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Abstract: We consider a control constrained nonlinear optimal control problem under
perturbations represented by changes of a vector parameter. Our main assumptions involve
smoothness of the functions appearing in the integral functional and the state equations, an
integral coercivity condition, and a condition that the reference optimal control is an isolated
solution of the variational inequality for the control appearing in the maximum principle. We
also consider a corresponding discrete-time optimal problem obtained from the continuous-
time one by applying the Euler finite-difference scheme. Based on an enhanced version of
Robinson’s implicit function theorem, we establish that there exists a natural number N
such that if the number N of the grid points is greater than N, then the solution mapping of
the discrete-time problem has a Lipschitz continuous single-valued localization with respect
to the parameter whose Lipschitz constant and the sizes of the neighborhoods depend only
on the ranges of values of the variables, the Lipschitz constants of the second derivatives of
the functions involved, and the coercivity constant. As an application, we show that the
Newton/SQP method converges uniformly with respect to the step-size of the discretization
and small changes of the parameter. Numerical experiments with a satellite optimal control
problem illustrate the results.
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1 Introduction

In this paper, we consider the following continuous-time optimal control problem depending
on a parameter p:

(1) Minimize g ) {J(p, T, u) = /o o(p, z(t),u(t))dt
subject to
(2) t(t) = g(p, z(t),u(t)), wu()eU forae. tel0,T], z(0)=0,

with controls u € L, the space of measurable and essentially bounded functions over [0, T,
whose values u(t) are constrained to belong to a closed and convex set U C R™ for almost
every (a.e.) t € [0,7]. The state x(t) € R™ and each state trajectory z is a function in
VVO1 > the space of Lipschitz continuous functions z over [0, 7] such that z(0) = 0. In the
sequel we also use the usual Lebesque space L? of square integrable functions over [0, 7]
and the space W2 of functions = over [0, T] such that both z and its time-derivative i are
in L?. The parameter p € R?% p is the reference value of p. The analysis presented in the
paper also covers the case when, in addition to the integral functional, the cost includes a
function dependent on the terminal state, say ®(z(7)). As well known, on the assumption
that @ is continuously differentiable, that case can be easily reduced to problem (1)-(2).
The obtained results can be automatically extended to the case when the initial state is a
function of the parameter, z(0) = a(p), where a : R? — R" is Lipschitz continuous around
p; indeed, in that case a simple change of variables gives us an equivalent problem with zero
initial state.
Our first assumption regarding problem (1)—(2) is the following:

— SMOOTHNESS: for each p € IB(p) the functions ¢(p,-,-) and g(p,-,-) are twice differ-
entiable in R™ x R™ and their second derivatives are locally Lipschitz continuous. The first
and second derivatives of ¢ and g with respect to (x,u) are Lipschitz continuous with respect
to p € IB(p) uniformly in (z,u) belonging to bounded sets.

We denote by B,(z) the closed ball centered at x with radius a; then IB;(x) is denoted
simply by B(x) and B(0) is denoted by IB. We use balls with radius one in order to avoid
technicalities when dealing with superficial constants.

Let (x*,u*) be a locally optimal solution of problem (1)—(2) for p = p. The Pontryagin
maximum principle applied to (1)—(2) for p = p says that there exists a solution ¢* € W1
of the adjoint equation

(3) G(t) = =V.H(p,z*(t),u"(t),q(t)) forae tel0,T], ¢(T)=0,
where
(4) H(p,x,u,q) = ¢(p,z,u) + ¢  g(p, , u)

is the associated Hamiltonian. Furthermore,

(5) Vo H(p,x*(t),u"(t),q"(t)) + Ny(u*(t)) 20 for a.e. t €[0,T],
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where the normal cone mapping Ny to the set U is defined as

eR” | yT(w—v) <0 forall weU} if vel,
(6) v No(v) :{ éy o ) } otherwise.

Define the matrices

);

A(t) = Vag'(t),  B(t) = Vug"(t
t) =V H*(t),

(7) Q(t) = Vo H*(t), S(t) = Vo H*(t), R(

where ¢*(t) = g(p, x*(t),u*(t)) and H*(t) = H(p, z*(t),u*(t),¢*(t)). Our next assumption is
— COERCIVITY: there exists a constant o > 0 such that

(8) /0 (y(0) " Q)y(t) +w(t) R(t)w(t) + 2y(t)" S(t)w(t))dt > oz/o Jw(t)[*dt

for all y € W12 y(0) = 0,w € L? such that o(t) = A(t)y(t) + B(t)w(t), y(0) = 0, and
w(t) e U —U for a.e. t €[0,T].

Here and further U — U = {w | w = v — v for some v,v" € U} and |- | is the Euclidean
norm.

Clearly, the function u* could be redefined on a subset of [0, 7] of measure zero without
changing the optimality. As shown in [5, Lemma 4.1], see also the comment before |2,
Theorem 5|, under smoothness and coercivity, without loss of generality the optimal control
u* can be regarded as a function acting from [0,7] to U which satisfies the variational
inequality (5) for all ¢ € [0, T; furthermore, the pointwise coercivity condition

9) w' R(t)yw > alw]*  forall welU —-U

holds for all ¢t € [0,7]. In what follows we identify u* with a representative with these
properties.

~ISOLATEDNESS: The function u* is an isolated solution of the inclusion
(10) VuH(p,x*(t),u,q"(t)) + Ny(u) 20  forall t €[0,T],
meaning that there exists a (relatively) open set O C [0, T] x R™ such that

{(t,u) € [0,T7] x R™ | (10) holds } N O = gphu®.

