On homeomorphically irreducible spanning trees in cubic graphs

Arthur Hoffmann-Ostenhof | Kenta Noguchi | Kenta Ozeki

1Institute of Information Systems, Technical University of Vienna, Vienna, Austria
2Department of Mathematics, Tokyo Denki University, 5 Senjuasahicho, Adachi-ku, Tokyo 120-8551, Japan
3Environment and Information Sciences, Yokohama National University, 79-2 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan

Correspondence
Arthur Hoffmann-Ostenhof, Institute of Information Systems, Technical University of Vienna, Favoritenstraße 9, A-1040 Vienna, Austria. Email: arthurzorroo@gmx.at

Funding information
Contract grant sponsor: Austrian Science Fund (FWF); Contract grant number: P 26686; Contract grant sponsor: JSPS KAKENHI; Contract grant number: 25871053; Kawarabayashi Large Graph Project, Japan; Contract grant number: JPMJER1201.

Abstract
A spanning tree without a vertex of degree two is called a HIST, which is an abbreviation for homeomorphically irreducible spanning tree. We provide a necessary condition for the existence of a HIST in a cubic graph. As one consequence, we answer affirmatively an open question on HISTs by Albertson, Berman, Hutchinson, and Thomassen. We also show several results on the existence of HISTs in plane and toroidal cubic graphs.

KEYWORDS
bipartite, cubic graph, cyclic edge-connectivity, fullerene, HIST, spanning tree

1 | INTRODUCTION

All graphs considered here are finite and simple. In a connected graph G, a spanning tree that does not have a vertex of degree two is called a homeomorphically irreducible spanning tree, or abbreviated a HIST. Several conditions that ensure the existence of a HIST in a graph are known, see for instance [1,3,9]. In this article, we only consider HISTs in cubic graphs. For an integer k, a connected cubic graph G that contains two disjoint cycles is said to be cyclically k-edge-connected if deleting any set of at most $k - 1$ edges from G does not separate G into two components both of which have a cycle. The following question was asked in [1, p. 253].

Question 1. Does there exist a cyclically k-edge-connected cubic graph without a HIST for each positive integer k?
Note that every HIST T in a cubic graph has only vertices of degree one and three. Hence $E(G)$ has a partition into $E(T)$ and the edge set of a union of disjoint cycles.

Let us call a 2-regular subgraph H of a connected graph G nonseparating if $G - E(H)$ is connected. For a set S of edges in G, we denote by (S) the subgraph of G induced by the edges in S. So, the vertex set of (S) is the set of end vertices of edges in S. We answer Question 1 by applying Corollary 3, a corollary of Theorem 2 that turns out to be useful for proving that certain cubic graphs do not have a HIST.

Theorem 2. Let G be a cubic graph with a HIST T, and let $H = (E(G) - E(T))$. Then H is a nonseparating 2-regular subgraph of G satisfying $|V(H)| = |V(G)|/2 + 1$.

Proof. Let G be a cubic graph with a HIST T and let $H = (E(G) - E(T))$. Since $V(H)$ is the set of all leaves of T and $G - E(H) = T$, H is a nonseparating 2-regular subgraph of G.

Let t_1 be the number of leaves in T, and let t_3 be the number of vertices of degree 3 in T. Since T is a HIST, we have $t_1 + t_3 = |V(G)|$. On the other hand, it is easy to see that $t_1 = t_3 + 2$. (This can be obtained by the Handshaking Lemma or by induction. For example, see [13, Exercise 2.1.23 on p. 70].) Therefore, $|V(G)| = 2t_1 - 2$. Since $V(H)$ is the set of all leaves of T, we have $|V(H)| = t_1$. By using the above equations the proof is completed.

Corollary 3. Let G be a bipartite cubic graph. If G has a HIST, then $|V(G)| \equiv 2 \pmod{4}$.

Proof. Let G be a bipartite cubic graph with a HIST. By Theorem 2, $H = (E(G) - E(T))$ is a nonseparating 2-regular subgraph of G satisfying $|V(H)| = |V(G)|/2 + 1$. Since G is bipartite, $|V(H)|$ is even and hence $|V(G)| \equiv 2 \pmod{4}$.

Remark. Corollary 3 implies that no bipartite cubic graph G with $|V(G)| \equiv 0 \pmod{4}$ has a HIST. However, if G is a bipartite cubic graph with $|V(G)| \equiv 2 \pmod{4}$, then G may or may not have a HIST. Both cases could happen, see Section 3.

Now we obtain a positive answer to Question 1 by applying Corollary 3 together with the following proposition.

Proposition 4. For every positive integer k, there exists a cyclically k-edge-connected bipartite cubic graph G such that $|V(G)| \equiv 0 \pmod{4}$.

