fahrzeugtechnik Universität Stuttgart	
² Institut für Automatisierungstechnik und Softwaresysteme (IAS) Fakultät für Informatik, Elektrotechnik und Informationstechnik Universität Stuttgart	
Ansätze zur Berücksichtigung der zeit- und ortsabhängigen Eigenschaften von Festkörperbrücken in DEM-Simulationen	241
Alexander Haber, Georg Kartnig	
Institut für Konstruktionswissenschaften und Technische Logistik Forschungsbereich: Konstruktionslehre und Fördertechnik Technische Univerität Wien	
Modellierung und Analyse von Bedarfsschwankungen in Routenzugsystemen zur Versorgung von getakteten Variantenproduktionen	247
Christian Lieb, Fabian Hormes, Willibald A. Günthner, Johannes Fottner	
Lehrstuhl für Fördertechnik Materialfluss Logistik Fakultät für Maschinenwesen Technische Universität München	
Numerische Simulation eines Schubelementeförderers	263
Christian Richter ¹ , Matthias Pusch ¹ , Andre Katterfeld ¹ , Rolf Kamps ²	
¹ Lehrstuhl für Förder- und Materialflusstechnik Fakultät Maschinenbau, Institut für Logistik und Materialflusstechnik Otto-von-Guericke-Universität Magdeburg	
² Bühler AG CH-9240 Uzwil, Schweiz	
System zur reproduzierbaren, automatischen und sicheren Stapelung von Gitterboxen mit einem Brückenkran - KrasS	273
Steffen Bolender, Jan Oellerich, Meike Braun, Kai Furmans	
Institut für Fördertechnik und Logistiksysteme (IFL)	

Themengruppe: Management, Organisation und Betrieb

279

Spielerisch zum Trainingserfolg: Evaluationsstudie eines PC-basierten Serious Games für die Verpackungslogistik bei DB Schenker

279

Veronika Kretschmer¹, Michael Schmidt¹, Christian Schwede¹, Sabrina Schäfer², Gerald Müller²

¹Fraunhofer-Institut für Materialfluss und Logistik IML, Dortmund, Germany

²Schenker Deutschland AG, Logistics Product and Process Management, Frankfurt am Main, Germany

Kombination von Eigenspannungen und betrieblichen Spannungen in einem Kranlaufrad

Combination of residual stresses and operational stresses in a crane wheel

Georg Havlicek Georg Kartnig

Institut für Konstruktionswissenschaften und Technische Logistik Forschungsbereich: Konstruktionslehre und Fördertechnik (KLFT)
Technische Universität Wien

Georg Klapper

Leiter Entwicklung Maschinenbau Künz GmbH

an Portal- und Brückenkränen treten regelmäßig ähnliche Schäden an Radkränzen auf. Für die Festigkeitsberechnung nach Norm ist alleine die Betriebslast ausschlaggebend. Untersuchungen zeigen jedoch, dass Kranräder aus dem Fertigungsprozess bereits mit hohen Eigenspannungen vorbelastet sind. Die Vorliegende Arbeit kombiniert diesen Eigenspannungszustand analytisch und mittels FEM mit den Betriebslasten. Der dadurch errechnete Gesamtspannungszustand gibt Hinweise auf die Ursache der auftretenden Schadensmuster. Die errechneten Spannungen zeigen auch, dass dem Eigenspannungszustand des Rades in der Kranraddimensionierung auf jeden Fall Beachtung geschenkt werden sollte.

[Kranlaufrad, Eigenspannungen, Kontaktspannungen, Finite-Elemente-Methode, EN 13001-3-3]

Let we with crane wheels of gantry cranes and overhead cranes complying to current EN standards, similar damages to wheel rims occur regularly. For design and stress analysis only the operating load is considered in the standards. Studies show, however, that crane wheels are already subject to high residual stresses from the production process. The present work combines this residual stress state analytically and by means of FEM with the operating loads. The calculated total stress state gives indications of the cause of the occurring damage patterns. The calculated stresses also show that attention should definitely be paid to the residual stress state in the crane wheel design process.

[crane wheel, residual stress, contact stress, finite element method, EN 13001-3-3]

1 EINLEITUNG

Die Laufräder eines Portal- oder Brückenkranes sind hochbelastete Bauteile. Radlasten von 25 t sind keine Seltenheit, oft bei einem Betrieb rund um die Uhr. Der Ausfall eines Kranes bedeutet für den Betreiber hohe Kosten, daher muss Laufradschäden unbedingt Beachtung geschenkt werden. Eine kleine Schädigung am Radkranz kann schnell zu einem Versagen des Rades und somit zu Stillstandszeiten des Kranes führen.

Beim Kranhersteller Künz GmbH stellt sich aufgrund eines wiederholt auftretenden Schadensbildes die Frage, ob die derzeitige Normung für die Kranraddimensionierung ausreicht, um dauerhaft betriebsfeste Laufräder zu erhalten.