The coercivity condition is a rather standard assumption in optimal control; the form of
it we use here goes back to the work of Hager [8]. In contrast, the isolatedness condition
was introduced only recently in [1, Definition 3.6] in the context of the so-called differential
variational inequalities with the aim to prevent different solution curves from crossing each
other. Specifically, for the variational inequality (10), the isolatedness condition holds when
the Hamiltonian has a unique minimizer for each ¢t € [0,7]. Also, from [1, Theorem 3.7] it
follows that the isolatedness condition implies Lipschitz continuity of the optimal control u*,
provided that the variational inequality (10) is strongly regular at u*(¢) for 0 uniformly in

€ [0,T]. Strong regularity is a property of mappings introduced by Robinson in [10]; we
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utilize it in Section 2 of the present paper. This line of research was further elaborated in the
even more recent paper [5] devoted to the optimal control problem (1)—(2). Specifically, it
was proved in [5, Theorem 4.4] that under the above smoothness, coercivity and isolatedness
assumptions the representative u* of the optimal control for which (5) and (9) hold for all
t € [0,7T) is a Lipschitz continuous function with respect to ¢ € [0,7]. This clearly implies
that that there exists a closed set A C R and a positive constant ¢ such that (x*(t), u*(t))
lies in A and the distance from (x*(¢), u*(t)) to the boundary of A is at least ¢ for almost all
t € [0,7]. This is the standing assumption for [2, Theorem 5] which we use in Theorem 1.1
below.

For an arbitrary value p of the parameter, the optimality system for the perturbed prob-
lem (1)-(2) becomes

#(t) = g(p,x(t),ult)), x=0,
(11) q(t) = =VH(p,x(t), u(t),q(t)), ¢T)=
0 € VuH(p,a(t),u)qt) + NU(U(t)
all for a.e. t € [0,7]. Denote by S the associated solution mapping defined as p — the set
of solutions (z(p),u(p),q(p)) of (11) considered as elements of the function space Wy x
L> x W, The theorem below easily follows from [2, Theorem 5]:

Theorem 1.1. Consider the optimal control problem (1)—(2) with a locally optimal solution
(x*,u*) for p and a solution q* of the associated adjoint equation (3). Suppose that the
smoothness, coercivity and isolatedness conditions stated above are satisfied. Then there
exist positive reals @ and b such that the mapping

(12) By(p) > p+— S(p) N Ba(x™,u*, q")

is a Lipschitz continuous function. Furthermore, for each p € Bg(p) if (z(p),u(p),q(p)) €
S(p) N Ba(z*,u*, ¢*) the pair (x(p),u(p)) is a strict local minimizer for problem (1)—(2) for
p and q(p) is an associated adjoint variable.

Recall that the mapping (12) is said to be a graphical localization of S at p for (z*, u*, ¢*)
with constants b and @. The aim of this paper is to extend Theorem 1.1 to a discrete
approximation of problem (1)—(2). Choose a natural N and let h = T/N, t;, = kh, k =
0,...,N. The Euler finite-difference scheme with step-size h applied to problem (1)—(2)
results in the following discrete-time optimal control problem:

(13) Minimize .y | JIn(p, 2, u) Z ho(p, z;, u;)
subject to
(14) Tir1 :xi—l-hg(p,xi,ui), u; € U fOTiZO,l,...,N— 1, Zo :0,

where z; and w; correspond to the values of the state and control at the grid points ¢;,
1 =20,..., N. Our main result, presented in Theorem 1.2 below, shows that for all sufficiently
large N the solution mapping of the optimality system associated with problem (13)—(14)
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has a Lipschitz localization with respect to the parameter p which is uniform in the number
N of the discretization steps (or the step size h); that is, the sizes of the neighborhoods and
the Lipschitz constant involved do not depend on N.

We give next a necessary optimality condition for problem (13)—(14), by employing the
Lagrangian

N-1
(15) £(p7 T, u, Q) = JN(pv T, u) + Z qiT(_xiJrl +x; + hg(p, T, ul)),

i=0
where ¢;, © = 0,--- , N — 1, are the Lagrange multipliers associated with the discrete-time

dynamics, commonly called costates. The Lagrange multiplier rule for problem (13)—(14)
is well known, see e.g. [11, Corollary 6.15], from which, adapted to the current setting, we
obtain the following system involving the state equation, the adjoint equation determined
by a backward recursion, and a variational inequality for the control:

Tiy1 = %+ hg(p, i, u;), 0=0,
(16) G-1 = ¢+hViH(p,xiui,q), qv-1=0,
0 e VuH(p,xi,wi,q¢;) + Nu(w),

where i = 0,1,..., N—1 in the first and in the last relations, : = 1,2,..., N —1 in the second
equation, and H is the Hamiltonian defined in (4). Note that in the variational inequality
we divide by h; this does not change the inclusion since Ny is a cone. Also note that the
optimality system (16) can be also obtained by the Euler discretization of the continuous-
time necessary optimality condition, with a minor adjustment in the indices. We consider
system (16) for sequences = = (z1,...,2y), u = (ug,...,uy_1) and ¢ = (qo, .- ., qn_1), where
the initial state o = 0 is considered as a datum and the final condition qy_; = 0 for the
costate is considered as an equation. Let v = (x,u, q), let C = (R")N x U x (R™)" where U
is the product of N copies of the set U, and define

V. L(p,z,u,q)
E(p,’l}) = vl"ﬁ(pax7u7q>
VuL(p,,u,q)

Then the optimality system (16) can be conveniently written as a variational inequality of
the form

(17) E(p,v) + Ne(v) 2 0.

Note that the function E depends not only on p and v but also on the number N of grid
points. In Section 2 and later in the paper we use this compact description of (16) to simplify
the notation.