Proposition 4 can be directly proved by considering vertex-transitive graphs: it is known that for any positive integer k, there are infinitely many vertex-transitive bipartite cubic graphs G of girth at least k with $|V(G)| \equiv 0 \pmod{4}$, see for example [12]. Since the cyclic edge-connectivity of a vertex-transitive graph is equal to its girth (see [11]), Proposition 4 holds. However, since this proof requires several algebraic tools, we prefer to present an elementary proof which also offers a new method to construct cubic bipartite graphs with high cyclic edge-connectivity, see Theorem 7 and Lemma 8 in Section 2.

In Section 3, we show another application of Theorem 2 to plane and toroidal cubic graphs.

2 | PROOF OF PROPOSITION 4

In order to prove Proposition 4, we use the following fact that can be proved in several ways, for instance, by the probabilistic method (see [14, Theorems 2.5 and 2.10]) and by the constructive method (see [5]).

Fact 5. For every positive integer d, there exists a d-connected $4d$-regular graph of girth at least d.
Then we apply the well-known concept of an inflation (see for instance [6]):

Definition 6. Let \(H \) be a graph and let \(G \) be a cubic graph. Then \(G \) is called an inflation of \(H \) if \(G \) contains a 2-factor \(F \) consisting of chordless cycles such that the graph obtained from \(G \) by contracting each cycle of \(F \) to a vertex is isomorphic to \(H \).

If the minimum degree of \(H \) is at least 3, then obviously an inflation of \(H \) exists, since one obtains (informally speaking) an inflation of \(H \) by expanding every vertex of \(H \) to a cycle. The next theorem guarantees the high cyclic edge-connectivity for each inflation of graphs with high connectivity and girth.

Theorem 7. Let \(k \geq 3 \) and let \(H \) be a \(k \)-connected graph with girth at least \(k \). Then every inflation of \(H \) is cyclically \(k \)-edge-connected.

Proof. Let \(G \) be an inflation of \(H \). For each vertex \(x \in V(H) \), denote the unique cycle of \(F \) (as in Definition 6) in \(G \) corresponding to \(x \) by \(C_x \). We say that a cycle \(C \) in \(G \) is transverse if there are two distinct vertices \(x_1 \) and \(x_2 \) in \(H \) with \(V(C_x) \cap V(C) \neq \emptyset \) for each \(x \in \{x_1, x_2\} \). Otherwise \(C \) is said to be non-transverse, that is, \(C = C_x \) for some vertex \(x \in V(H) \).

Suppose by contradiction that \(G \) is not cyclically \(k \)-edge-connected. Then \(G \) has a set \(S \) of edges with \(|S| \leq k - 1 \) such that \(G - S \) has precisely two components \(D_1 \) and \(D_2 \) both having a cycle. By taking such a set \(S \) as small as possible, we may assume that \(S \) is a matching.

For \(i \in \{1, 2\} \), let \(D_i^H \) be the subgraph of \(H \) induced by the vertex set

\[
\{ x \in V(H) : V(C_x) \cap V(D_i) \neq \emptyset \}.
\]

So, \(D_i^H \) is obtained from \(D_1 \) in the following way: for each \(x \in V(H) \) such that \(C_x \cap D_1 \) is not the null graph, where \(C_x \cap D_1 \) is the maximum common subgraph of \(C_x \) and \(D_1 \), contract \(C_x \cap D_1 \) into one vertex and delete all resultant loops.

Let \(S_{V}^{H} = \{ x \in V(H) : E(C_x) \cap S \neq \emptyset \} \),
and \(S_{E}^{H} = S \cap E(H) \)

\[
= \{ e \in S : e \notin E(C_x) \} \quad \text{for any} \ x \in V(H) \}.
\]

Note that \(|S_{V}^{H}| + |S_{E}^{H}| \leq |S| \leq k - 1 \).

Suppose that \(V(D_i^H) - S_{V}^{H} \neq \emptyset \) for each \(i \in \{1, 2\} \). Then \(H - S_{V}^{H} - S_{E}^{H} \) has two components \(D_1^H \) and \(D_2^H \). In this case, the number of vertex disjoint paths from a vertex of \(D_1^H \) to a vertex of \(D_2^H \) is at most \(|S_{V}^{H}| + |S_{E}^{H}| \leq k - 1 \), which contradicts by Menger's Theorem that \(H \) is \(k \)-connected.

Therefore, we may assume without loss of generality that \(V(D_1^H) - S_{V}^{H} = \emptyset \).

