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Abstract—Advances in the domain of electronics and infor-
mation and communication technology provide a tremendous
set of new possibilities and services. The development of the
Internet of Things concept where different sensors, actuators,
and control devices are connected together and where functions
are provided to the Internet, is on the way to be used also in
various industrial domains. A new age of intelligence in such
industrial systems is being formed. Hence, the aim of this work
is to provide an overview about ongoing research and technology
developments related to the digitalization of industrial systems
applying the IoT approach. This review covers the domain of
manufacturing, as an example for discrete systems, and the
power and energy domain, as an example for continuous systems.
Important domain standards and future research directions are
identified and discussed also.

Index Terms—Industrial Systems, Information and Communi-
cator Technology, Internet of Things, Manufacturing, Power and
Energy Systems, Standards.

I. INTRODUCTION

Recent advances in the domain of electronics and Informa-
tion and Communication Technology (ICT), especially in the
area of Internet technology, provide a tremendous set of new
possibilities and corresponding services. The development of
the Internet of Things (IoT) concept, where different sensors,
actuators, and control devices are connected together and
where functions are provided to the Internet, is on the way to
be used also in various industrial domains [1], [2]. A new age
of intelligence in such systems is being formed [1]. There is an
ongoing transformation of traditional monolithic, hierarchical,
and centralized legacy control and data acquisition systems to
network-based automation and control architectures.

The aim of this paper is to provide an overview about
ongoing research and technology developments related to the
digitalization of industrial systems applying the IoT approach.
Especially, the domains of manufacturing, as an example
for discrete systems, and power and energy systems, as an
example for continuous systems, are covered in this review.
Important domain standards and future research directions are
identified and discussed also.

Following this introduction, Section II discusses IoT-based
trends and developments as well as standardization activities in
the domain of manufacturing systems whereas the power and
energy domain is covered in Section III. An outlook about
research trends and future needs is provided in Section IV.
This review paper is concluded with Section V.

II. MANUFACTURING DOMAIN

A. Overview of the Domain

Today, the manufacturing and production industry has to
cope with mass-customized products and a growing number
of product and part variants. Also a shorter time-to-market
and shortened product life-cycles can be observed mainly due
to consumer demands. Corresponding manufacturing systems
and production plants must be constructed in a way to react
on this market changes and consumer demands; they need to
be highly flexible and adaptable. Besides the needed physical
flexibility (mainly on the mechanical and electrical layout) also
adaptability on the logical level (mainly monitoring, automa-
tion and control algorithms; ICT architectures and concept) is
required. Recent developments in electronics and ICT provide
the basis for the realization of flexible solutions.

B. Research Trends and Developments

The following trends and developments in the domain of
manufacturing systems from the digitalization point of view
are now discussed.

1) Automation with Industrial Internet of Things: Indus-
trial IoT (IIoT) is undoubtedly perceived as a key enabling
technology for the digitalization of industrial systems. The
Industrial IoT’s role is to enable seamless collection of data
from the shop floor and make it available for advanced data
analysis in order to further improve performance of production
processes, as depicted in Figure 1. There is a clear parallel to
traditional closed-loop control systems known from control
theory, where the controlled process variable is monitored and
the controller generates a control action to bring the controlled



Fig. 1. Overview of the Industrial IoT concept.

process variable to a desired value. There is another parallel
between the mathematical model used by the controller as a
replica of the physical system behavior and the contemporary
concept of a digital twin [3].

Despite mentioned parallels, IIoT enables to elevate manu-
facturing control to a new level. The key enablers are recent
advancements in electronics and in ICT that are finding way
to industry. Nowadays, a variety of IoT devices appear in form
of low-cost and always connected smart sensors or micro-
computers that connect physical things to the Internet. The
connectivity is usually supported by new low-power wide-area
networks such as LoRaWAN, Sigfox, Nb-IOT or LTE Cat M1
[4]. Such IoT devices are powerful enough to run data ana-
lytics on the edge to perform distributed intelligent decisions
close to where data originate. Moreover, IoT Platforms serve
as software foundations for running industrial IoT applications.
These environments provide different features and services
like device management, message routing, complex event
processing, authentication and authorization, and Application
Programming Interfaces (APIs) for data access. Contrary to
traditional industrial systems based on server-client technol-
ogy, where the client has to poll the server for data updates,
IoT platforms apply publish-subscribe mechanism.

