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Abstract 

The state of the art literature of condition monitoring (CM) and predictive maintenance does not reflect 

adequate industry-oriented approaches, which address the integration of CM within production scheduling in 

production management systems. Addressing this problem, the present paper proposes a novel approach for 

a machine tool condition based production scheduling. This approach provides a categorization model for 

grouping different products by their unique demands and wear-effects concerning the machine tools’ 

conditions, which is applied in the use-case of metal forming machine tools. 
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1. INTRODUCTION 

Today’s industry is facing economic pressure due to increasing customer demands concerning a product’s 

uniqueness as the individualization of products can be seen as one of the current megatrends dominating 

various industries [1, 2]. However, this trend is not only limited to the consumer goods industry but is present 

along the whole supply chain [3]. Even low-tier industries like the metal forming industry notices an upsurge 

of product variants. Maintenance processes and strategies are not sufficiently prepared to meet this 

expectations and therefore need to be optimized [4]. Furthermore, customer demands such as on-time delivery 

and product quality need to be met as they are essential for not losing the customers [5]. This combination of 

a widening product portfolio and constant basic needs is leading to an increased complexity within the 

production planning and scheduling systems of companies in the production sector [6]. In the case of a flexible 

job shop, those two disciplines are in usual separately examined. A production plan is, generally speaking, a 

long-term plan that tries to fulfill certain time and capacity restrictions as well as to utilize some synergies 

within the overall production system. The outcome is in most cases a schedule that is fixed within a flexibility 

corridor (i.e. some flexibility is left over for short-term planning) [7]. Within production scheduling the 

flexibility corridor is used to utilize short term synergy effects such as set-up-optimization, or for catching up 

delays [cf. 8]. This can be achieved, for example, by changing the production sequences or reassigning 

production orders to production equipment. While doing so, the question arises whether a specific product can 

be produced on a certain production equipment or not. However, in the case of metal forming, this is limited 

by the prevailing production equipment’s technological capabilities. These capabilities can be dimensional-

restrictions, temperature-profiles or even the capability of producing within certain tolerance-levels. Moreover, 

the latter one depends on the current condition of the production equipment’s components. If the 

aforementioned assumptions hold at a production system with varying products, the production sequences 

become condition dependent. In most cases it can be assumed that similar products (or similar components of 

a product) can be produced at the same equipment. However, it also has to be assumed that a product’s (or a 

product’s component’s) unique features such as physical quality attributes differ compared to more or less 

related products (or components) within the product family. While some products (or components) have 

comparatively low-tolerance-levels, others are less sensitive. Furthermore, in the case of metal forming, the 

equipment’s wear-rate depends on the product’s material characteristics. As a result, the capability of 

producing a product depends on an equipment’s condition, on the one hand, and the change of the equipment’s 

condition depends on the products produced, on the other hand. This paper lays the foundation for such a 

condition dependent production sequencing by describing a categorization model for grouping different 



 

 

products by their unique demands and wear-effects concerning condition monitoring by applying an industrial 

use-case. Furthermore, a method for utilizing this categorization within the decision-process for production 

scheduling is presented. 

The remainder of this paper is structured as follows: In section 2, an overview of current research in the fields 

of production scheduling and condition monitoring is given. In section 3, condition based scheduling is 

reviewed, discussed and the concrete research problem is derived which is answered in section 4 using a brief 

case-study. Therefore, a categorization method for integrating condition monitoring and scheduling is 

presented and then applied at a bottleneck machine of a high-grade steel plate manufacturer. Finally, the results 

are summarized and concluded in section 5. 

2. LITERATURE REVIEW AND DISCUSSION 

As the aim of this paper is the integration of condition monitoring and production scheduling, the literature 

review is subdivided into two short overviews about the topics respectively. 

