
Integration Patterns for Interfacing Software Agents
with Industrial Automation Systems

Paulo Leitão∗, Stamatis Karnouskos†, Luis Ribeiro‡, Panayiotis Moutis§, José Barbosa∗, Thomas. I. Strasser¶

∗Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança,
Campus de Santa Apolónia, 5300-253 Bragança, Portugal, email: {pleitao, jbarbosa}@ipb.pt

†SAP, Walldorf, Germany, email: stamatis.karnouskos@sap.com
‡Linköping University, SE-58 183 Linköping, Sweden, email: luis.ribeiro@liu.se

§Carnegie Mellon University, Pittsburgh, PA, United States, email: pmoutis@andrew.cmu.edu
¶Center for Energy – AIT Austrian Institute of Technology and Institute of Mechanics and Mechatronics –

Vienna University of Technology, Vienna, Austria, email: thomas.i.strasser@ieee.org

Abstract—Agent-based systems, an approach derived from dis-
tributed artificial intelligence, have been introduced for designing
large complex systems. They are also suitable to solve challenging
problems in industrial environments, being a suitable technology
for realizing cyber-physical systems. In such configuration, they
need to interface with automation and control devices. However,
until now there is no widely accepted practice nor pattern to
interface the software agents with the automation functions.
This work addresses this issue and introduces corresponding
integration patterns in order to achieve full interoperability and
reusability. This work, therefore, provides a methodology for
mapping existing practices into a set of generic templates and also
discusses the applicability of the proposed approach to different
industrial application domains.

I. INTRODUCTION

Multi-Agent Systems (MAS) is a technology, derived from
the distributed artificial intelligence, that provides an alterna-
tive way to design complex large-scale systems by decentral-
izing the intelligence, adaptation, and control by distributed,
autonomous and cooperative entities [1]. The MAS concept
differs from conventional automation and control approaches
due to its inherent capabilities to adapt to emergence without
external intervention.

Industrial agent-based solutions are suitable to realize
Cyber-Physical Systems (CPS), aligned with Industry 4.0 prin-
ciples, expanding the potential application domains of MAS
through the distribution of intelligence and at the same time
adding the required flexibility, robustness and responsiveness
to industrial automation systems [2]–[4]. Industrial agents
are naturally facing several industrial requirements, namely
specific hardware integration, reliability, fault-tolerance, scal-
ability, industrial standard compliance, quality assurance, re-
silience, manageability and maintainability [3], [5].

Particularly, one of the major requirements of industrial
agents is their capability to interface low-level control of
industrial automation systems [3], [4], [6]. As examples,
consider one software agent associated to a punching machine
and required to interact with a Programmable Logic Controller
(PLC) controlling the automation system to write/read vari-

ables, or a software agent associated to a smart metering device
to gather the current consumption data.

Today, there is no widely accepted (not to mention stan-
dardized) practice on how to interface software agents and
physical hardware. Several approaches have flourished in
practice [7], but most of them are either on the concept level
and typically based on proprietary technologies or custom-
defined interfaces are being used. Additionally, for the existing
empirical practices, there is hardly a way to compare them due
to their variety, as well as vice versa it is difficult to propose
a best practice to follow during the design and engineering
phase of a specific use-case.

In order to achieve full interoperability, the pertinent ques-
tion that arises is how to interface in an easy, transparent, and
reusable way the software agents to the different automation
systems and devices. Since each automation device controller
has a proper, usually proprietary, interface, it is necessary a
standardized interfacing approach to make this a reality.

The IEEE P2660.1 Working Group [8] is developing ap-
proaches to derive a recommended practice for the integration
of software agents and industrial automation systems, in
specific scenarios. The life-cycle of this work, illustrated in
Figure 1, comprises several phases, namely:

• Analysis phase, related to the collection and analysis of
existing interface practices such as for the factory automa-
tion, power and energy systems and building automation
application domains [7].

• Generalization phase, related to the definition and char-
acterization of generic interface templates derived from
the previous phase.