In Section 3 we utilize a basic result in [2, Theorem 6], which gives conditions under
which there exist a natural number Ny and a constant ¢ > 0 such that for all N > N; there
exists a local minimizer (7, @) of problem (13)—(14) for p = p and an associated costate
g" such that

(18) max |u) —u*(t;)| + max |7Y — 2*(t;)] + max |

*
_ A < )
0<i<N-1 1<i<N 0<i<N—1 7 q (tz)| — ch



We should note that the estimate (18) is obtained in [2] under conditions that look
a bit stronger but are actually different from those in Theorem 1.2. First, it is assumed
there that the optimal control u* is of bounded variation while here we assume isolatedness
for the optimal control. Also, [2] assumes an integral coercivity condition and a pointwise
coercivity condition for the discretized problem. Furthermore, it is shown in [2, Lemma 11]
that, under the additional assumption that the matrices defined in (7) are continuous in
[0, 77, the integral discrete coercivity condition used in [2] follows from the continuous one
(8), while here we prove this implication without any a priory assumption of continuity of the
matrices. The isolatedness condition for u*, however, does not follow from coercivity; this is
demonstrated by the following example in [2, Remark 9]: Take p(p,z,u) = (u* —1)%,g =0
and U = R; then for each measurable set M C [0, 7], the function u defined as u(t) = 1 for
t € M and u(t) = —1 for t ¢ M is a discontinuous optimal control which does not satisfy
the isolatedness condition.

Denote vV := (zV, 4", g"). Our main result follows.

Theorem 1.2. Consider the parameterized optimal control problem (1)—(2) with a reference
solution (z*,u*) for p and suppose that the smoothness, coercivity and isolatedness conditions
are satisfied. For a natural number N, consider also the discrete approximation (13)—(14)
and let SN be the solution mapping of the associated optimality system (16). Then there
exist a natural number N and positive reals a, b and X such that for all N > N the graphical
localization

By(p) > p = S (p) N Ba(2")

of the solution mapping S~ is a Lipschitz continuous function with a Lipschitz constant \.
Furthermore, for each p € By(p) if (2N (p),u™N (p), ¢~ (p)) € SN (p) N B.(?Y), then the pair
(@™ (p),uN (p)) is a strict local minimizer for problem (13)—(14) for p.

A proof of this result is given on Section 3. It is based on an enhanced version of
Robinson’s implicit function theorem presented in Section 2.

As an application, in Section 4 we show quadratic convergence of the Newton/SQP
method, applied to the optimality system (16), which is uniform with respect to both the
number N of discretization points, for large N, and small changes of the parameter p around
p. Specifically, we prove that there exist a natural number N, and neighborhoods P of p and
O of the reference solution-multiplier triple (z*, u*,¢*) such that for every sufficiently large
N > Ny, every p € P, and every € > 0 there exists a constant k., for which an estimate is
given, such that the Newton/SQP method, applied to the discretized variational system with
step-size h = T'/N and starting from a discrete-time representation of the solution-multiplier
triple (2%, u°, ¢°) which is in O, achieves accuracy ¢, measured by the size of the residual of
the optimality system, after not more than k. iterations.

In Section 5 we illustrate the result obtained in Section 4 by numerical experiments with
an optimal control problem for spacecraft attitude.

This work is largely motivated by the Model Predictive Control (MPC) algorithm, in
which discrete approximations are intrinsically involved when handling continuous-time op-
timal control problems. Roughly, at the first stage the MPC algorithm solves a discretized
problem and then applies the optimal control computed to the continuous-time system on
the first time-step, obtaining at the end of the first step a new initial state for the second



stage. Repeating this procedure for each stage leads to an optimal feedback law which, as it
turns out, may have a number of advantages that have been extensively explored in the last
several decades; see e.g. the book [7] as a general reference. Thus, the MPC algorithm re-
peatedly solves discretized optimal control problems with varying parameters. If one applies
the Newton/SQP method at each stage of the MPC, then it is beneficial if the computational
performance does not vary too much from one time-step to another. As well known, the
performance of the Newton/SQP method depends on the regularity properties of the asso-
ciate solution mapping such as Lipschitz dependence on parameters. Hence, it is important
to know how the regularity properties of the solution are affected by the discretization; this
latter issue is what the current paper is about. We will not consider here applications of the
results of this paper to MPC algorithm; we leave this for further research.

We use standard notation and terminology, basically from the book [4]. Specifically, we
use small letters for vectors and capital letter for matrices. The transposition is indicated by
T and then the scalar product in R" is #”y. The derivative of a function f with respect to
at T is denoted by V,f(Z). A mapping F acting from, say, a Banach space X to a Banach
space Y, allowed to be set-valued in general as indicated by the notation F' : X = Y, has
graph gph F' = { (z,y) € X x Y |y € F(z)} and domain dom F = {z € X | F(z) # 0}. It
is single-valued, indicated by F': X — Y if F(x) consists of only one y for each x € dom F’;
then y € F(z) is written as F'(x) = y. The inverse of a mapping F': X = Y is the mapping
F~':Y = X defined as F~!(y) = {z € X |y € F(z)}, which of course may be set-valued
even if F' is single-valued.

In the paper we use a number of constants, such as the integers N and N;,i = 0, ..., 4,
as well as various reals. By tracing the proofs one may identify relations among some of
them; we prefer not to do this here. For “long” vectors z € (R®)Y representing discrete
approximations of functions on [0, 7] we utilize the 2-norm

N—1 1/2
el = (zw) |
1=0

[2]lo = max |z].
0<i<N-—1

and the co-norm

This corresponds to considering ||z|| as the L? norm of a piecewise constant function t — z(t)
with values in R® such that z(t) = z; for all t € [t;,¢;41),7=0,1,..., N—1. Correspondingly,
|| 2|loo is the L norm of a piecewise constant function z(-).

Recall that a mapping F' : X = Y is said to be strongly reqular at x for g if there
exist positive constants a and b such that the graphical localization of the inverse By(y) >
y — F~Y(y) N B,(z) is a Lipschitz continuous function. This concept was introduced by
S. M. Robinson in his seminal paper [10]; for a broad coverage of the major developments
around this property as well as other related properties of mappings in variational analysis
and optimization, see [4]. The next section is devoted to a basic result regarding strong
regularity: the Robinson implicit function theorem.