2.1 Production scheduling 

Production planning and scheduling is a major discipline in practices as well as in research within industrial 

engineering and production management, as it can influence the effectiveness and efficiency of a whole 

production system. Scheduling aims at solving the job-shop problem, where “… a set of jobs needs to be 

processed on a set of machines” as Abedinnia et al. describe [9]. It can be dependent on several problem 

specific influence factors and is often short term oriented. For a long period of time production scheduling has 

been done manually with simple tools like spreadsheets or just pen and paper by applying sequencing methods 

such as First-In-First-Out, or Slack. However, due to an increase of customer demands accompanied by an 

increase in the production planning and scheduling complexity, manual scheduling becomes more and more 

challenging. To ensure profitability of a production system the use of computer-enabled optimization is often 

inevitable, as potential cost savings are enormous. [8, 10, 11] 

Especially the area of operations research focuses on this topic, as for example the authors Zhang et al., who 

summarize a wide variety of different algorithms and mathematical models for solving the job-shop problem 

(JSP) [12]. The authors Abedinnia et al. conducted a tertiary study and analyzed current research streams 

within production scheduling. Their findings suggest that there is a research gap within the practical application 

of optimization in production scheduling [9]. In theory, scheduling problems are mathematically difficult 

combinatorial problems. One might think of the set-up optimization within the schedule of n products. If the 

set-up matrix is considered as being not symmetrical there are n! possible schedules. As the number of products 

within the schedule grows, the factorial n! increases faster than all polynomial and exponential functions. 

Hence, scheduling problems are commonly known to be NP-hard, which means that they are not globally 

solvable to optimum in polynomial time. Therfore, mostly approximate algorithms such as genetic algorithms 

are mainly applied on the JSP [9, 11, 13]. Once the necessary data for the scheduling task is gathered, it is 

computational complex to solve towards optimum, but, as mentioned before, there do exist various methods 

to do so. Gathering the necessary data is crucial, as the solution will only be as good as the optimization model 

itself. Hence, in practice it is important to use high quality contemporary data, as scheduling is acknowledged 

being a reactive process, which is dependent on the current state of a system. Moreover, the authors Oulhadj 

et al. emphasize, that there is a lack of research within scheduling, which considers such contemporary shop 

floor data and refer to it as dynamic scheduling [14]. 

2.2 Condition monitoring 

Condition monitoring is commonly known as a process where the status or the condition of a component is 

evaluated by a combination of sensor signals and evaluation software. As mentioned in the introduction, the 

conditions of a production equipment’s component are not binary (sufficient or not sufficient). Conditions are 

regarded as being continuous; while they are good (no wear) at the beginning of a component’s lifetime, they 

unceasingly decrease over time. At the end of a production equipment’s lifetime, the condition is at a level 

where certain quality standards cannot be kept anymore and the equipment has to be maintained or even 

replaced. Condition monitoring is a topic which is not entirely new at all and its origins date back to the 1980s 

[15]. However, with the upraise of the topics smart factory, predictive and prescriptive maintenance, condition 

monitoring has become more popular lately [16–20]. Hence, research moved from manual analogous 



 

 

measurements towards digital on-line condition monitoring. Moreover, it is not limited to the most important 

parts of production equipment anymore as the prices of the used sensors are at a historical minimum nowadays 

and data warehousing of these gathered data in a significant scale is economically viable [21]. Additionally, 

there is a broad variety of sensors, which can be used for condition monitoring tasks. Vibrations (physical and 

/ or acoustic) are fairly often used in condition monitoring, as a production equipment’s wear is almost always 

accompanied by vibrations. Also temperature, electrical current and power consumptions as well as flow, 

humidity etc. can be appropriate signals used within a condition monitoring system. Besides the sensor signal 

itself, the data processing is a crucial step towards calculating an equipment’s conditions. Mainly time-domain 

analyses and frequency-domain analyses are distinguished [19]. While the first one gives insight to tendencies 

(e.g. continuous temperature rise of a component over the past hours), the latter one is used for the detection 

of wear-effects of rotatory equipment (e.g. detection of a certain bearing default by its frequency signature) 