There is a wide range of IoT Applications supported by
IoT devices and IoT platforms such as remote metering,
real-time plant floor data acquisition, real-time machine status
monitoring, energy management, environmental monitoring,
asset tracking, and inventory management [5].

2) Solving Complex Problems with Artificial Intelligence:
Artificial Intelligence (AI) has a long tradition of applications
in industrial systems. Broadly defined as the study of intelli-
gent agents that collect data from their environment and make
autonomous decision to maximize the expected reward given
their goals. The AI field thus incorporates a wide range of
approaches, from non-adaptive systems (rules engines, expert
support systems), through fuzzy logic, to a large host of
probabilistic methods including machine learning.

The belief that artificial neural networks with a larger
number of hidden layers could effectively learn representation
of complex problems from input data has a long history [6].
While effective methods for training artificial neural networks
has been known since the 1970s (error back-propagation),

practical application to networks with typically more that
2-3 hidden layers suffered from numerical problems during
training (so called vanishing and/or exploding gradients).

Since almost a decade, such kind of learning approaches
underwent major developments enabled by three factors:
(i) availability of large data sets, (ii) availability of large
computing power, and (iii) advances in algorithms. Training
networks with hundreds of layers and millions of free
parameters (“weights”) is currently feasible and so-called
deep architectures—and corresponding Deep Neural Networks
(DNNs) [7], [8]—significantly moved the frontier of machine
learning in many applications.

3) Application Fields for Artificial Intelligence: The above
outlined advanced approaches are being increasingly used in
the manufacturing domain in the following application fields:

a) Deep Learning for Image and Video Recognition:
The field of computer vision up to year 2010 was dominated
by complex, multi-step image processing pipelines combining
image transformation, filtering, feature detection and extrac-
tion steps (here called “classical computer vision” approaches).
While these pipelines work very well in many contexts (par-
ticularly in well controlled environments like manufacturing
lines), they require laborious hand-crafting of features and
fine tuning. This process (so called feature engineering) is
essentially “guided” representation construction. It is exactly
at this step where DNN offer the largest leverage compared
to classical methods. DNN can automatically build up (learn)
a hierarchical, multilevel representation from the input data,
where each successive layer internalizing finer, lower scale
features, based on inputs. The development focus is thus
shifted from feature engineering to network architecture.

Performance of computer vision algorithms is annually
compared in several object recognition contests and the year
2012 was the first time that a DNN beat the classical methods
[9] using a convolutional architecture first proposed in 1998
by [10]. Ever since, DNNs have been achieving state-of-the-
art results on object recognition tasks in all major image and
video recognitions with new architectural innovations being
introduced each year. Since 2015, DNNs in some of the
competitions are even surpassing super-human accuracy (the
Resnet architecture of [11]). For a recent review of the field
we refer the [12] and references therein.

Given that the representation learning by DNNs is au-
tomatized and far more general and complex compared to
the manually engineered features in classical approaches, the
main advantages of DNNs for image and video recognition
compared to classical approaches are: (i) increased accuracy,
(ii) more robust models, (iii) saved engineering time, and (iv)
continuous model improvement during data collection.

These desirable properties of deep learning algorithms come
at costs of: (i) larger model complexity (and thus often
longer training and prediction times), (ii) larger computa-
tional hardware requirements, and (iii) larger training datasets
requirements. The requirement on the size of the data set
depends on applications—complex tasks require more input



data. Fortunately, application of DNNs on problems with
relatively similar structure can take advantage of so called
transfer learning (for a review see [13]). Here, we can take
a network that was already trained on a different (often larger
data set), remove the final few layers and re-train it on our,
smaller data set. Improvements of sample efficiency of DNNs
(how much can the network learn per input sample) is one of
the most researched areas in deep learning.