2 The Robinson implicit function theorem revisited

In this section we present an enhanced version of the powerful Robinson’s implicit function
theorem [10] to handle the optimality system (16) written as the variational inequality (17).
Recall that p is a fixed reference value of the parameter p and vV = (zV, 4", ¢") € R!, where
l=(n+m+mn)-N,is asolution of (17) for p. As it will be shown in Section 3 using [2,
Theorem 6], a solution 7V exists and the estimation (18) holds.

Denote by 2*V the vector (z*(t;),--- ,2*(ty)) of the values of the optimal state trajectory
x* for (1)-(2) at the grid points, and also u*™ = (u*(to), -+ ,u*(tx_1)) for the control and
N = (¢*(to), - ,q*(tn_1)) for the costate. Let v*V = (z*N,u*N ¢*N). Because of the

uniform boundedness of v*V, the assumed differentiability of the functions involved in the
problem and the Lipschitz continuity of the derivatives implies that the supremum over IB(p)
of the Lipschitz constant of V2L(p,-) on B(v*Y) is bounded by a constant independent of
N. Further, if vV = (zV, @, V) is the optimal state—control-costate vector for the discrete-
time problem (13)—(14), by using the estimate (18), we obtain that the supremum over B(p)
of the Lipschitz constant of V2L(p,-) but now taken on B(v") is bounded by the same
constant for all sufficiently large N. We denote that constant by L. In this section only,
when we write || - || we mean the co-norm.
Introduce the parameterized linearization of (17) as follows:

(19) Dv+ N¢g(v) 2w,

where w € R is again a parameter and D := V,E(p, v"). We employ the following assump-

tion:

(20) For each w € R! there is a unique solution v(w) of (19) and the function

w > v(w) is Lipschitz continuous on R! with a Lipschitz constant (.
In other words, the mapping
w i v(w) = (D + No) H(w)

is a Lipschitz continuous function over R! with a Lipschitz constant ¢.
Choose a € (0,1/2] and b € (0, 1] such that

(21) (La+b) <1 and (Lb<a(l—/{L(a+0D)).
Let v,v" € B,(v") and p € IBy(p). Utilizing the mean value theorem, we obtain

IE(p,v) = E(p,v") = D(v = )| < [[VoE(p, ) = VoE(p,0")|[lv — /|
+VoE(p,o") = D[lv — o'
< Lo —olfflv = 'l + Lllp — pll[lo = /|

for some ¥ € co{v, v'} C B,(v"). Then

(22) 1E(p,v) = E(p,v") = D(v = ')[| < L(a + b) v — /|-



Fix p € IBy(p) and consider the mapping
B,(®") 3 v &,(v) := (D + Ng) ' (=E(p,v) + Dv).

Note that v(p) is a solution of (17) in B,(v") for p if and only if v(p) = ®,(v(p)). Using
the mean value theorem and second inequality in (21), we have

[®,(0") = ™| = [[(D+ No) ™ (=E(p,o") + Do) — (D + Ne) ™ (—=E(p, o") + Do")|
< B(p, o) = E(p,v")|| < (L|lp — p|| < Lb < a(1 — (L(a +b)).

Furthermore, for every v,v’ € B,(v"), using (22), we have

1@p(v) = @ ()| < [I(D+ Ne)™ (= E(p,v) + Dv) — (D + Ne) ™ (= E(p, v')) + Dv'))|
< (| E(p,v) — E(p,v') = D(v = )| < {L{a+ b)[jv —2/]|.

Hence, from the first inequality in (21), the mapping ®, is a contraction and then, by the
basic contraction mapping principle, see e.g. [4, Theorem 1A.3|, there exists a unique v in
B,(v") which satisfies v = ®,(v); that is, v = v(p) is the unique solution of (17) in B, (")
for p.

Let p,p’ € By(p). From (22) and again using the mean value theorem, we obtain

lo(p) —o(@)ll = [[(D+ Ne) ' (—E(p,v(p)) + Du(p))
—(D+ Neo) ' (=E@, v(p")) + Du(p")||
< U[|E(p,v(p)) — E(p,v(p') — D(v(p) — v(@))|l
+E(p,v(p) — E@, v(p)|l
< (L(a+Db)|lv(p) —v(p)| + £L]p — |-

This yields that p — wv(p) is Lipschitz continuous on By(p) with a Lipschitz constant any
number A such that A > ¢L/(1 — ¢L(a + b)). We summarize the result obtained in the
following version of Robinson’s theorem:

Theorem 2.1. Denote by SN the solution mapping of the variational inequality (17); that
i,
p S¥(p) = {v | E(p,v) + Ne(v) > 0}

Let o™ € SN(p) and assume that condition (20) is satisfied. Then there exist positive numbers
a, b and \ which depend on ¢ and L only such that the graphical localization

By(p) > p — S™(p) N Ba (")
18 a Lipschitz continuous function with Lipschitz constant .

Let us outline the differences between Theorem 2.1 and the original Robinson’s theorem
stated in [10], for a more recent version of it see [4, Theorem 2B.1]. In the original version,
a condition weaker than (20) is used; namely, it is assumed that the mapping (D + N¢)™*
has a Lipschitz localization at t := —FE(p,v™) + V,E(p, o™ )oY for 0. Here we utilize global
Lipschitz continuity of the inverse of the linearization, which for the optimal control problem
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considered follows from the coercivity condition. Of course, we could use instead a weaker
local version of this assumption; in the context of optimal control, however, this would require
technically involved assumptions that are difficult to check. Still, such an extension of the
present paper is potentially feasible and we put it aside for the future. Also note that, in the
finite-dimensional setting of (17) we can still use a global invertibility condition if the set C
is polyhedral. In that case we may use the argument in [4, Reduction Lemma 2E.4] reducing
the considerations to the critical cone to C associated with the solution. This however again
would leads to complications in translating the argument to the infinite-dimensional setting
of the optimal control problem considered. Most important in the current situation is the
fact that in Theorem 2.1 we identify the exact dependence of the sizes of the neighborhoods
of the graphical localization and its Lipschitz constant on the data of the problem — as it
turns out everything depends on a Lipschitz constant and on a coercivity constant. This is
an important enhancement which is not present in the original Robinson’s theorem.

