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Abstract—We perform simulations of an induction heating process of a moving thin steel sheet by solving the nonlinear
eddy current problem in frequency domain using harmonic balancing and an algebraic multigrid preconditioner. The
computed Joule losses are then applied as heat sources to a convection-diffusion equation to solve for the temperature
distribution in the plate.
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I. INTRODUCTION

The efficient simulation of induction heating processes
for thin structures is a challenging task, due to the
large time-scale differences of the electromagnetic (EM)
and thermal field quantities [1]. Solving the coupled
(nonlinear) EM-heat system in time-domain results in
large and unnecessary computation times because we are
only interested in the steady state solution.

In our work, we solve the nonlinear eddy current equa-
tion with solution-dependent reluctivity in frequency-
domain with a harmonic balancing finite element method
(HBFEM) from [2], together with an algebraic multigrid
(AMG) preconditioner, evaluate the Joule-losses in the
plate and apply them as sources in a convection-diffusion
equation to compute the thermal field in the plate.

II. MAGNETIC FIELD

Neglecting the displacement currents in Maxwell’s
equation, we obtain the following problem for the mag-
netic vector potential A

∇× ν(|∇ ×A|)∇×A+ σ
∂A

∂t
= Ji, (1)

where ν is the reluctivity, σ the electric conductivity and
Ji the impressed current density. Expanding ν, A and Ji
into a complex Fourier as in [2], we obtain a diagonally
dominant nonlinear system, which we solve with a fixed
point iteration and an AMG-preconditioned GMRES for
the linear system. As basis for the local element subspace,
edge elements with different polynomial order can be
chosen. Since we are using edge elements, an adapted
(auxiliary mesh) AMG [3] must be used to preserve
the discrete gradient fields across the different hierarchy
levels.

III. THERMAL FIELD

The considered steel sheet is moving with velocity
u and we solve (2) for the steady state temperature
distribution T

∇ · uT = c2∇ · (λ(T )∇T ) + 1

ρcv
Ẇ , (2)

with c as the diffusion coefficient, ρ the density, λ the
conduction coefficient and cv the specific heat capacity.
The right hand side term with Ẇ represents the heat
sources, which are Joule losses in our case. This equation
is solved together with Dirichlet- and heat transfer bound-
ary conditions. On the downstream edge of the plate, the
boundary condition is chosen to be a Dirichlet boundary,
mapped to infinity [5], in order not to force a certain
temperature or temperature-gradient at the edge.

IV. COUPLING

The coupling of the magnetic with the thermal field is
realized by computing the Joule losses from the magnetic
simulation and applying it as the source density Ẇ in (2).
Since we solve (1) in frequency domain and (2) in steady
state, we have to average the Joule and eddy current
losses over one period to obtain consistent heat sources

Ẇ =
1

τ

∫ τ

0

(
σ
∂A

∂t
· ∂A
∂t

+ Ji ·
∂A

∂t

)
dt, (3)

where τ is the period length of the base harmonic.
The HBFEM method for the electromagneic field and
convection-diffusion equation for the thermal field is
implemented in the finite element framework CFS++ [4]
and applied to a generic example to study the effect of
different parameters, like number of harmonics or thermal
boundary conditions.
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