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ABSTRACT

A direction of arrival (DOA) estimator based on sparse
Bayesian learning (SBL) is implemented as a fixed-point
arithmetic prototype for an FPGA platform. The prototype is
developed from a known algorithm mainly using high-level
synthesis with C++ based model specifications. The spe-
cialized equations of the algorithm are reduced to arithmetic
operations considering the signal flow within the iterative
structure. Cholesky factorization is used to solve the matrix
inverse problem. Scheduling of each module is done as soon
as possible to make use of the parallel FPGA architecture.
Different fixed-point word length assumptions are explained
and implementation results are shown in terms of resources
and latency. Finally, a representative DOA source scenario is
simulated and tested with the implemented prototype hard-
ware in the loop. The comparison with a floating-point
reference implementation is found to have good agreement
with the fixed-point implementation.

Index Terms— Array processing, directions of arrival
(DOA) estimation, FPGA, high-level synthesis

1. INTRODUCTION

Direction of arrival (DOA) estimation is used in radar, com-
munication, sonar and seismology applications for localizing
sources by sensing wavefields. A sparse representation of the
DOA problem allows estimation with high spatial or tempo-
ral resolution [1]. Sparse Bayesian learning (SBL) [2], solves
this undetermined linear inverse problem for which numerous
algorithms have been presented [3–5].

A field-programmable gate array (FPGA) implementation
for SBL is of great interest due to possible real-time dimen-
sion reduction of online measurements, e.g. in directional
evaluation of fading and two-ray model measurements [6–8].
Moreover, FPGAs are becoming more tightly integrated to-
gether with high-speed analog-digital converters (ADCs)
which enable new applications. The use of arbitrary preci-
sion fixed-point arithmetic in FPGAs offers fast processing
without loosing too much accuracy.

In this paper we present an FPGA implementation of
the SBL DOA estimator in [4] using fixed-point arithmetic.
The SBL algorithm performs better than MUSIC [4] and

ultimately estimates one signal power parameter per source
rather than the complex source amplitudes individually per
snapshot. This amounts to a significant reduction of the de-
grees of freedom in the estimation problem resulting in low
variance of the DOA estimates. FPGA-based DOA estima-
tion implementations using MUSIC were presented in [9, 10]
which have been realized by hardware description on the
register-transfer level. Highly developed FPGAs enable rapid
prototyping of algorithms using high-level synthesis (HLS)
for FPGA as used in this work. A prototyping setup similar
to [11] ensures fast verification of the prototype.

2. SIGNAL MODEL

A K-sparse vector x l ∈ CM is observed as signal y l ∈
CN on a sensor array with N sensors, with N � M ,
through linear transformation with a transfer matrix A =
[a1, . . . ,aM ] ∈ CN×M and noise n l. A grid with M
points define the possible DOA of K impinging waves with
far-field and narrowband assumption at a fixed frequency ω
and velocity of propagation c. The indices of the K non-
zero sources of x l, where K � M , define the active set
Ml = {m ∈ N|xml 6= 0} = {m1,m2, . . . ,mK}. A total
of L snapshots are taken with stationary active set Ml = M
to form the multi-snapshot, or multiple measurement vector
(MMV), Y = [y1, . . . ,yL] ∈ CN×L as

Y = AX +N (1)

with X = [x 1, . . . ,xL] ∈ CM×L and additive noise N =
[n1, . . . ,nL] ∈ CN×L which is assumed to be i.i.d complex
Gaussian, CN (0, σ2), across sensors and snapshots.

Each array steering vector am, as m-th column of A, de-
scribes the time delays τm = [τm1, . . . , τmN ]T with respect
to the sensors for a wave front with direction θm. For a uni-
form linear array (ULA) with element spacing d, the nm-th
element of A is e−jωτnm = e−j(n−1)ωd

c sin θm .