3 Proof of Theorem 1.2

In the sequel we denote by ¢ a generic positive constant which does not depend on the
number N of grid points and may have different values in different relations.

A first step in the proof if to utilize a result from [2] regarding the coercivity condition.
Let A;, B;, Q;, S;, R; denote the matrices in (7) evaluated at ¢t = ¢;. Define the quadratic
form

=

(23) By, w) = (y?Qi% + 2y;‘TSiwi + wiTRiwi)'

i

Il
=)

Thanks to the continuity of u* we may apply [2, Lemma 11], which claims that the coercivity
condition (8) implies the existence of a natural number N; and a positive constant oy < «
such that for all N > N; the following discrete-time analogue of the coercivity condition
holds:

N-1
(24) Bly.w) > a1 Y |w]?
i=0

for all (y,w) from the set
C={(y,w) | yir1 = yi + hAy; + hBaw;, w; € U —U, i =0,1,...,N — 1, yo = 0}.
According to (9),
(25) w'Raw > alw|*  forall weU—U.

We should mention here that in [2, Lemma 11] condition (25) was assumed, along with (24).
Now we know that, thanks to the isolatedness assumption, (25) follows from the coercivity
assumption (8).
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Define the matrices A; = V.3, B; = V.3, Qi = Voo H, S; = Vo Y, Ry = Vo, HY
where g¥ = g(p,zY,ud) and HY = H(p,z)N,aY,q"), i =0,1,...,N — 2. From (18), we
obtain

(26) max |a)| + max |ZV]|+ max |¢] <c,
0<i<N—1 1<i<N 0<i<N—1
as well as
7. 7‘ 7. 7. 7. <
(27) s (A4 1B+ 1@ + 15+ Rd) < e

where in (27) we use the operator norms of the matrices.

According to Theorem 2.1, we need to consider a parameterized linearization of (16) at
(p,zV,uN,¢"). By differentiating the functions in (16) and then, for convenience, shifting
by (zV,u™,g"), that is, replacing x — zV by x, u — @"¥ by u and ¢ — " by ¢, we obtain the
following system consisting of two linear difference equations running in opposite directions,
and a linear variational inequality:

Tit1 = T+ h{_lz‘xi + hB;iui + hri, 29 =0,
Gi1 = ¢+ hAfq+hQixi + hSiu; + hs;,
(28)
gN-1 = hS]\/;, _ _ B
0 & VUHZN+Rzuz+SlT$z—|—BZqu+ez+NU(UZ+ﬂz),

for i = 0,1,...,N — 1 in the first and the last relation, ¢ = 1,2,..., N — 1 in the second
equation, where 7;, s;, e; are vector parameters of respective dimensions whose values are in
neighborhoods of the zeros in respective spaces.

Define the matrices

(29)
- 0 .. 0 0 By 0 ... 0
_ I+hA, -1 ... 0 0 _ 0 By ... 0
A - hil . . . . b) B - . . 9
0 0 I+hAy_, -1 0 0 Bn_1
Q1 0 0 0 So 0 0 Ry 0 0
_ Do : : _ 0 S 0 _ 0 R; 0
Q — . . “ .. _ . . , S — , R — ]
0 0 ... QN,1 0 _ : B
0 0 ... 0 0 0 O Sn_1 0 O Ry_1
and the vectors
To S1 €0 VuHO
r= : , S§= S, e= : and V,H = :
N-1 SN EN-1 VuHN—l
Note that A = V,.L(p,z",a",qV), B = VaL(p, 2V, 0", q), Q = V. L(p,z",u",q"),
S =Vl £, 7V, 4N, ¢), R = V. L(p, Y, u",q"). Thus, (28) represents a linearization of



the optimality system (16) at the optimal solution-multiplier (zV, @, ") for p. In terms of

the aggregated matrices and vectors, it has the form

Az + Bu+r =0,
(30) Qr + Su+ ATq+ s =0,
VuH + STz + Ru+ BTq+ e+ Ny(u+a”) 2 0.

Clearly, the matrix A is nonsingular for any h > 0. In our further analysis we will need an
estimate of the norm of the matrix A~! regarded as an operator acting from I to lo. To do
that, we take an arbitrary z = (zo,...,2y_1) and consider the equation Ay + z = 0, which
reads as

yz+1:yz+hAzyz+hZZa ylthQ, Z:]_,,N—]_

Then

i—1 -1

yi=>_ ] (I+hAphz

§=0 k=j+1

(where by definition [[,_%(I + hAy) = I) from which, since |4;| is uniformly bounded from

(27), we obtain
i—1
’yz‘ < ZCh’|Zi’7
=0

which yields, via the Cauchy-Schwarz inequality,

(31) [yl < chy[ N3 122 =

7=0

N—-1
T Z hlzi|? < eVT| 2|2,
j=0

and hence the operator norm |A~!| from I, to I, is bounded by the constant which is
independent of N. Define the matrix

- (8 5)

Observe that (30) is the first-order optimality condition for the quadratic programming
problem

1 _ _
(33) min [é(xT u’)P < i ) + Tz + (e + VUH)TU,:|
subject to

(34) Az + Bu+1r =0, wea + U

We will now eliminate the variable x from this latter problem. Clearly, the equation in (34)
has a unique solution z = —A~!(Bu + r). Elementary transformations lead to

1 _ _ 1.
é(xT u”)P < i ) + 8Tz + (e+V,H) 'u = §uTWu + T u + o,

12



where

=

— (A'B)"QA'B— (A'B)'S—§TA B+ R,
and
(35) o= (A 'B)TQA — §TAV)r — (A1 B)Ts + e+ V, A

The remainder g is a vector independent of z and u which does not play any role in the
minimization. Thus, problem (51)—-(34) is equivalent to

1 _
(36) min §uTWu +Tu  subject to ueua’ +U.