To sum up, the application of convolutional DNNs for
image and recognition opens new frontiers in machine
vision in accuracy and robustness. The application of DNN
in industrial context include thus automation of parts and
products classification, visual quality control, machine vision
for robots and automated guided vehicles, and further more.

b) Time Series Analysis and Forecasting: Further major
area of interest for industrial applications is times series
analysis and forecasting. Most of the data collected from
manufacturing systems comes in the form of time series
(i.e., ordered pairs of time-stamp and measurement values
like power, temperature, torque, etc.). The increased presence
of industrial IoT devices further underlines this trends by
allowing data collection from cost effective sensors.

Just as convolutional DNNs allowed major breakthroughs
in image processing (see above), so called Recurrent Neural
Networks (RNNs) play a similar role for sequential data
(primarily time series, but also for text and speech, etc.).
RNNs, first introduced by [14], work by allowing the network
weights to be shared across time, effectively introducing
“memory” into the systems. This memory was initially only
very short term (due to gradient vanishing) but a major
advance came with the design of so called Long Short-Term
Memory models (LSTM, [15]) that allowed information
flow over much longer time periods and the network to
learn features across different time scales. Applications of
RNN in industrial systems include time series prediction and
classification as well as the processing of audio signals.

c) Anomaly Detection and Predictive Maintenance: One
particularly interesting application of deep learning techniques
is in the field of condition monitoring of industrial assets. Here
a particular subclass of DNNs, so called autoencoders [8], can
play a role of essentially non-parametric twins, by building
up a compressed representation of the given physical system
(asset) for the purposes of detecting anomalous states.

Anomaly detection reacts when the system is already
entering an unusual (potentially dangerous) state. This,
depending on application, might be too late for reaction
(perhaps except shutdown). We speak about predictive
maintenance, when the time horizon before warning and
the potential failure is extended so that more complex
planning and intervention can take place [16]. While the
superior predictive power of DNN could help in theory
to predict potential failures with longer foresight, we are
often encountering issues with data set sparsity: failures are
typically relatively rare occurrences and therefore not often
sufficient to train a DNN (though a simpler model with

fewer parameters might work). While the potential of this
technology is large, its practical applicability is currently
limited by finding a proper use case, with a preference for
systems with many uniform, expensive assets (e.g., wind
turbines), rather than those found in manufacturing conditions.

d) Reinforcement Learning for Automation, Robotics and
Process Control: The final area where deep learning can have
a large impact within industrial systems is in the area of re-
inforcement learning—the design of software agents acting to
maximize a reward signal extracted from a virtual or physical
environment. Here, Deep Reinforcement Learning (DRL) [17]
made huge advancements in the recent years, crowned by
mastering the games of go, chess and shogi at super-human
level with a single architecture from scratch and only using
self-play within a < 24 hour learning period [18]. While
these successes are very encouraging they come from areas
where enormous amount data can be automatically generated
(self-play, computer games, simulated environments.). DLR
remains still the most sample in-efficient (see above) area of
deep learning, training is computationally very demanding and
often unstable and there are several further obstacles (reward
function design, escaping local optima, etc.).

For these reasons the deployment of DRL in real environ-
ments is up to now very limited. Theoretical work is however
rapidly progressing (see [17] for demonstration of approx.
factor 4 increase of training efficiency) and many promising
new venues have been recently explored, e.g. learning from
“instructional” videos [19] or from sparse human preferences
[20]. DRL is therefore expected in the future to play an
important role in automation and robotics similar to e.g.,
convolutional DNNs in image recognition.

C. ICT Interoperability and Standardization

There are attempts to provide reference architectures and
methodologies for IIoT systems in order to ensure interop-
erability of connected components, products, services, algo-
rithms, and people. There are two major, highly comple-
mentary architectures—Industrial Internet Reference Architec-
ture (IIRA) from the Industrial Internet Consortium and the
Reference Architectural Model Industrie 4.0 (RAMI 4.0) by
Plattform Industrie 4.0 [21]. Especially, the later has been
developed to address the aforementioned requirements and
needs of IIoT approaches and solutions across the different
hierarchical control levels in manufacturing systems and across
the life cycle value stream as outlined in Figure 2.