[19]. Condition monitoring systems are often not only limited to show the current condition of an equipment 

but are also used for statistical analysis and machine learning approaches to predict future conditions as, for 

example, shown in [22–24]. As mentioned before, vibration monitoring is a very common way of condition 

monitoring. The authors Delgado-Arredondo, for example, combine sound and vibration analysis to detect 

faults within an electrical motor [18]. It is also possible to monitor a machine tool’s condition with vibration 

monitoring as Dimla et al. show in their paper, where they use a multi-layer perceptron in addition for 

classifying the tool states of a cutting tool [24]. While Agdham et al. also use vibration signals for estimating 

wear of a machine tool with high precision [25], Ruiz-Cárcel et al. even enhance their approach with process 

data for an improved condition monitoring [26]. Besides vibration analysis, a very popular form of condition 

monitoring is motor current signature analysis (MCSA), where the current of an electrical motor is measured, 

transformed into frequency domain and used to predict certain conditions such as stator faults, broken rotor 

bars, or even bearing defaults [27, 28]. In addition to this broad variety of use-cases, there also exist some 

literature reviews such as [19, 29]. 

It can be summarized that there has been extensive research concerning condition monitoring the past few 

years. However, according to the literature analyzed, research is often restricted to laboratory settings and the 

information about the condition is not integrated within the production planning systems most of the time. 

3. CONDITION BASED SCHEDULING 

As mentioned above, the current literature on production scheduling is lacking industrial use-cases which 

utilize computer-enabled optimizing. In addition, the practical use-cases that do exist, often fail on utilizing 

contemporary shop floor data (such as data originating from the condition monitoring systems).However, little 

literature exists which is integrating those two disciplines. [30] 

 
Figure 1 –Integration and Deployment of CMS and PPC 

In spite of the different research, the applicability of existing models often do not provide realistic results and 

are, consequently, not applied in the operational praxis. Especially the interaction between condition 

monitoring of machine components and tools, the scheduled production plan and current quality measurements 

of the products is not considered. Furthermore, many of those models lack a validation in industrial 

environments, as they are often based on idealized assumptions [30]. When focusing on the integration of 

condition monitoring systems (CMS) within a planning approach, theoretical methods are usually used to 

calculate maintenance schedules. In order to enable the deployment of such an approach, it is important for the 

responsible planners and domain experts to understand the algorithms’ planning results. Therefore, the 

achieved results need to reflect the actual situation as close as possible. This can be achieved by using state of 
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the art knowledge regarding predictive / prescriptive maintenance such as industrial data science methods. 

Based on multimodal maintenance records, shop floor and production planning data, prescriptive maintenance 

models are able to predict future events and prescribe optimal maintenance measures. In order to do so, 

predictive data analysis, machine learning, expert domain knowledge and semantic reasoning is considered 

together to improve decision-making by selecting suitable strategies and measures in regards of the whole 

maintenance management [31]. The deployment of an integrated planning approach can be, for example, a 

scheduling algorithm implemented in the company’s IT landscape such as enterprise resource planning (ERP), 

production planning and control (PPC) or manufacturing execution systems (MES). Another possibility is the 

integration within an autonomous production system, or within appropriate reporting and analysis systems 

used as a decision support system for the planner (cf. Figure 1). 

To enhance research in this area, it is the aim of this paper to provide a categorization method for enabling the 

integration of production scheduling and condition monitoring, which is shown as “Integration Layer” in 

Figure 1. 

3.1 Novel perspective on condition based scheduling 

As briefly described in the introduction, the capability of a production equipment to produce a certain product 

can be dependent on its condition. Especially in industries like the metal forming industry, correlations between 

a product’s material characteristics and the machine tool’s condition often exist [20]. While some products (or 

components of a product) need to fulfill narrow tolerance-levels, others are less critical. Hence, for the 

production of the latter ones the equipment’s condition does not need to be at its best level. However, when 

producing a critical product or component, a good condition is essential. One might imagine the milling process 

of a product’s component as a thought experiment. If a certain component has to be assembled (e.g. a press 