• Assessment phase, related to the definition of an as-
sessment methodology and including the definition of
a test plan and the execution of the assessment of key
characteristics for the identified interface templates.

• Recommendation phase, in order to derive the recom-
mended practices for a specific set of requirements and
taking into consideration the results from the previous
assessment phase.



Analysis 
phase

Collection and analysis 
of interface practices 
in Factory automation

Collection and analysis 
of interface practices 
in Power and energy 

systems

Collection and analysis 
of interface practices 

in Building automation

Define test plan and 
perform assessment of 

key characteristics

Generalization 
phase

Definition of 
interface 

templates

Assessment 
phase

Identify ISO/IEC 25023 
measures that fit 
interface context

Adapt existing or 
identify additional 

measures

Define assessment 
methodology and 

characteristics to be 
measured (ISO/IEC 

25010)

Description of 
interface 

templates

Recommendation 
phase

Derive the 
recommendation 

practices

Define (engine) 
function to advise 

recommended 
practice according 

to input criteria

Figure 1. Life-cycle of P2660.1 working development.

This work focuses on the generalization phase and par-
ticularly the description of the generic interface practices
(templates) for interconnecting software agents and low-level
automation functions, starting for the methodology to classify
these generic practices and then formally characterize them
according to the logical, process, functional, and physical
views. Other phases such as the assessment methodology are
discussed in other work [9].

The remaining part of this paper is structured as follows:
section II outlines the related work and section III describes the
methodology to map the existing interface practices in a set of
templates. section IV characterizes each template according to
logical, process, functional and physical views, and section V
discusses the applicability of these generic interface practices
to the different application domains. Finally, section VI rounds
up the paper with the conclusions.

II. CURRENT PRACTICES AND RELATED WORK

A survey study performed under the IEEE P2660.1 Working
Group [8] activities has uncovered a wide range of different
integration practices and patterns across three application do-
mains: (i) factory automation, (ii) power and energy systems,
and (iii) building automation [7]. The survey practices con-
firmed the prevalence of the two-layered approach and exposed
a broad set of interaction and communication protocols as
well as High-Level Control (HLC) integration practices [3],
[6]. More particularly, the HLC has been deployed within and
outside the automation controller and its interaction with the
Low-Level Control (LLC) has ranged anywhere from almost
direct control through shared memory spaces to brokered
message based-interaction.

Other significant conclusions from this survey are that Java
is the primary programming language to codify the agents
(probably due to the wide dissemination of the JADE agent
development framework), followed by C++, and security is
usually not considered in such applications. On the other side
widespread approaches for the realization of automation func-
tions are from PLC domain; i.e., domain standards IEC 61131
and IEC 61499 are quite often used [3], [6], [10]. Usually, the
interfaces follow a kind of proprietary protocols, but recently

the use of Machine-to-Machine (M2M) communication tech-
nologies such as Open Platform Communications – Unified
Architecture (OPC-UA) or Message Queuing Telemetry Trans-
port (MQTT), is being noticed, increasing the transparency
and industrial adoption [11]. The reported interfaces usually
follow a coupled approach (i.e., agents are running remotely
from the automation controller) and a client/server interaction
mode, and providing read/write operations on the digital I/O
interaction as main functionality.

Furthermore, for the majority of the cases, software agents
are applied within monitoring, control and simulation domains,
where security aspects are not currently seen as a cornerstone
at the design phase.

III. METHODOLOGY FOR MAPPING EXISTING PRACTICES

The analysis of surveyed practices allowed to identify
the similarities between them, as described in the previous
section. Aiming to establish the generic interface practices, the
documented interface practices can be classified as illustrated
in Figure 2.

On-device

Hybrid

Tightly coupled Loosely coupled

Direct call, HLC running 
remotely

Pub/sub, HLC running 
remotely

Pub/sub, HLC and LLC 
running in the device

Direct call, HLC and LLC 
running in the device

Direct call, HLC 
compiled with the 
LLC

Figure 2. Mapping the generic interface practices among interaction mode
and location levels of abstraction.