ICT plays the central role in realizing IIoT solutions.
Therefore, traditional industrial protocols for machine-
to-machine communication such as Profinet, EtherNet/IP,
or EtherCAT and automation approaches need to be
complemented or replaced with a variety of new protocols
from the IoT era. Following is a list of more influential ones:

• MQ Telemetry Transport (MQTT) is one of the most
dominant protocols in IoT applications these days [22].
Its history dates back to 1999 when it was released as
a protocol suitable for low-bandwidth and low-power



Fig. 2. Reference Architecture Model for Industry 4.0 (RAMI 4.0) [21].

devices. It is based on publish-subscribe model—the
messages, which are organized in topics, are distributed
by the message broker among clients, which publish
messages on given topic and receive notifications from
the broker if a message on subscribed topic appears.
There are three levels of Quality of Service (QoS) to
chose from—at most once, at least once, exactly once—
to offer different levels of data delivery guarantees.

• Advanced Message Queuing Protocol (AMQP) is a bi-
nary, application layer protocol designed to support a va-
riety of messaging applications and communication pat-
terns. Similarly to MQTT it provides delivery guarantees
such as at most once, at least once, and exactly once. It
suggests authentication and/or encryption based on SASL
and/or TLS [23]. Developed for banking applications it
is now finding its way also to industry.

• Data Distribution Service (DDS) is a data-centric mid-
dleware standard designed for mission-critical systems.
It provides the real-time, many-to-many, managed con-
nectivity required by high-performance machine applica-
tions. It can efficiently deliver millions of messages per
second to many simultaneous receivers. The QoS is taken
seriously in DDS. There are more than 20 QoS param-
eters, covering reliability, volatility, liveliness, resource
utilization, filtering and delivery, ownership, redundancy,
timing deadlines, and latency [24].

• IEC 62541 OPC Unified Architecture (OPC UA) is the
successor of very popular OPC which dates back to
1996. OPC UA is recommended as one of the standards
that meet the requirements of both the IIRA and RAMI
4.0. It is providing complimentary services to established
industrial automation protocols and is used mainly for
distribution of data from processes amongst the factory
systems. The idea of OPC UA is centered on object
models with the aim to provide a standardized approach
to address event handling, security, information model-
ing, and standard interfaces. Initially it was designed
as producer-consumer architecture, but the emergence
of chips with integrated OPA UA or implementation of
publish-subscribe protocol makes OPC UA hot candidate
to be used in (not only Industrial) IoT applications [25].

• IEC 61499 Functions Blocks enhances the traditional
scan-based execution of Programmable Logic Controllers
(PLC) with an event-based execution model and a dis-

tributed control architecture. IEC 61499 can be seen as
an extension to common IEC 61131-based PLC systems
addressing the needs of IIoT systems and devices [26].

III. POWER AND ENERGY SYSTEMS

A. Overview of the Domain

Several change drivers are causing a fundamental shift in
energy management practices in the electric power grid which
include: (i) growing demand for electricity, (ii) new regulation
and legislation supporting renewable energy resources, (iii)
the emergence of electrified transportation, (iv) deregulation
of electric power markets, and (v) innovations in smart grid
technology [27]. Perhaps nowhere will the impact of the
energy management change drivers, identified in the previous
chapter, be felt more than at the grids periphery. Distributed
generation in the form of solar Photovoltaics (PV) and small-
scale wind will be joined by a plethora of Internet-enabled
appliances and devices to transform the grids periphery to one
with two-way flows of power and information [28], [29].

B. Trends and Developments

From the digitalization point of view in following major
trends and developments in the power and energy systems
domain are discussed.