fit) in a later production step, not exceeding the defined tolerances during milling is crucial for the product’s 

mountability. For maintaining certain tolerance levels, the machine tool (milling head) has to be at a good 

condition. If the same production equipment is also used to manufacture other, less critical components, it 

seems obvious to adapt the sequence (manufacture the critical product first and others later). However, the 

correlation between an equipment’s condition and product quality is bidirectional, as varying material 

properties (hardness, ductility, etc.) cause distinct wear-effects at the production equipment and therefore lead 

to diverse changes within the equipment’s condition. In addition to milling, other processes like heat treatment 

(temperature profile dependency), pickling and etching (acid condition dependency), or other cutting processes 

like drilling, metal shears cutting and turning are affected by an equipment’s condition dependent sequencing. 

Summarizing, it can be concluded that there is a bidirectional correlation between product quality and an 

equipment’s condition. Hence, this correlation can be utilized within production sequencing in order to 

optimize the effectiveness of a production system. 

4. INDUSTRIAL USE-CASE AND SOLUTION CONCEPT 

Within existing research, a concept for a tool condition monitoring based production planning was proposed 

[cf. 30]. Based on this concept, the current chapter presents a method for a condition dependent production 

categorization which is applied at an industrial use-case in the metal forming industry as well as its utilization 

as a decision-making process within production scheduling. 

A crucial step towards integrating machine tool condition monitoring and production scheduling is an 

appropriate categorization method for describing their correlations. As discussed before, the correlations are 

bidirectional: (i) The production scenario influences the production equipment’s wear over time (especially its 

machine tool’s wear) and (ii) using a particular equipment for manufacturing certain products relies on the 

equipment’s capabilities which are affected by its current conditions. As a condition can be multidimensional 

and difficult to imagine, for its description the term “healthpoints” (𝐻𝑃) is introduced. The term is derived 

from gamification, as it suggests to use “…game design elements in non-game contexts to motivate and 

increase user activity…” as well as their acceptance [32]. A high HP indicates a good condition of a machine’s 

equipment and a low HP symbolizes a worn equipment. Since the conditions can be intuitively described, it is 

possible to categorize a set of products (produced at the same equipment) according to their condition 

dependencies and wear-effects. This is done reciprocally, as the underlying correlations between product 

quality and an equipment’s condition are bidirectional. Therefore, the minimal condition requirements a 

particular product has on its production equipment are referred to as minimum HP (𝐻𝑃𝑚𝑖𝑛). If the current state 



 

 

of an equipment is beneath this minimum level, the respective product cannot be manufactured. If 

manufacturing is possible, each product produced at the production equipment reduces its HP, which is 

modelled by a HP difference (𝛥𝐻𝑃). The latter one can be condition dependent too, as for example, the wear-

rate of an equipment itself [33]. This is the case if an increase of the wear leads to a progressive (more wear 

implies a higher wear-rate) or degressive (more wear implies a smaller wear-rate) change of the wear-rate. 

product ID 𝐻𝑃𝑚𝑖𝑛 𝛥𝐻𝑃 

Table 1 – condition dependent product categorization 

This method for a condition dependent product categorization was applied at an industrial use-case of a high-

grade steel plate manufacturer. The identified bottleneck of the manufacturer’s value stream is a tall industrial 

shears, which is characterized by a high number of product variants. About 18,000 variants were produced 

during the past three years. The respective product variants differ in their properties such as in their dimensions 

and material attributes. Furthermore, there is a narrow correlation between the products’ cut-qualities and the 

plate shear’s blade-condition, which was already identified by the operators. In order to fulfil the quality 

standards, they had developed a subjective product classification. As there were no electronic measurements 

of the blade-conditions in place, the operators had to estimate the conditions themselves manually, which 

implied fault-prone, varying and subjective estimations. 