Specifically there are two distinct abstraction levels:

• Interaction Mode (L0), related to interaction mode be-
tween parties, i.e., the agent and the LLC. Several differ-
ent possibilities:
– Tightly Coupled, where there is a direct, permanent and

non-mediated connection (sync) between the two par-
ties (i.e., HLC and LLC), e.g., via Remote Procedure
Call (RPC). Such connection can exist in the form of
direct network communication or shared memory, and
the interaction protocol follows the traditional request-
response schema, as illustrated in Figure 3. In this case,
the HLC can exert more direct control over the LLC.

– Loosely Coupled, where there is a mediated connection
between parties (async), e.g., via a queue or a pub/sub
channel. In this case, the interaction is not direct and
is rather mediated typically by one or several message
brokers, as illustrated in Figure 4.

• Location (L1), related to the location of the parties,
i.e., where the agent and LLC are hosted. Different



possibilities (considering that LLC is always within the
device) should be considered:
– Hybrid, where the agent is running externally to the

device and the LLC is on-device, i.e., they are running
in different computational platforms.

– On-device, where both the software agent and LLC are
co-hosted in the device, i.e., they are sharing the same
computational platform.

request

response

Interface (Tightly Coupled) 

Figure 3. Interaction protocol for the Tightly Coupled interface.

Considering the classification based on the tuple {inter-
action mode, location}, four major interface practices can
be derived (see Figure 2): (i) {Tightly Coupled, Hybrid}
(ii) {Tightly Coupled, On-device} (iii) {Loosely Coupled,
Hybrid} (iv) {Loosely Coupled, On-device}.

publisher

publish

subscriber

broker

subscribe topic

notify subscriber

Interface (Loosely Coupled) 
Figure 4. Interaction protocol for the Loosely Coupled interface.

These vary on the location of the software agent or HLC and
the LLC as well as on their interface. In this context, the HLC
and the LLC can share the same computational platform (On
Device) or can be in different ones (Hybrid). The HLC can
exert more direct control on the LLC (Tightly coupled) or the
interaction can be mediated by a broker (Loosely Coupled).
There is also one particular case of a tightly coupled and on
device design which results from the HLC and the LLC being
compiled and deployed as a single set of binaries.

IV. CHARACTERIZATION OF INTERFACING PRACTICES

This section characterizes the identified generic interface
practices, describing the logical, process, functional, and phys-
ical views. In this document, the different views have the
following meaning:

• Logical View, which describes the system objects and
their inter-connections, providing a conceptual perspec-
tive of the practice.

• Functional View, which is usually an elaboration of the
logical view (so it can be considered as part of the logical
view itself), providing the functionality that the system
provides to end-users.

• Process View, which deals with the dynamic aspects of
the interface practice, explaining how the system pro-
cesses communicate, and focusing on the runtime behav-
ior. This view addresses, e.g., concurrency, distribution,
performance and scalability.

• Physical View, which discusses the system from a sys-
tem engineer’s point of view, addressing the topology
of software components on the physical layer as well
as the physical connections between these components
(assignment of code to non-software resources such as
hardware, as well as the used technologies).

The next sub-sections describe the four interface templates
according to these perspectives.

A. Interfacing Practice: Tightly Coupled, Hybrid

This interfacing practice is characterized by the schema
where the software agents (HLC) are running remotely and are
accessing, using a direct connection, the physical automation
device, which is running a native logic control layer that en-
sures (real-time) responsiveness, to get data or send commands
(LLC). In this pattern, there is a computational separation
of the HLC and LLC, as illustrated in Figure 5, where both
ends will implement communication mechanisms that enable
them to interact. Usually, the LLC Application Programming
Interface (API) exposes a local data memory (read/write) table
and/or by use of a function/service-based API to support the
exchange of data and/or the invocation of functions between
the HLC and LLC ends, where the HLC-side accesses the LLC
functionalities by means of a communication channel. The
channel can be implemented as a socket-based approach or
using other network-based direct call communication channels.
Naturally, this pattern is affected by the quality of the channel
that may lie in-between, and the computational capabilities at
both ends or even due to a parallel process being executed at
either side. The network traffic and the increase in the number
of industrial agents in the system will also contribute to the
degradation of the pattern quality, namely concerning response
time.