Im Rahmen einer umfangreichen Forschungskooperation mit der Technischen Universität Wien, dem Excellence Center of Tribology (AC2T Research GmbH) und der voestalpine Stahl GmbH soll neben dem Laufverhalten von Kranrädern auch eine detaillierte Betrachtung des Spannungszustands im Kranrad erfolgen. Die Dimensionierung von Kranrädern ist in der aktuellen Kranbaunorm EN 13001-3-3 [1] festgelegt. Es stellt sich nun die Frage, ob die Kriterien der Norm für eine korrekte Auslegung ausreichen.

2 SCHADENSBILD

Die immer wieder auftretenden Schädigungen an den Radkränzen stellen sich in muschelförmigen Ausbrüchen an der Lauffläche dar. Die ringförmigen Bruchlinien um ein Zentrum deuten auf eine punktuelle plastische Deformation bzw. Ermüdung im Inneren des Radkranzes hin (siehe Abbildung 1). Die Schädigungen treten nur an einem

kleinen Teil der verbauten Kranräder auf (im kleinen Einstelligen Prozentbereich), das Schadensbild ist aber immer sehr ähnlich und deutet auf ein systematisches Problem hin.

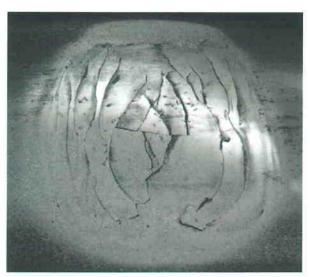


Abbildung 1. Ausbruch in der Lauffläche eines Kranrades

3 AUFBAU DER KRANRÄDER

Die bei der Künz GmbH eingesetzten Laufräder bestehen aus einem Radkranz, einer Radscheibe sowie einer Laufradwelle (vgl. Abbildung 2). Die Bauteile werden mittels zweier Pressverbände verbunden. Die Grundabmessungen des Radkranzes und das Übermaß zwischen Kranz und Radscheibe entsprechen der Norm DIN 15083 [2]. Die Lauffläche des Rades wird nach Angaben der EN 13001-3-3 [1] flammgehärtet.

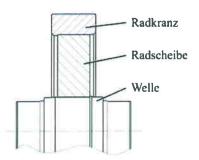
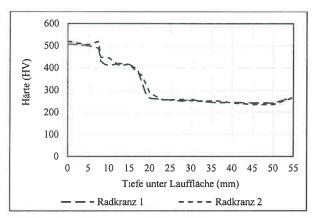



Abbildung 2. Aufbau eines Kranrades

Übliche Werkstoffe für Radkränze bei der Fa. Künz sind 42CrMo4 und 34CrNiMo6. Radscheiben und Wellen werden aufgrund geringerer Anforderungen an die Festigkeit aus Baustählen (\$355 und \$375) gefertigt. Die hier vorliegenden Untersuchungen wurden an Kranrädern aus 42CrMo4 mit 630 mm Durchmesser durchgeführt. Als Festigkeitsanforderung wurde für das Flammhärten eine Vorgabe von 48+2 HRC an der Oberfläche definiert mit einer Einhärtetiefe von 6+3 mm. Weiters ist eine Übergangshärte von 400 HV gefordert. Die realen Härtewerte

wurden an zwei Radkränzen (Radkranz 1, Radkranz 2) geprüft. Die folgende Abbildung 3 zeigt die Härteverläufe in der Mitte der Lauffläche gemessen, von der Oberfläche ausgehend ins Innere des Rades. Wie man gut erkennen kann, werden die Vorgaben an die Härtewerte erreicht. Der Randbereich ist bis auf eine Tiefe von 7,5 mm auf 490 bis 520 HV (entspricht rund 48,5 bis 50,5 HRC) gehärtet. Dahinter beginnt eine ausgeprägte Übergangsschicht mit rund 420 HV die sich bis auf eine Tiefe von gut 17 mm erstreckt. Die gesamte Radkranzdicke beträgt 55 mm.

Gemessener Härteverläufe unter der Lauffläche Abbildung 3.

DIMENSIONIERUNG NACH DIN 13001-3-3

Die aktuell gültige Norm für die Kranraddimensionierung deckt drei Bereiche ab. Sie beinhaltet einen Richtwert für die notwendige Einhärtetiefe sowie die Kontrollmöglichkeit einer korrekten Dimensionierung für statische und dynamische Belastungen. Der Nachweis der Ermüdungsfestigkeit bei dynamischer Belastung wird in dieser Arbeit nicht näher behandelt, da keine Vergleichswerte aus anderen Berechnungsmethoden (analytische Ansätze oder FEM) oder Versuchen vorliegen.

4.1 VORGABE FÜR DIE EINHÄRTETIEFE

Nach EN 13001-3-3:2014 Seite 9 gilt für den Härteverlauf unter der Lauffläche:

"Es muss sichergestellt werden, dass die erreichte Härte sich tiefer im Material ausbreitet als die maximale Scherbeanspruchung, vorzugsweise doppelt so tief."

Für die Tiefe der maximalen Scherbeanspruchung (zml, zmp) sind für Linien- und Punktkontakt folgende Berechnungsformeln angegeben:

Linienkontakt:

$$z_{ml} = 0.5 \cdot \sqrt{F_{Sd0,s} \cdot \frac{\pi \cdot D_w \cdot (1 - v^2)}{b \cdot E_m}}$$
(1)