1) Automation with Energy Internet of Things: This work
argues that the challenges of activating the grid periphery
maybe addressed by deploying the Energy Internet of Things
(EIoT) as a scalable energy management solution. In essence,
energy management may be viewed as a control loop where
dispatchable devices, be they traditional large-scale centralized
generators or millions of small-scale Internet-enabled devices,
must meet the three power system control objectives: balanced
operation, line congestion management, and voltage control.
These objectives can be achieved despite the presence of
disturbances like customer load or variable energy generation
from solar PV and wind resources. Fortunately, EIoT is
fundamentally a control loop consisting of small-scale sensing
technologies, wireless and wired communication, distributed
control algorithms, and remotely controlled actuators. And
yet, despite EIoT having all of the components of a scalable
energy management control loop, the challenge is to continue
to integrate more of these technologies in a such a fashion that
the control objectives are achieved well into the future.

Figure 3 serves to guide the discussion of the EIoT concept
as a networked control loop where a strong development of
ICT has converged with the electric grid [30], [31]. Such a
structure is consistent with the Strategic Research Agendas
(SRAs) of European Research Cluster on the Internet of
Things (IERC) and later the Alliance for Internet of Things
Innovation (AIOTI) [32]. Here, the EIoT is depicted as a
three-layer architecture [33]. The physical layer consists of
physical devices with their associated network-enabled sensors
and actuators. The network layer consists of complementary
access and core networks. Finally, the application and control
layer support the physical and business objectives of energy
management [34].
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2) Network-Enabled Physical Devices: In many ways,
the development of network-enabled physical devices forms
the heart of EIoT. Here, it is important to appreciate the
tremendous heterogeneity and relative placement within the
electric power system. EIoT extends well beyond network-
enabled devices that measure and actuate traditional primary
electric power system variables in the transmission system.
They also include devices that monitor and control secondary
variables associated with wind, solar, hydro, and natural
gas generation so as to bring about the new challenges of
variable energy integration, the energy-water nexus, and
interdependent energy infrastructures. The distribution system
is also incorporating new devices such as smart meters
and other “grid modernization” technologies. Finally, the
distribution system has it own set of demand-side secondary
variables that describe the physical behavior of smart homes,
buildings, and industry. Within the home, these include
“smart” versions of traditional electrical items (outlets,
switches, appliances, etc.) as well as electrified versions of
traditional non-electrical devices (electric vehicles, water and
space heating, etc.). These many devices vary tremendously in
size, power consumption, use case, and on-board computing.

3) Network Layer: This tremendous heterogeneity of
network-enabled devices demands several complementary and
mutually co-existing communication networks. Traditionally,
the power system has used proprietary networks within the
jurisdiction of grid operators and utilities. These transmitted
data over wired networks (e.g., power line carrier & fiber
optics) as well as wide-area wireless networks such as
SCADA (supervisory control and data acquisition). However,
with “grid modernization”, telecommunication networks are
increasingly playing a role. Cellular data networks, and in
particular 4G and LTE, have the potential to transmit relatively
high bandwidth across long distances. Furthermore, WiMax
networks can provide connectivity at the grid periphery at the
neighborhood length-scale. Finally, a large part of EIoT will
require private area networks; be they wired Ethernet, WiFi,
Z-wave, ZigBee or Bluetooth. Naturally, industrial energy
management applications will continue leverage preexisting
industrial Internet infrastructure in addition to these private
area network options.

4) Application and Control Layer: The application and
control layer is responsible for achieving technical and eco-
nomic objectives of energy management. Whereas tradition-
ally, power systems operations and control has relied on
centralized algorithms in market operation and decentralized
algorithm for real-time control, EIoT-based control relies on
distributed control algorithms. In this regard, physical devices
will not just have their digital counterparts with their asso-
ciated IP address and agent but will also have the ability
to communicate and coordinate with other agents in multi-
agent system algorithms so as to achieve these objectives
[35]. Perhaps the earliest works on the multi-agent systems in
power systems were focused in modeling electricity markets
in a deregulated power industry [36], [37]. Agent-based appli-
cations then diversified to various aspects of power systems
control and operations such as balancing, scheduling, line
control and protection, and frequency and voltage regulation
[38], [39]. Finally, as discussion of an activated grid periphery
has developed in the smart grid literature, several multi-
agent system framework have been developed to provide
self-healing mechanisms for microgrids [40] and some have
even demonstrated resiliency of such microgrids under several
reconfigurations [40]. While this area of EIoT has received
a significant attention, significant theoretical and applied re-
search is required to bring distributed control algorithm into
mainstream practice.