Consider now the system (28) but with matrices A;, B;, Q;, S;, R; replaced by A;, By, Qi, Si, R;
that are the respective derivatives calculated at (p, z*(t;), u*(t;), ¢*(t;)). In the same way as
in (29) define matrices A, B, @, S, R, as well as P and W. Then, making the transformations
described in the preceding lines, the coercivity condition (24) implies that

N-1
(37) u'Wu = B(z,u) > alz lu;|* forall u;eU—U, i=0,1,...,N—1,

=0

where z is determined from the first group of equations in (28) with = 0, as in the definition
of the set C after (24).

From (18) it follows that for N sufficiently large the matrices A, B, @, S, R become arbi-
trarily close to A;, B;, Q;, S;, R;. Since the matrix W is a continuous function of the matrices
A, B, Q, S, and R, then W can be made arbitrarily close to W for N sufficiently large.
Thus, for such large N we conclude that

N-1

Tvir,, _ T T T o 2
(38) uWu—uWu—u(W—W)u2?;|ui].

As a result, we obtain a coercivity condition defined for the solution (zVV, ") of the dis-
cretized problem and the associated costate ¢"V. Namely, let the quadratic form B(y,w) be
defined as in (23) but with the matrices 4;, B;, Q;, S;, R; instead of A;, B;, Q;, Si, R;. Then,
for all N sufficiently large we have

(39) Bly,u) > 2 > fuf?

for all (y,u) such that y;,1 = y; + hAyy; + hBaug, us € U — U, i = 0,1,...,N — 1, yo = 0.
Furthermore, from (38) we obtain that (36) is a strongly convex quadratic problem. As well
known, this problem has a unique global solution for every ¢. Furthermore, the solution
of this strongly convex quadratic problem is globally Lipschitz continuous with respect to a
“tilt” perturbation, see e.g. [4, Theorem 2F.7] with a Lipschitz constant being the reciprocal
of the modulus of strong convexity.

13



For completeness, we will present next a short proof of that fact. Let v and u' denote the
solutions of (36) associated with ¢ and ¢’ respectively. The optimality of u and «’' implies

uTW(u—u) + T (u—u')>0

and, symmetrically, B
W (ol — ) + " (0 — ) > 0.

Adding these inequalities we obtain

N-1
(u=d)"Wu—u) < (¢ =) (u—u) <o =&l ) lus =1
i=0
N-1
< o=@ llooy | N D i — w2,
i=0

Combining this with (37) (note that u; —u} € @)Y + U —aY — U = U — U) and applying the
Cauchy-Schwarz inequality, as in (31), gives us

N-1 N—-1
aq 12 / 112
(10) 5 2 M= <l = o X Al

which implies

2T

T
(41) lu—u2 < ——ll¢ — ¢l
g

That is, the solution mapping ¢ — u(yp), considered as a function acting from [, to [y, is
globally Lipschitz continuous with a constant 2v/T /aq. Thus, the u part of the solution
of (51), and hence of (30), is globally Lipschitz continuous with respect to the parameter
p = (r,s,d) with a Lipschitz constant, denoted ¢, which, by (40) and the definition of ¢ in
(35), is bounded by the expression

T

651

(42) max {|(A7'B)"QA™" — STA™!|,|A7'B|,1}.

Clearly, the Lipschitz constant ¢ is bounded by the matrix norms of 4, B, Q, S as in (27),
which in turn are bounded by the Lipschitz constants of the derivatives of g and H over
the unit balls centered at the reference solution, and hence does not depend on N for all N
sufficiently large.

We will now give a sharper version of the last result. Let Ar, As, Ae be increments of
the parameters r, s, e, respectively, that is, Ar = r — r/ for r, 7’ close to the origin, etc., and
denote the corresponding changes of the solution mapping of (28) by Az, Aq, Au. From the
state equation in (28), we have

Al’i+1 = Al’l + h,A,LAQIl + hBZA'LLZ + hATZ', 1= 0, 1, e N — 1, AQZ’O = O7

14



hence, taking norms, from the discrete Gronwall lemma we get

Azl < ¢ h(|Au|+]Ar), i=1,... N

=0
Thus, by (41) and the definition of ¢ in (35), we obtain

(43) max |Azi| < c([[Arleo + [[As]loo + [|A]|oo)-

1<i<N

Analogously, by applying the discrete Gronwall lemma backward, for the change of the
costate, we get

N-1 N-1
|Agi 1] < ¢ (Z h(|Az;| + |Auy|) + Z h\Asj|> , i=1,...,N—1,

j=i j=i
which leads to the estimate

(44) odnax  |Agi] < (|| Arlloo + [[As]loo + [|Acllc)

Utilizing the definition of the normal cone mapping (6), the variational inequality for the
control in (28) gives us

By (25), since R; can be made arbitrarily close to R;, for each i = 0,..., N — 1, for all
sufficiently large N we have

w! Ryw > %|w|2 for all we U —U.
Hence, we have that
(45) |Aw;| < e(|Ax;| + |Ag| + |Ae]), i=0,...,N—1.

Combining (43), (44) and (45), we obtain that the control part u of the solution of the
linearized optimality system (28) satisfies

Jmax [Au < o[|Arflo + [|As[loo 4 [|Ae]o0)-

That is, the control part is Lipschitz continuous with respect to p = (r,s,e) as a function
acting from [, to [, with a Lipschitz constant independent of N. Finally (43) and (44) give
us Lipschitz continuity with respect to p = (r,s,e) from [l to I, of the state trajectory x
and the costate trajectory q.

We will now repeat the argument in the beginning of Section 2.1 regarding the bound on
the Lipschitz constant of V2L(p,-), obtaining that Theorem 2.1 applies to the variational
inequality (17) representing the first-order optimality condition of problem (13)—(14). As

15



a result, we conclude that the solution mapping S of the optimality system (16) has a
graphical localization with the properties claimed in the statement of Theorem 1.2.