Agent (HLC) LLC

API client API server

Interface (Tightly Coupled, Hybrid) 

channel

Figure 5. Interface structure for the {Tightly Coupled, Hybrid}.

Regarding process view, the HLC is accessing the LLC
using a direct connection, following a request-response pro-
tocol, as illustrated in Figure 3. This interaction pattern is



used to perform several types of requests, namely read and
write of variables (e.g., I/Os), download, upload, start and stop
programs, and subscribe events.

B. Interfacing Practice: Tightly Coupled, On-device
This interfacing practice is characterized by a schema where

the software agents are directly embedded in the automation
devices Figure 6. More precisely this means that the au-
tomation device includes computational support for the agent
binaries and that such support allows native access to the
functions of the device. This access may be granted for soft
or hard real-time operations but the agent binaries and native
control layer share the same physical container. The electronics
within the automation device ultimately define the concrete
integration procedure (data bus, internal network connection,
shared memory, etc.). However, from the software point of
view, the integration will be mediated by a native software
library. Such library may make internal network connections
or buses more or less explicit but ensure the integration from a
software point of view. Such library can be loaded dynamically
at runtime as part of some agent initialization routines or it
can be compiled together with the agent binaries. In the very
extreme case, the agent itself is compiled together and included
in the native software of the controller.

Agent (HLC) LLC

API client API server

Interface (Tightly Coupled, On Device) 

channel

Figure 6. Interface structure for the {Tightly Coupled, On-device}.

Embedding the HLC into the LLC mitigates, in theory,
the network related issues, particularly latency, and should
improve the overall performance if the device has enough
computational power to support both the HLC and the LLC
while fulfilling the timing requirements of both.

Regarding process view, this interface practice follows the
same schema as exhibited by the {Tightly Coupled, Hybrid},
i.e., the HLC is accessing the LLC using a direct connection,
as illustrated in Figure 3. This interaction pattern allows to
perform several types of requests, namely read and write
of variables (e.g., I/Os), download, upload, start and stop
programs, and subscribe events.

Agent (HLC) LLC

API client API server

Interface (Tightly Coupled, On Device, 
HLC Compiled with LLC) 

Local hardware channel

Figure 7. Interface structure for the {Tightly Coupled, On-device} (joint
compilation).

As briefly mentioned before, two particular cases can be
identified in this interface practice:

• The sharing of the controller computational resources
through a software library exposing the different native
control functions but abstracting from a development
point of view the concrete electronic implementation.
In this case, the developer may know that it is using
particular electronics but the details are hidden by the
library. This will be the usual case as it keeps Intellec-
tual Property (IP) protection over commercial hardware
implementations. However such practice will generally
restrict the performance to soft real-time control or oth-
erwise to hard-real-time control on a higher time scale.

• The rather unusual case whereby the agent code is
compiled together with the controller’s native binaries.
Such practice can provide hard real-time assurances, but
there is currently a lack of proper tools for developing
the agent-based part of the practice.

C. Interfacing Practice: Loosely Coupled, Hybrid

The most typical design related to the loosely coupled
schema includes the computational separation of the HLC
and the LLC in terms of location where they are running,
as shown in Figure 8. Typically, this interface uses a third-
party entity between the HLC and the LLC. The most common
topology uses a broker-mediated channel following a pub-
lish/subscribe approach where the HLC subscribes to events
provided/originated by the physical controller (i.e., the device
that is physically connected to the process under control and/or
being monitoring). On the other side, the LLC subscribes to
the control topics, published from the HLC, that are needed for
a proper process control. Several technological protocols are
being currently widely industry accepted, namely OPC-UA,
MQTT or XMPP.