C. ICT Interoperability and Standardization

The implementation of EIoT as an automated solution rests
upon a significant effort to develop effective standards. Early
on, initiatives were launched at national, European and inter-
national levels [41], [42]. For example, important standards
have been identified at European level under Mandate M/490
[43] as outlined in Figure 4. The topic has also been addressed
in the work of standardization organizations such as IEC [44],
IEEE [45], and NIST [46]. These work have led to improved
interoperability in EIoT.
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Fig. 4. Overview of important EIoT standards (adopted from [47]).

In particular, the following EIoT standards are directly
relevant [47], [48]:



• IEC TR 62357 Seamless Integration Architecture (SIA)
aims to provide a framework for current energy-related
ICT approaches of IEC TC 57. For this purpose, they are
related to each other and combined within the framework
of a reference architecture for the identification and
resolution of inconsistencies between the standards to
obtain a seamless framework.

• IEC 61970 Common Information Model (CIM) specifies
a domain ontology, i.e., it provides a kind of knowledge-
base with a special vocabulary for power systems. One
goal is to support the integration of new applications in
order to save time and costs and another one to facilitate
a simple exchange of messages in multi-vendor systems.
The IEC offers an integration framework based on a
common architecture and data model. In addition, the ar-
chitecture is platform independent. The main application
of IEC 61970 is the modeling of topologies.

• IEC 61968 Distribution Management extends CIM for
Distribution Management Systems (DMS). These exten-
sions relate in particular to the data model. The main use
case is the exchange of XML-based messages. For this,
further use cases for different DMS are specified.

• IEC 62325 Market Communications is also an extension
to CIM where the data model and messages are extended.
However, the focus here is on market communication for
EU and US-style electricity markets.

• IEC 62351 Security for Smart Grid Applications ad-
dresses ICT security for power system management with
the goal to define a secure communication infrastructure
for the environment of energy management systems with
end-to-end security. This implies that secure commu-
nication is specified for protocols used in IEC 61970,
IEC 61968 and IEC 61850.

• IEC 61850 Substation Automation and Distributed En-
ergy Resource (DER) communication focuses on the com-
munication and interoperability at device level. The focal
topics are the exchange of information for protection,
monitoring, control and measurement, the provision of a
digital interface for primary data and a configuration lan-
guage for the systems and devices. This is implemented
by a hierarchical data model, abstractly defined services,
mappings of these services to current technologies and
an XML-based configuration language for the functional
description of devices and systems.

• IEC 62559 Use Case management deals with a steadily
increasing system EIoT complexity and number of play-
ers as well as disciplines. In such a complex system, use
cases help to structure and organize all relevant informa-
tion for a technical solution. Therefore, in IEC 62559
five phases are identified for the development of use
cases and the identification of requirements. On top of
this, a description template is also provided, containing a
narrative and visual representation of the use case.

Also under the EU mandate M/490, the Smart Grid Archi-
tecture Model (SGAM) was developed (see Figure 5. Shortly

described, it is a structured approach for modeling and design
of use cases for power and energy systems. Its basis is a
three-dimensional framework consisting of domains, zones,
and layers. These allow the engineer to structure the use case
design in a clear and concise way. The original goal of this
reference architecture was to identify standardization needs in
EIoT applications/smart grids.

Fig. 5. Reference Architecture for EIoT (SGAM) [49].

However, it has been further developed to design archi-
tectures for technical solutions. Therefore, the SGAM was
combined with the use case methodology from IEC 62559. A
field of application is given by the fact that the design of future
energy automation and management systems requires system
operators/energy utilities to analyze and compare different
technical solutions for determining which of these could be
best implemented in their networks [50].

Moreover, also approaches from IIoT domain like MQTT,
OPC UA, or IEC 61499 getting attention from the power and
energy systems domain.

