Lower Bounds for Symbolic Computation on Graphs

Highlights of Algorithms 2018

Speaker: Wolfgang Dvořák,
Institute of Logic and Computation, TU Wien

Based on:
Motivation

- Graph algorithms are central in the analysis of reactive systems:
 - States of the System → Vertices of the graph
 - State Transitions → Edges of the graph
- The resulting graphs are huge
 - The number of vertices is exponential in the number of variables
 - Explicit representation of graphs is infeasible
 - Graphs are implicitly represented using e.g. binary-decision diagrams (BDDs) = symbolic computation
- Set-based symbolic model of computation
 - Same operations as standard RAM algorithms, except
 - for access to the edges and nodes of the input graph
 - for manipulation of sets of vertices
Model: Set-based Symbolic Computation

- Access to edges: Only through **One-step operations Pre and Post**:
 - Predecessor Operation $Pre(X)$:
 \[
 Pre(X) = \{ v \in V \mid \exists x \in X: (v, x) \in E \} \]
 - Successor Operation $Post(X)$:
 \[
 Post(X) = \{ v \in V \mid \exists x \in X: (x, v) \in E \} \]

- **Manipulation of sets of vertices: Basic set operations**
 - Given one or two sets of vertices, we can perform basic set operations like union, intersection or complement

- **Symbolic Space requirement** = number of sets simultaneously stored by an algorithm
 - We deal with compact representation of huge graphs
 - The number of stored sets should be small w.r.t. size of the graph, ideally constant.
Fundamental problems in graphs

- **Problems on graphs**: Starting from a vertex we have to decide whether there exists an infinite path satisfying a certain objective.
 - Objectives arising in the analysis of reactive systems:
 - Reachability
 - Safety
 - Liveness (Büchi)
 - co-liveness (coBüchi)
- **Computing SCCs** is at the heart of the fastest algorithms for the above problems (and thus of interest)
- Many graphs, e.g., in hardware verification, have small diameter D which (once detected) can be exploited for more efficient algorithms
 - We consider computing the (approximate) diameter of a graph
Results

• First lower bounds for the Set-based Symbolic Model of Computation
 • Demonstrate Communication Complexity to be an appropriate tool to show lower bounds for symbolic computation

• Matching upper and lower bounds for fundamental problems

<table>
<thead>
<tr>
<th></th>
<th>Reach</th>
<th>SCC</th>
<th>Safety</th>
<th>Büchi</th>
<th>coBüchi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reach</td>
<td>$\Theta(D)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
</tbody>
</table>

• Interesting gap between Reach $\Theta(D)$ and the other problems $\Theta(n)$ even for constant diameter graphs
Results

- Refined Analysis of the SCC algorithm by Gentilini et al.
 - and matching lower bounds
 - $\Theta(\min(n, (D \cdot |SCCs(G)|), (\sum_{C \in SCCs(G)}(D_C + 1))))$
 - D ... Diameter of the Graph
 - D_C ... Diameter of the SCC C

- Upper and lower bounds for (approximate) diameter

<table>
<thead>
<tr>
<th></th>
<th>exact</th>
<th>$(1 + \epsilon)$ approx</th>
<th>$(3/2 - \epsilon)$ approx</th>
<th>2 approx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper bound</td>
<td>$O(n \cdot D)$</td>
<td>$\tilde{O}(n \cdot \sqrt{D})$</td>
<td>$\tilde{O}(n \cdot \sqrt{D})$</td>
<td>$O(D)$</td>
</tr>
<tr>
<td>Lower bound</td>
<td>$\Omega(n)$</td>
<td>$\Omega(n)$</td>
<td>$\Omega(n)$</td>
<td></td>
</tr>
</tbody>
</table>
Summary and Conclusion

- Different model of computation: **Set-based symbolic computation**
 - First lower bounds and matching upper bounds for
 - fundamental objectives in graphs
 - SCC computation
 - (approximate) diameter
 - Communication Complexity is the right tool for (sub-) linear lower bounds for symbolic algorithms
Summary and Conclusion

- Different model of computation: **Set-based symbolic computation**
 - First lower bounds and matching upper bounds for
 - fundamental objectives in graphs
 - SCC computation
 - (approximate) diameter
 - **Communication Complexity is the right tool** for (sub-)linear lower bounds for symbolic algorithms

Thank you for your attention!
(and see you at the poster)