Note that \(D_1 \) contains by assumption a cycle, say \(C_1 \), and \(C_1 \) must be transverse (otherwise, \(C_1 = C_x \) for some \(x \in V(D_1^H) - S_{V}^{H} \), but this contradicts that \(V(D_1^H) - S_{V}^{H} = \emptyset \)). Thus, \(C_1 \) corresponds to a closed trail in \(D_1^H \), say \(C_1^H \). Since the girth of \(H \) is at least \(k \) and every closed trail contains a cycle, we have \(|V(C_1^H)| \geq k \), which is a contradiction to the fact that \(V(C_1^H) \subseteq V(D_1^H) \subseteq S_{V}^{H} \) and \(|S_{V}^{H}| \leq k - 1 \).

Note that the statement of the above theorem does not hold if \(H \) is only demanded to be \(k \)-edge-connected.

Lemma 8. Let \(k \geq 2 \) and let \(H \) be a \(2k \)-regular graph. Then there exists a bipartite cubic inflation of \(H \) with \(2k|V(H)| \) vertices.
Figure 1 A graph H with Eulerian orientation (the left side) and the bipartite graph G obtained by an inflation of H (the right side) for the case $k = 2$

Notes. In G, the vertices with outdegree 3 are represented by white circles, while the vertices with indegree 3 are represented by black circles.

Proof. Since every inflation of H has $2k|V(H)|$ vertices, it suffices to show that H has a bipartite inflation.

Since each component of H is Eulerian, it has an Eulerian orientation, that is, the indegree equals the outdegree for every vertex of H. Then we can expand every vertex x of H to a cycle C_x to obtain an inflation G with the property that the oriented edges incident with the vertices of C_x are alternately directed toward and away from C_x (see Figure 1). Furthermore, it is possible to extend this partial orientation to an orientation of G (by orienting the edges of each cycle C_x) such that every vertex of G has then either outdegree 3 or indegree 3. This shows a 2-coloring of G, and hence G is bipartite.

Proof of Proposition 4. Let k be a positive integer. By Fact 5, there exists a k-connected $4k$-regular graph H of girth at least k. Since H is $4k$-regular, it follows from Lemma 8 that there exists a bipartite cubic inflation G with $4k|V(H)|$ vertices. Since H is k-connected and has girth at least k, it follows from Theorem 7 that G is cyclically k-edge-connected, which completes the proof.

3 | HISTS IN PLANE AND TOROIDAL CUBIC GRAPHS

Let us call a plane cubic graph with a HIST in short a pcH-graph. A pcH-graph is by its definition a generalization of a cubic Halin graph (defined in [8]) which is a pcH-graph with a HIST such that all the leaves of the HIST induce precisely one cycle. It is easy to see that any cubic Halin graph contains a triangle. In contrast to cubic Halin graphs, pcH-graphs can have girth 4 or even 5, see Figure 2. Note that it is NP-complete to determine whether a plane cubic graph has a HIST, see [4]. (To be exact, Douglas [4] proved that only for plane graphs of maximum degree at most 3. However, replacing each vertex of degree at most 2 with a certain gadget, we can easily modify the proof to show the NP-completeness of the HIST problem for plane cubic graphs.) Since any nonfacial cycle of a cubic plane graph is separating, by restricting Theorem 2 to the planar case we obtain:

Corollary 9. Let G be a plane cubic graph with a HIST. Then G contains a nonseparating 2-regular subgraph H consisting of facial cycles such that $|V(H)| = |V(G)|/2 + 1$.

By applying Corollary 9, we see for instance that the dodecahedron does not have a HIST, since it has 20 vertices and every facial cycle has length 5. The dodecahedron belongs to the class of fullerene graphs, which are plane 3-connected cubic graphs with facial cycles of length 5 and 6 only, see Figure 2 for an example. Using Corollary 9, it is straightforward to prove that other plane cubic graphs, for instance the Buckminster fullerene graph [7, Figure 9.5 on p. 211] and the Grinberg graph [2,
Figure 2. A fullerene graph with a HIST

Figure 3. Plane graphs A, B, and H

Notes. The shaded faces correspond to pentagons in the obtained fullerene graph, and the bold edges represent those in a HIST.

Figure 18.9 on p. 480], do not have a HIST. This should illustrate the usefulness of the above corollary.

We asked in the first version of this article whether there are finitely or infinitely many fullerene graphs with a HIST which is answered below.

Theorem 10. There are infinitely many fullerene graphs with a HIST.