The last step in the proof is to observe that, for the state-control pair (zV,u") obtained
from solving the optimality system (16) for p = p, the coercivity condition (39) is a sufficient
condition for strict local minimum. Moreover, for all p sufficiently close to p, this condition
remains valid, in which case the state-control pair (zV(p),u”(p)) remains a strict local
minimum of the perturbed problem. This statement can be derived from various (more
general) results scattered in the literature the closest of which seems to be the one given in
[2, Appendix 1], see also [11, Statement 13.25].

4 An application to Newton/SQP method

In this section we consider convergence properties of the Newton/SQP method applied to the
optimality system (16). As in the Introduction, we write the optimality system (16) as the
variational inequality (17), where v = (x,u, ¢) represents the tripple state—control-costate.
Recall that the Newton iteration for the variational inequality (17), as proposed originally
by Josephy [9], has the following form

(46) E(p,v") + V, E(p,v")(v* — v*) + No(v*1) 3 0.

Roughly speaking, since (17) represents an optimality system coming from the first-order
necessary optimality condition, then, in the numerical realization of the method, the linear
variational inequality (46) can be regarded as an optimality system of a quadratic program
to which a quadratic programming method can be applied. Therefore this form of the
Newton method is commonly known as the Sequential Quadratic Programming (SQP), and
this method is currently a method of choice for solving nonlinear programming problems.

Applied to the optimality system (16), the Newton/SQP iteration (46) is as follows:
having v* = (2%, u*, ¢%), the next iterate v*! = (x**1 uF*1 ¢5*1) is given by

T
where (&%, 1%, ) is a solution of the linear variational inequality

Civ1 — &+ rF—hA¥G — By, =0, & =0,

(47) Nie1 — i + "+ h(AS) Ty + hQFE + RSFy; =0, ny_1 =0,
w” + Rivi + (SF)T& + (BF) i + Nu(uf +vf) 30,

where the index 7 runs from 0 to N — 1 and

Tk :xfﬂ—If—hg(p,xf,Uf), Sk :qzkfl_q'f—i_hva(pu xf,uf,qf), wk = qu(p; Ify“fy@f)

Qf = Vo H(p, 2} uf q7), Si = Ve (p,af,uf, ), Ri = Vi H(paf,uf, qf).

From Theorem 1.2 we know that, under the smoothness, coercivity and isolatedness
conditions stated in the Introduction, there exist a natural N and positive reals a, b and
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A such that for all N > N, there is a single-valued graphical localization By(p) > p —
SN (p) N B,(vN (p)) of the solution mapping SV of (16), associated with B,(o") and IBy(p),
which is Lipschitz continuous on IB,(p) with Lipschitz constant \; here oV = (zV, @, V).
Denote this localization by vV (p) = (zV(p), @ (p), 7" (p)). It should be emphasized that
a, b and A do not depend on N for N > N. But note that the function E in (17) and
(46) depends on N. By the argument in the beginning of Section 2.1, we know that the
supremum over B(p) of the Lipschitz constants of VE(p,-) on |[v — 2"/, < 1 is bounded
by a constant L for all sufficiently large V.

Let ¢ > 0. Pick a starting point v and apply the iteration (47), until the following
stopping test is satisfied:

(48) dist(0, E(p, v*) + No(v*))< e.

where dist(z, Z) denotes the distance from a point z to a set Z. Let k. be the index of the
first iteration where the stopping test (48) holds.

We wish to apply a combination of theorems 3.1 and 4.1 from [3], where, however, there
is no dependence on the parameter p; that is, we have E(v) as in (17) which depends on
the number N of discretization points but not on p. The assumptions used in [3] involve
smoothness of the function E and Lipschitz continuity of the derivative V E; furthermore,
it is assumed in [3, Theorems 3.1] there that there exist constants «, /5 and 7 such that for
each N sufficiently large the localization

(49) Bs(0) 3y — (BE@) + VE@)(- — oY) + Neo) ™ (y) N B (™)

is a Lipschitz continuous function with Lipschitz constant +. In order to take into account
the dependence on the parameter p we need the following enhanced form of (49): there exist
a natural number N, and real constants x, o/, 5, and 7/ such that for every p € B, (p) and
for every for N > N, the mapping

(50)  Bg(0) 3y~ (E(p,v"(p)) + VoE(p,v" (p))(- —v™(p)) + Ne)  (y) N B (va(p))

is a Lipschitz continuous function with Lipschitz constant +’. That this is true follows from
the following theorem which is a part of [4, Theorem 5G.3]%. Because of its importance, we
give it here in full:

1

Theorem 4.1. For Banach spaces X andY with norms ||-||x and ||- ||y, consider a mapping
F: X =3Y with (z,y) € gph F. Let «, B, and v be positive scalars such that the mapping
B.(y) >y~ F~Y(y) N B,(T) is a Lipschitz continuous function with Lipschitz constant 7.
Let 1 > 0 be such that yu < 1 and let v > ~v/(1 — yu). Then for every positive o' and [’
such that

o <af2, 2ud +26'<p  and 29/ <d,

and for every function g : X —'Y satisfying
lg(@)lly < B and |lg(x) — g(@)ly < pllz—a'llx  for every z,2" € Baw (),

the mapping Bg (§) > y — (9+F) (y)NBu (Z) is a Lipschitz continuous function Lipschitz
constant 7' .

6See Errata and Addenda at https://sites.google.com/site/adontchev/
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By comparing (49) and (50), and utilizing the smoothness of E and Theorem 4.1 we
obtain that there exist a natural N3 and constant x such that for every p € B,(p) and
for every for N > N3 condition (50) is satisfied. Thus, [3, Theorems 3.1, 4.1], see also [4,
Theorem 6D.2] can be applied to obtain the following theorem, where we use the notation
defined in the beginning of Section 2. Namely, v*V = (z*V u*V, ¢*) is the long vector with
the values of the optimal state, control and costate for the continuous-time problem (1)—(2)
at the grid points.