Agent (HLC) LLC

API client API server

Interface (Loosely Coupled, Hybrid) 

channel channel

topics

Figure 8. Interface structure for the {Loosely Coupled, Hybrid}.

As with the hybrid coupled design, the performance of the
system depends on the capabilities of the network infrastruc-
ture and in this case of the message brokering systems as
well. This implies that for highly intensive communication
scenarios or for hard-real-time situations, this approach might
have limited approaches. While for the first situation, a load-
balancing strategy at the broker level might ease the issue, on
the second, i.e., in a hard-real-time situation, the loose couple
approach besides having the network latency it still has the
broker logical process-flow to delay the message exchange
between the HLC and the LLC.

On the other side, for very large systems, this approach may
scale better than coupled designs. Furthermore, by promoting
this loosely couple approach and being the HLC running,
normally, in high computational hardware, complex algorithms
might be added at the HLC side without ever interfering with
the normal operation at the LLC level. Other functionality



could be seen in situations where an HLC could/need to
publish topics to a multitude of LLC devices. It is worthy to
note that in such situations this approach could offer a great
design advantage. Similarly, a loosely coupled hybrid approach
could be advantageous in situations where more than one HLC
could/need to issue control/monitoring commands to the same
LLC (note that in this paper the authors are not evaluating the
increase of the design complexity of such approach).

Additionally, manufacturers are widely offering pub-
lish/subscribe interface mechanisms, e.g., OPC-UA, MQTT or
XMPP, making this interface catch increasingly the attention
and developments, both from manufacturers but also from
system integrators in the years to come.

D. Interfacing Practice: Loosely Coupled, On-device

The schema of this practice, as shown in Figure 9, has
the software agent embedded to the automation device and
the HLC and LLC interact through a brokered interface. The
practice describes a computation separation between the agent
and the automation device, although they are integrated into
the same physical unit.

From the functional point of view, the message broker is
the compulsory intermediate between the HLC and the LLC.
This means that the HLC and the LLC do not exchange direct
messages of any shorts, but go through the broker as presented
in Figure 4. The common placement of both the agent and
the automation device implies that the effect of the broker in
the interface performance is limited to concerns of just one
hardware framework.

Agent (HLC) LLC

API client API server

Interface (Loosely Coupled, On Device) 

channel channel

topics

Figure 9. Interface structure for the {Loosely Coupled, On Device}

Thanks to the broker interface, supposedly offering a super-
set of functionalities (compared to any number of function-
alities represented by either the HLC or the LLC), the user
may implement any number and type of control actions (I/O,
start/stop programs, etc.) on any subset of devices. This means
that some devices may have some control capabilities, while
other devices different ones. Thus, the practice offers privacy,
flexibility, control/functional grouping, although it burdens
the user with the definition of the control capabilities. The
coexistence of the agent and the automation device on the same
piece of hardware reduces the complexity of processing the
said definitions since they can be implemented at once for both
ends of this practice. The broker interface is counterintuitive
to the embedded integration of the agent in the control device
hardware since it implies an extra layer for realizing any
control action. A realistic case where such a practice may be
inevitable is when an automation device with specific hardware
characteristics is enhanced with agent-hosting capabilities and
vice versa. In such a case the role of a broker facilitates an

easier transition than defining direct (tightly coupled) native
control automation access for the agent. The user is also
burdened with properly updating all HLC-LLC definitions
across all hardware, whenever the broker is updated with
functionalities that are required to be added to the interface.

As from the purely physical aspect of this practice, either
end of this topology may be exclusively developed based
on the broker (most probably the automation device) or the
broker is a shared ontology/vocabulary for both the HLC and
the LLC. Evidently, the loose coupling means that the agent
cannot directly control or monitor any part of the automation
device, i.e., the agent and the automation software reside on
different processing blocks of the same piece of hardware. The
latest remark implies that the practice is fit when customization
is required (from many aspects) for specific hardware plat-
forms but is industry-friendlier thanks to the broker interface
that may be broadly and deeply standardized.