IV. DISCUSSION OF FUTURE NEEDS AND RESEARCH

Despite ongoing research, development, and standardization
in the manufacturing domain and in power and energy systems
as discussed above there are still room for improvements
and further research in order to address challenging future
needs and requirements. In particular the following fields of
improvements can be identified.

A. Enhanced Machine-to-Machine Communication

The machine-to-machine communication in mission critical
IoT applications require a deterministic messaging on standard
Ethernet. Technologies such as Time Sensitive Networking
(TSN) as defined by IEEE 802.1Q will attract attention to
provide guarantees of delivery and minimized jitter using time
scheduling [2]. Also the integration of proper information and
data models in such TSN networks is still an open issue. The
combination of OPC UA together with TSN approaches seems
to be a proper choice.



B. Cyber Security

Cyber security is is an important aspect for IIoT solutions
but also for critical infrastructures like EIoT. The goal is to
deal with requirements for trust in communication entities and
transferred data [51]. It is both hardware security at the level
of IoT devices as well as software security to guarantee end-
to-end message encryption and authorization & authentication
of devices, users, and services.

C. Handling of Big Data and Data Analytics

The handling of big data streams from networked sensor,
actuator, and control devices is another hot topic in research
and development [52]. Compared to traditional systems, there
is a tremendous increase in collected data which need to be
collected, pre-processed, and stored on the one hand side in
real-time or near real-time on the one hand side but they
have to be analyzed and processed on the other side. Proper
approaches which are suitable for industrial environments
need to be developed. Combining big data handling solutions
with corresponding data analytics methods and corresponding
algorithms is still a highly challenging field of interest.

D. Enhanced Engineering Methods and Tools

The previously mentioned digitalization trends are leading
to fundamental changes in operating manufacturing plants
and power and energy systems. As a consequence, also the
implementation and deployment of these solutions and cor-
responding applications is changing. Plant operators, utilities,
component vendors, software and service providers, and other
stakeholders are confronted with an increasing engineering
complexity, resulting in higher engineering costs and develop-
ment time. The provision of proper engineering approaches,
development methods, and corresponding tools will reduce
the engineering complexity, safe time and money. As an
attempt to improve existing engineering solutions, the use
of Model-Driven Engineering (MDE) for automation is one
research trend that can be observed during the recent years. A
number of approaches use MDE to improve the specification
and design process, together with support for requirement
identification [53]–[55].

E. Interdisciplinary Training and Education

Besides the above outlined technical research and develop-
ment trends there is also an urgent need for well educated
researchers and engineers which are able to understand chal-
lenging problems in the domain of industrial systems from
an interdisciplinary point of view [56], [57]. Future curricula
and training activities need to take care to teach the interdis-
ciplinary aspects of IIoT (i.e., understanding of mechanical,
electrical, ICT/IoT, automation and control topics) or EIoT
(i.e., understanding of electrical/power, ICT/IoT, control and
optimization topics) approaches and solutions but they need
to take also care on cyber security and big data issues.

V. CONCLUSIONS

Technology development in the domain of ICT provide
new possibilities. Approaches like the IoT approach where a
huge number of devices are nowadays connected together via
Internet-based services and functions are being increasingly
used in industrial environments like in the manufacturing
domain or in power and energy systems.

This paper provided an overview of ongoing research and
developments in the aforementioned areas with a focus on
digitalization applying the IoT concept. From this survey it
can be concluded that industrial systems are moving in the
same direction; IoT approaches, concepts, technologies, and
solutions are becoming more commonly used. This provides
a tremendous set of new possibilities and new services and
business models are on the way to be developed.

However, there is still room for future research and technol-
ogy developments. Interesting and promising fields of research
are related to (i) enhanced machine-to-machine communica-
tion, (ii) cyber security, (iii) handling of big data and data
analytics, as well as the (iv) provision of proper engineering
approaches and tools. Besides of those technical issues a
focus need to be put also on the interdisciplinary training and
education of researchers and engineers in order to keep track
in a digitalized world.
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