Theorem 4.2. On the assumptions of Theorem 1.2 there exist a natural Ny and reals 7,0, 0,
and ¢ such that for every p € B,(p) and every N > Ny, if the method (47) is applied for
solving the discretized variational system (16) with step-size h = T /N and starting from
a point (2°,u°,¢°) € B, (v*N) there exists an infinite sequence v = (¥ uF, q¢*) satisfying
(47) and such that v¥ € By, (v*N) for k = 1,2,...; moreover, there is no other sequence
with these properties. Furthermore, the sequence v* is g-quadratically convergent to a locally
unique solution v™ (p) :== (z™(p),u™ (p), ¢" (p)) of (16) for p and the convergence is uniform
with respect to p € B.(p) and N > Ny in the sense that

(51) loi ™ =0 (p) oo < Oll* — 0™ (D)3

In addition, there exists g > 0 such that for every € € (0,eq), every p € IB.(p) and every
N > Ny, if the iteration (47) is combined with the stopping criterion (48), then it terminates
at iteration k., where

k<ol -1ge),

and the resulting e-optimal solution v*(p) := (x*(p), u*=(p), ¢" (p)) obtained at the k. iter-
ation satisfies
105 (p) = v loe < e+ h+ |p = B).

5 Numerical experiments

In this section we will illustrate Theorem 4.2 by numerical experiments with the satellite
control problem detailed in [6]. The state describing the dynamics of the attitude of a vehicle
is represented by the Euler angles 6; (the roll angle), 6y (the pitch angle), and 3 (the yaw
angle), as well as the vector of angular velocities w € R3. The control vector u € R? describes
the control torques acting on the body frame axes. The control system has the form

0= E(0)w
(52) { Mo = oMw +u,

for a.e. t € [0,T], with given initial conditions 6(0) = 6y(p) and w(0) = wy(p), which depend
on a scalar parameter p. Here”

1 C(62) 3(91)5(92) 6(91)8(92>
E(Q) = — 0 C(Gl)C(¢92> —S<91)C(¢92> s
) | o ) c(6,

"For short, c(z), s(z) denote cos(x), sin(xr). We neglect here the issue of handling the “gimble lock”
singularity at 6, = +7/2 as it does not affect the numerical performance.
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and

0 W3 —Wo
w= —Ws3 0 w1
Wy —wi 0

The components of the matrix M describe the moments of inertia of three reaction wheels
along each of the body frame axes; for the numerical experiments we take M = diag([120 100 80]) kg-
m?. The goal is to minimize the cost functional

1

J(p,x,u) = 5/0 (z(t)"Qxz(t) + u(t)" Ru(t)) dt,

where the state © = < fz ), subject to (52) and the control constraints

|u(t)| < tumax  for a.e. t €10, 7).

Let a natural NV representing the discrete-time horizon and let h = T'/N be the step-size.
Then the state equation (52) is discretized as

E(0;)w; . 0
(53) le:xmLh[M_l(—d(z-]\z[fu-—i—u»)}’ i=0,--- N—1, $o=( 0(P)>’

and the discrete-time cost function is to minimize

N-1

In(p,z,u) = g Z (szsz + ulTRuZ)

i=0
subject to (53) and the control constraints
|ui] < Umax  for i=0,1,...,N —1.
The numerical experiments are performed using the the cost matrices

Q = diag[10 10 10 100 100 100] and R = diag[0.1 0.1 0.1],

whereas the bound for the Control values iS Umax = 0.5 Nm. The optimal control problem
is solved for the initial condition 6(0) = [7/3 0 — 7/6] rad, ©(0) = 1073[0 5 1] rad/s. The
perturbation parameter p € R enters the initial condition in the following way:

0(0)

0(0) = 00) +p s wl(0) = (0) +

w(0)

10
Note that in our problem (1)—(2), the initial condition does not explicitly depend on p;
however, a simple change of the variables moves the parameter p to the control system. The
solution of the unperturbed problem, with p = 0, is used as a starting point for the SQP
iteration.

Figure 6.1 illustrates the behavior of the control error |[u* — u™ (p)||~ for several values

of the parameter p and of the number of discretization steps N. Most notably, for a fixed p
one can see that for large N the behavior of the algorithm becomes independent of N.
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Figure 6.1: [ control error at each SQP iteration for different values of p and N. For a given
value of p, curves sharing the same pattern are obtained for N = 20, 25, 30, 35, 40, 45, 50.
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Number of SQP iterations performed
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Figure 6.2: The number of iterations needed to reach the desired accuracy versus the number

of discretization steps V. Each curve is obtained for a different value of the prediction horizon
T.

The control error decreases quadratically in agreement with Theorem 4.2 and then stabi-
lizes around the value 10~!* due to machine precision. The observed value for the coefficient
n (51) is © = 0.32.

Figure 6.2 shows the number of SQP iterations required to meet the termination cri-
terion (48) with ¢ = 1071 All simulations are performed using p = 4 to compute the
perturbed initial conditions. The figure clearly shows that the number of iterations (k. in
Theorem 4.2) needed until the stopping criterion is satisfied remain constant when the num-
ber of discretization points increases. It is worth noting that, as shown in the figure, the
number Ny of grid points where saturation occurs monotonically increases with the horizon
length 7. Interestingly enough, the numerical experiments satisfy 7'/Ny(7T) ~ 35 sec in all
realizations, thus suggesting that the value of N, can be determined a priori.

As illustrated in Figure 6.3, when using a number of grid points for which the stopping
test engages leads to a suboptimal solution which is still not quite close to the continuous-
time solution. This is consistent with (18) since the sampling time h = 35.71 sec is relatively
large with respect to the system dynamics.
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Figure 6.3: The dashed lines are the state and control functions obtained for N = 7 whereas
the solid lines depicts those obtained for N = 100.
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