2.1. Bayesian Formulation

The SBL framework [4] based on [3] defines a Gaussian like-
lihood function of Y |X [4, Eq. (3)] as

p(Y |X ;σ2) =
exp(− 1

σ2 ‖Y −AX ‖2F )
(πσ2)NL

, (2)



additive complex Gaussian noise with variable variance σ2.
The prior distribution of each complex source amplitude xml

is modeled with hyperparameters γm ∈ γ = [γ1, . . . , γM ]T

stationary across different snapshots l as

pm(xml; γm) =

{
δ(xml), for γm = 0

1
πγm

e−|xml|
2/γm , for γm > 0

(3)

p(X ;γ) =

L∏
l=1

CN (0,Γ) (4)

with Γ = diag(γ) = E[x lx
H
l ;γ], the covariance matrix of

the uncorrelated complex source amplitudes. The SBL algo-
rithm of [4] estimates the source powers by estimating the
hyperparameters Γ.

3. HARDWARE ALGORITHM

Table 1. SBL FPGA Algorithm
1: Input: Y
2: Initialize: LΣ = cholesky

(
0.1 · IN +AAH

)
, jmax = 500

3: Sy = 1
L

L∑
l=1

y ly
H
l

4: tr(Sy)
5: while ∆γM > εmin · ‖γold‖1 and j < jmax do
6: j = j + 1, γold = γnew

7: for m = 1 to M do

8: γnew
m = γold

m ·
√

(L−1
Σ

am)−HL−1
Σ

SyL
−H
Σ

(L−1
Σ

am)

‖L−1
Σ

am‖22
9: Σy,m = Σy,m−1 + amaH

mγnew
m

10: ∆γm = ∆γm−1 + |γnew
m − γold

m |
11: gm =

∑m+1
i=m−1 γ

new
i

12: pm =

{
gm (gm−1 < gm ≤ gm+1) ∧ (1 < m < M)

0 else
13: Mm = {i ∈ (Mm−1 ∪m) | K largest peaks in pi}
14: end for
15: AM = [am1 , . . . ,amK ]
16: RM = cholesky

(
AH

MAM
)

17: Q = AMR−1
M

18: (σ2)new = 1
N−K

(
tr(Sy)− tr(QHSyQ)

)
19: Σy = Σy,M + (σ2)newIN

20: LΣ = cholesky(Σy)
21: end while
22: Output: M, γnew, (σ2)new

A SBL algorithm, based on [4, Algorithm 1] and adopted
for FPGA hardware implementation, is summarized in Ta-
ble 1. At the input, each multi-snapshot Y is used only as
data sample covariance matrix Sy , defined as

Sy =
1

L

L∑
l=1

y ly
H
l (5)

which leads to an averaging over L snapshots. Only the lower
triangle of Hermitian y ly

H
l is calculated during snapshot ac-

quisition. Double-buffering ensures gap-free operation be-
tween multi-snapshots. By allowing only L = 2Lb with Lb ∈
N, Sy is derived through reinterpretation of the fixed-point
data type, i.e. shifting the binary point. The hyperparameters
γnew
m in [4, Eq. (SBL1)] are updated iteratively as

γnew
m =

γold
m√
L

∥∥∥Y HΣ−1
y am

∥∥∥
2
/
√

aH
mΣ−1

y am (6)

with the inverse data model covariance matrix Σ−1
y . [4, Eq.

(SBL)] and [4, Eq. (M-SBL)] are not considered in this work.
Σy is a Hermitian positive definite matrix with its lower tri-
angular Cholesky factor

LΣ = cholesky (Σy) , (7)

where Σy = LΣL
H
Σ is the Cholesky factorization. LΣ is used

to solve
Σ−1

y am = L−H
Σ L−1

Σ am (8)

by forward- and back-substitution. Using Eq. (8) and Sy ,
updating hyperparameters γnew

m changes to

γnew
m = γold

m ·

√
(L−1

Σ am)−HL−1
Σ SyL

−H
Σ (L−1

Σ am)

‖L−1
Σ am‖22

(SBL1)
where L−1

Σ am is reused in the denominator as aH
mΣ−1

y am =

‖L−1
Σ am‖22. We reuse intermediate results during Cholesky

factorization for forward- or back-substitution to reduce
costly 1/x-operations.