Proof. Let A, B, and H be the plane graphs shown in Figure 3 (every label of a vertex in the figure is shown left above the vertex). By identifying the cycle C_1 of A and the cycle C_2 of B such that u and v are identified, we obtain a fullerene graph with a HIST which is illustrated in bold edges. In order to construct infinitely many fullerene graphs with HISTs, we use the graphs, H_i, which are defined as follows (during the construction of H_i, we keep the bold edges of every copy of H that will then define the edges of the HIST within H_i in the fullerene graph). First, let H_0 be a plane cycle of length 18 and let $H_1 \approx H$. Then define the graph H_i ($i \ge 2$) recursively by identifying the outer cycle C'_i in a copy of H and the cycle (18-gon) C'_2 in H_{i-1} so that u' in C'_1 and v' in C'_2 are identified. Now, we construct for every nonnegative integer k the fullerene graph F_k with $36k + 46$ vertices. We identify the cycle
Figure 4 The dual of bipartite cubic hexangulations G of the torus satisfying $|V(G)| \equiv 0 \pmod{4}$

Note. The top and the bottom, the left and the right are identified, respectively.

Figure 5 Hexangulations G_0, G_1 of the torus, and T of the annulus

Notes. In each figure, we obtain a cylinder by identifying the top and the bottom. The bold edges represent edges in a HIST.

C_1 in A and the outer cycle C'_1 in H_k such that u in C_1 and u' in C'_1 are identified. Finally, we identify the cycle C'_1 in H_k and the outer cycle C_2 in B such that v' in C'_2 and v in C_2 are identified. Note that the 12 shaded faces in Figure 3 are pentagons of F_k. It is not difficult to verify that the bold edges in $A, B,$ and the bold edges of H_i induce a HIST in F_k.

Remark. In the proof of Theorem 10, every facial cycle of the fullerene graph F_k, which is edge-disjoint with the defined HIST, has length 6. In contrast to F_k, the fullerene graph in Figure 2 has facial cycles of length 5, which are edge-disjoint with the illustrated HIST. By computer search, Jatschka [10] showed that there are fullerene graphs with HISTs with 38 vertices and that no fullerene graph with less than 38 vertices has a HIST.

A class of graphs similar to fullerene graphs are cubic hexangulations. Recall that a *hexangulation* of a surface is a 2-connected graph with an embedding on the surface such that every facial cycle has length 6. For example, consider the dual of the triangulation in Figure 4. Using this type of construction, we see that there are infinitely many bipartite cubic hexangulations G of the torus with $|V(G)| \equiv 0 \pmod{4}$. Corollary 3 directly shows that such hexangulations G do not contain a HIST. We asked in the first version of this article whether there are finitely or infinitely many hexangulations of the torus with a HIST. This question is answered in the next theorem.

Theorem 11. There are infinitely many cubic hexangulations of the torus with a HIST.

Proof. Let G_0 and G_1 be the hexangulations of the torus shown in the left and the center of Figure 5. (The top and the bottom, the left and the right are identified, respectively.) Let T be the hexangulation of the annulus shown in the right of Figure 5. (The top and the bottom are
identified.) We construct the cubic hexangulation G_k ($k \geq 2$) of the torus recursively, by (i) cutting G_{k-1} along the cycle $v_1v_2v_3v_4v_5v_6$, and (ii) inserting T with appropriate identification. Then G_k is a cubic hexangulation with $(12k + 10)$ vertices, and has a HIST, which is presented in Figure 5 by the bold edges.

The length of a shortest noncontractible cycle of a graph embedded on a nonspherical surface is called the edge-width of the graph. Note that G_k in the proof of Theorem 11 is bipartite for every $k \geq 0$, and has girth 6 and edge-width exactly 6 for every $k \geq 1$.

After submitting the first version of this article, the authors were informed that Zhai et al. [15] also proved Theorem 11, together with the case of the Klein bottle. It was also announced that their constructed hexangulations can have arbitrary large edge-width.

ACKNOWLEDGMENTS

We are grateful to R. Nedela, P. Vrána, and T. Kaiser for helpful discussions. We also thank Y. Egawa for several useful comments that shortened the proof of Theorem 7. We are also grateful to the anonymous referees. In particular, one of the referees suggested a proof of Proposition 4 using vertex-transitive graphs. Part of the work was done by the first and third authors during “8th Workshop on the Matthews-Sumner Conjecture and Related Problems” in Pilsen. They appreciate the organizers of the workshop for their hospitality.

ORCID

Kenta Noguchi http://orcid.org/0000-0002-7790-0782
Kenta Ozeki http://orcid.org/0000-0003-3118-0086

REFERENCES

How to cite this article: Hoffmann-Ostenhof A, Noguchi K, Ozeki K. On homeomorphically irreducible spanning trees in cubic graphs. *J Graph Theory*. 2018;89:93–100. https://doi.org/10.1002/jgt.22242