The performance of this design depends highly on the
broker, while it is also not an intuitive architecture for brokered
interactions (unlike for example when considering hybrid
topologies, with the HLC and the LLC on different hardware
units).

V. DISCUSSION

As observed there are several integration patterns, when it
comes to software agents and industrial low-level automation
functions as presented in section IV. For the software part, all
of these are a subset of well-known integration patterns [12].
A sampling of some of the agent relevant implementations [7]
reveals that only some of them are evident in production. As
there is a lack of any comparative analysis among them, nor
any knowledge repository for design and in-use experiences,
the only source of information seems to be practical experience
and some literature in the domain. Therefore, a decision on
what practice to use seems to be constrained to its technical
aspects only, which is partially justified, as also other aspects
ought to be also considered [5].

The potential directions as illustrated in Figure 2, provide
hints to potential strategies that could be followed. In industrial
settings, the case of brownfield landscapes is usually the case,
which implies that any solution proposed has to be integrated
with legacy (i.e, already existing and deployed) systems. The
constraints set, sometimes apply to the preservation of the
physical infrastructure, while software changes are permitted.
The latter implies for instance that no new hardware should be
installed (or it should be “embedded” within existing infras-
tructure, e.g., a PLC rack). Such physical constraints set the
criterion of exclusion of some approaches, e.g., the co-location
of a new industrial PC, where the agent platform could be
running and is required for some hybrid scenarios. Similarly,
if the existing device, e.g., the PLC, cannot accommodate the
requirements of an agent system, and no additional hardware
positioning is possible, the implementation of agents in a
hybrid form, where the agent platform is for example in
the cloud may be the only solution. In fact, this situation
where a multi-agent system need/could be designed for a



given scenario might be one of the most promising solutions
where a set of data repositories are installed throughout the
shop-floor enabling the connection of the HLC with the LLC
data. Normally, these are polling the LLC using the available
communication protocols and are afterward exposing this
information in more transparent and widely common formats
e.g., via the information model of OPC-UA.

The physical and software implementation requirements set
some context, upon which some practices may be excluded.
The specific domain constraints (e.g., performance), impose
additional considerations. For instance, a publish/subscribe
approach where the agent is located in the cloud, and has
to communicate via a best effort network, may not be seen
as fit for real-time scenarios, as the network latency and
communication delays cannot be guaranteed.

Even if some of the potential practices remain as valid
selections, their realization may highly differ. Here, one has
to think not only about the short term, but also a potential
infrastructure evolution (long-term) strategy. It may be seen
as highly efficient to have an implementation on-device with
a direct call in a certain set-up. At the same time, in other
cases, integrating multiple different types of LLC in a given
infrastructure might hint towards a preference of all LLC types
sharing a common broker messaging system, so that the HLC
need not be disrupted as the infrastructure evolves. However, in
general, such implementations are usually highly customized,
and are difficult to change in order to accommodate future
needs that arise from the system usage and needs e.g. for
security updates to the system.

As already discussed, a selection of a practice is not seen as
straightforward, and is a more complex issue that goes beyond
technical only aspects [5]. The variety of the existing practices
attests the lack of a one-size-fits-all solution, and best-practices
depend on specific use cases, as well as domain requirements.

Additionally, the overwhelming majority of the experiences
with software agents and low-level automation system inte-
gration is via traditional dedicated industrial wired systems.
However, the introduction of new wireless technologies and
especially the low-power ones [13] that may even operate over
lossy networks is not sufficiently addressed and needs to be
assessed.

VI. CONCLUSIONS

In the context of Cyber-Physical Systems, the implementa-
tions of industrial agents face an important need regarding
the interface with automation and control devices [2], [3].
However, at the moment, there is no widely accepted prac-
tice nor pattern to interface the agents with the automation
functions. The P2660.1 Working Group [8] established by the
IEEE Standards Association, aims to develop recommended
practices that provide full interoperability and reusability to
solve this problem.