The data model covariance matrix Σy is calculated in
M + 1 passes. First, all contributions from each γm are
summed

Σy,m = Σy,m−1 + amaH
mγnew

m , Σy,0 = 0 (9)

by only evaluating the lower triangle of amaH
m. Finally, the

noise estimate is added to the real diagonal as

Σy = Σy,M + (σ2)newIN . (10)

For finding the active set M, we use a 3-stage processing
pipeline. First, to reduce false peaks due to limited precision
we filter the γnew = [γnew

1 , . . . , γnew
M ]T with a moving sum of

size 3

gm =

m+1∑
i=m−1

γnew
i . (11)

No scaling by 1/3 is applied as only indices are relevant. Sec-
ond, we use a trivial peak detection algorithm on gm

pm =

{
gm (gm−1 < gm ≤ gm+1) ∧ (1 < m < M)

0 else.
(12)



Third, the K largest peaks are selected in M passes out of
K + 1 peak candidates

Mm = {i ∈ (Mm−1 ∪m) | K largest peaks in pi} (13)

with M = MM and M0 = {}. The transfer matrix defined
by the active set is AM ∈ CN×K . Using the upper triangular
Cholesky factor

RM = cholesky
(
AH

MAM

)
(14)

with AH
MAM = RH

MRM, the projection matrix P based on
the active set is

P = AM(RH
MRM)−1AH

M = QQH (15)

with Q ∈ CN×K as

Q = AMR−1
M , (16)

calculated with back-substitution. Alternatively, a matrix Q
can be directly obtained by QR factorization. However, Vi-
vado HLS only includes a floating-point implementation of
an QR factorization but a fixed-point Cholesky factorization.

The noise variance estimation [4, Eq. (27)] is rewritten
using Eq. (15), Eq. (16), and tr(QQHSy) = tr(QHSyQ) as

(σ2)new =
1

(N −K)

(
tr(Sy)− tr(QHSyQ)

)
(17)

with constant (N −K)−1, a signal part tr(Sy) which is cal-
culated only once per multi-snapshot, and an active signal
part tr(QHSyQ) which only needs the upper triangle of Sy .
Hyperparameters (γnew, (σ2)new) are updated iteratively up to
jmax iterations or as long as source power changes sufficiently,

∆γm = ∆γm−1 + |γnew
m − γold

m |, ∆γ0 = 0 (18)

∆γM > εmin · ‖γold‖1, (19)

reformulated from the convergence rate ε [4, Eq. 25] to avoid
a division and optimize for serial input.

4. HARDWARE IMPLEMENTATION

The algorithm [4, Algorithm 1] is split up into modules ac-
cording to Fig. 1 (a) with well defined interfaces. Either
streaming or dual-port memory is used between the mod-
ules. Xilinx Vivado HLS 2017.2 is used for transforming
the hardware specification of individual modules on an algo-
rithmic level based on C++ into a specification in Verilog
or VHDL on the register-transfer level. We use several
modules, opposed to a monolithic HLS description of the
algorithm, which reduces complexity for the HLS tool and
lead to more predictable results. Data dependencies be-
tween modules translate to a coarse grain scheduling scheme
as shown in Fig. 1 (b). The development of each module

y l Sy SySy tr(Sy) (σ2)new (σ2)new

LΣ γnew find M M
cholesky ε ≤ εmin end

γnew

Σy Σy

(a) data path

runtime →Sy

tr(Sy)

Σy

LΣ init
γnew γ1 γ2 . . . γM γ1 . . .

ε ≤ εmin

find M
(σ2)new

iteration 1 complete

(b) Scheduling

Fig. 1. (a) data path and (b) scheduling of modules for the
implemented SBL algorithm. Structure for iterative fitting
of Σy . Sy and tr(Sy) need to be calculated only once per
multi-snapshot. Data dependencies limit possible parallelism
of operations.

focuses on the algorithmic level using a subset of C++, al-
lowed by Vivado HLS to produce synthesizable results. HLS
linear algebra library and custom operations are both us-
ing arbitrary precision fixed-point signed and unsigned data
types ap fixed<W,WI> and ap ufixed<W,WI> each
with total bit-width W, integer width WI, and fraction width
WF=W-WI.

The input y l is a 32 bit wide sensor data stream. Each
sensor sample consists of concatenated two’s complement
signed real and imaginary part with W=16 bit each and WI=2
to allow values symmetric around zero. This enables, e.g.,
feeding the system with samples from an ADC, optionally
prepended with automatic gain control (ACG). The outputs
of the system are (σ2)new with W=32 bit, γnew with W=48 bit,
active set M as unsigned integers, and exit criteria signaling.
The transfer A is pre-calculated for a given sensor array with
W=16 bit, implemented as a look-up table and instantiated
at several HLS modules. Normalization of A by 1/

√
M is

beneficial for required WI when calculating LΣ.

4.1. Hardware Results

The resources and latencies of the synthesized system are
based on the specific parameters M , N , K, and clock fre-
quency fclk. For M = 512, N = 16, K = 3 and fclk =
150MHz, a summary of resources for each module is in Fig. 2
together with introduced latency by scheduling a single mod-



ule. The synthesized HLS C++ implementation can processes
43 iterations/s. This is faster than the MATLAB implemen-
tation (floating-point reference) of 24 iterations/s on a Intel
Xeon CPU E5-2690 v3 at 2.60GHz.
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Fig. 2. Resource utilization and introduced latency for each
module. Based on used Kintex-7 XC7K325T FPGA with
Slice look-up-tables (LUTs), Slice registers (FF), special
digital-signal-processing (DSP) slices, block RAM (BRAM)
of 18 kbit. Total LUT=203800, FF=407600, DSP=840,
BRAM=890.

Clearly, calculating γnew
m utilizes most resources and con-

tributes severely to the overall latency, e.g. due to 1/
√
x, which

could be improved by fast approximation techniques [12] or
stronger parallelism.

5. SIMULATION RESULTS

The fixed-point prototype, developed with Vivado HLS, is
running on an Kintex 7 FPGA and connected through a
TCP/IP prototyping setup with MATLAB. It is compared
with a floating-point reference in MATLAB. An example
scenario similar to [4] places K = 3 independent sources
on an angular grid in the interval θ ∈ [−90, 90)◦ with
M = 512 different angles. The sources are located at
−3.3, 1.9, and 74.9◦ with magnitudes 12, 22, and 20 dB.
An ULA with N = 16 sensors is used. Additive i.i.d.
complex Gaussian noise is added according to a given
array SNR = 20 log10 (‖Ax l‖2/nrel). The MMV Y has
L = 64 snapshots, is mapped to [−1, 1] + [−1, 1]j for both,
and quantized for the fixed-point prototype. A Monte Carlo
simulation with J = 100 realizations are carried out. A
widely used quality measure for DOA estimation is

DOA RMSE =

√√√√ 1

K

1

J

K∑
k

J∑
j

|θmk
− θ̂mk,j |2 (20)

with k-th source direction θmk
and k-th estimated direc-

tion θ̂mk,j , for which the fixed-point FPGA implementation
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Fig. 3. Comparison between the presented fixed-point imple-
mentation and floating-point reference for J = 100 Monte
Carlo simulations. (a) DOA estimation error, (b) noise power
estimation, (c) iterations for ε ≤ εmin, (d) source power esti-
mation error.

is compared with the floating-point reference in Fig. 3 (a).
Noise power estimation is shown in Fig. 3 (b) with respect
to σT = 10−SNR/10E[‖AX ‖2F ]/L/N . The mean number of
iterations necessary for the stop criteria Eq. (19) is shown in
Fig. 3 (c). The error in source power estimation is shown in
Fig. 3 (d) as

γRMSE =

√√√√ 1

K

1

J

K∑
k

J∑
j

|E[|xmk,l|2]j − γnew
mk,j

|2 (21)

with k-th source power E[|xmk,l|2]j and k-th estimated source
power γnew

mk,j
. For high array SNR, estimated source power

of the fixed-point implementation is less accurate than the
floating-point reference due to limited dynamic range in cal-
culating a single iteration.

6. CONCLUSION

The presented implementation of a sparse Bayesian learning
algorithm for directions of arrival estimation based on [4] is
suitable for FPGA implementation using on fixed-point arith-
metic. It offers higher performance with continuous operation
and has a good agreement with the floating-point reference in
terms of DOA root mean squared error. Several signal pro-
cessing steps of the SBL algorithm benefit from the paral-
lelism inherent to the FPGA architecture.
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