This work focuses on the generalization of the interface
practices, derived from the compilation and analysis of ex-
isting interface practices such as for the factory automation,
power and energy systems and building automation application

domains. The proposed 4 interface templates are classified
according to the tuple {interaction mode, location}, where the
interaction mode refers the way HLC and LLC interact (i.e.,
Tightly Coupled or Loosely Coupled), and the location refers
the location where HLC and LLC are hosted (i.e., Hybrid and
On-device). The characterization of each interface template
was performed according to the logical, functional, process
and physical perspectives. The paper also discusses the appli-
cability of the interface templates, particularly analyzing the
pros and cons of each one to address industrial applications.

As a general conclusion, it is clearly noticed that there isn’t
a generic interface that fits the whole spectrum of applica-
tions. Furthermore, the selection of one of the four identified
practices is not straightforward and is intrinsically connected
not only to the application domain but also to the existing
legacy systems and the long-term vision that is followed by
the company.

Future work will be devoted to the remaining phases of
the life-cycle methodology, and particularly the assessment of
each interface template according to a proper set of character-
istics that will allow deriving the recommended practices.

REFERENCES

[1] M. Wooldridge, An Introduction to Multi-Agent Systems. John Wiley
and Sons, 2002.

[2] P. Leitão, S. Karnouskos, L. Ribeiro, J. Lee, T. Strasser, and A. W.
Colombo, “Smart agents in industrial cyber–physical systems,” Proceed-
ings of the IEEE, vol. 104, no. 5, pp. 1086–1101, May 2016.

[3] P. Leitão and S. Karnouskos, Industrial Agents: Emerging Applications
of Software Agents in Industry. Elsevier, 2015.

[4] V. Marik and D. McFarlane, “Industrial adoption of agent-based tech-
nologies,” IEEE Intelligent Systems, vol. 20, no. 1, pp. 27–35, Jan. 2005.

[5] S. Karnouskos and P. Leitão, “Key contributing factors to the acceptance
of agents in industrial environments,” IEEE Transactions on Industrial
Informatics, vol. 13, no. 2, pp. 696–703, Apr. 2017.

[6] P. Vrba, P. Tichý, V. Mařík, K. H. Hall, R. J. Staron, F. P. Maturana,
and P. Kadera, “Rockwell automation's holonic and multiagent control
systems compendium,” IEEE Transactions on Systems, Man, and Cy-
bernetics, Part C (Applications and Reviews), vol. 41, no. 1, pp. 14–30,
jan 2011.

[7] P. Leitão, S. Karnouskos, L. Ribeiro, P. Moutis, J. Barbosa, and T. I.
Strasser, “Common practices for integrating industrial agents and low
level automation functions,” in IECON 2017 - 43rd Annual Conference
of the IEEE Industrial Electronics Society. IEEE, Oct. 2017.

[8] IEEE Project P2660.1 – Recommended Practices on Industrial Agents:
Integration of Software Agents and Low Level Automation Functions.
[Online]. Available: https://standards.ieee.org/develop/project/2660.1.
html

[9] S. Karnouskos, R. Sinha, P. Leitão, L. Ribeiro, and T. Strasser, “Assess-
ing the integration of software agents and industrial automation systems
with ISO/IEC 25010,” in IEEE International Conference on Industrial
Informatics (INDIN), 2018.

[10] G. Zhabelova and V. Vyatkin, “Multiagent smart grid automation ar-
chitecture based on iec 61850/61499 intelligent logical nodes,” IEEE
Transactions on Industrial Electronics, vol. 59, no. 5, pp. 2351–2362,
2012.

[11] W. Mahnke, S.-H. Leitner, and M. Damm, OPC unified architecture.
Springer Science & Business Media, 2009.

[12] G. Hohpe, Enterprise integration patterns : designing, building, and
deploying messaging solutions. Boston: Addison-Wesley, 2004.

[13] T. Watteyne, V. Handziski, X. Vilajosana, S. Duquennoy, O. Hahm,
E. Baccelli, and A. Wolisz, “Industrial wireless IP-based cyber –physical
systems,” Proceedings of the IEEE, vol. 104, no. 5, pp. 1025–1038, May
2016.