To enhance the production planning at the bottleneck machine and utilize the condition dependency within 

production scheduling, a condition monitoring system was introduced at first. Since it has proven to be viable 

within literature, a vibration sensor was chosen initially for on-line data generation during the ongoing 

production process. The sensor was directly attached onto the shears’ blade and generated a point of 

measurement every 125 milliseconds. As the movement of the blade is comparatively slow, the frame rate was 

sufficient. The raw sensor data was analysed within time domain and statistical values (mean and maximum 

oscillations) were derived from the raw signal representing the intensity of each distinctive cut. If there is much 

wear, the oscillations are increased compared to an intermediate cut. For modelling this behaviour oscillation 

data was combined with a cut-counter, together representing the wear-rate. After some observations the 

maximum and minimum condition levels could be derived in order to normalize the wear-rate and fitting it 

into the proposed HP-scale, enabling a sufficient an understandable visualization of the blade-condition. 

Finally, the condition can be modelled as shown in Figure 2. At the beginning (new blade) the HP are at their 

maximum value and each cut decreases the HP dependent on the oscillation level. While some cuts (with a 

high oscillation index) lead to an increased wear-rate, other cuts do not have such dramatic effects. 

 
Figure 2 – CM of the blade condition 

For validating the results of the CM system, the sensor-based condition calculations were compared to the 

subjective condition estimations of the machine’s operators. Validations’ results show that the combination of 

the vibration sensor with a cut-counter for calculating the blades conditions is sufficient. 

As soon as an understanding concerning the term HP was developed by the operators of the bottleneck 

machine, it also became possible to do a product classification of the products within the portfolio of the high-

grade steel plate manufacturer. With the help of process experts, the minimum HP needed for producing a 

distinctive product were derived. The products were aggregated to more than 470 distinctive product groups 

and then those product groups were classified according to Table 1. It was concluded that the 𝐻𝑃𝑚𝑖𝑛 mainly 

depends on the product’s material properties (e.g. hardness and ductility). However, as described above, the 

correlation between product-quality and an equipment’s condition is bidirectional. In order to model this bi-



 

 

directionality, each product category was assigned with its individual wear-effects 𝛥𝐻𝑃, which were derived 

from a statistical aggregation of the product groups’ wear-effects shown within the CM system (cf. Figure 2). 

Finally, the following dependency could be derived: 

𝛥𝐻𝑃 = 𝑓(𝑇, 𝐶)          (1) 

Thereby, the functional interrelation between the wear-effect and the product’s thickness (T) as well as its 

category (C, which inherently contains the material properties) is described. It is quite intuitive that a thicker 

as well as a more ductile product leads to increased wear-effects. However, a dependency of the current 

condition (HP) and the wear-effect (𝛥𝐻𝑃), as briefly described above, could not be observed within the use-

case. This eased the product classification as it became linear. Furthermore, it is important to note that 𝛥𝐻𝑃 

describes the wear-effect per cut. So if there is more than one cut within a production order (e.g. n cuts), the 

total HP decrease is also cut-quantity-dependent (𝛥𝐻𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑛 ∙ 𝛥𝐻𝑃). With the classification of the 

product’s minimal HP and their unique wear effects, the condition dependent product categorization was 

finished and a table, based on the structure shown in Table 1, was mapped with the necessary information. 

Subsequently, this condition dependent product categorization can be used within production planning and 

scheduling in order to optimize the decision-making process concerning product sequencing. A method to do 

so is shown in Figure 3, which is, subdivided into the condition monitoring system (CMS) shown on the left 

hand side and the production schedule shown at the right hand side of the Figure. While the CMS (based on a 

vibration sensor as described above) measures the current condition (HP) of the equipment at time i, the 

production schedule shows that product x is the next production order. Hence, product x can be described by 

its condition dependent product categorization (cf. Table 1).  

CMS HP(i)measures
Production schedule: 

product x
ΔHP(x) and HPmin(x) has

HP(i) > HPmin(x)

produce product 

x

Do not produce 

product

true false

HP(i) - ΔHP(x)i++ HP(i) + HPaction

action

choose other 

product

no action

x++

 
Figure 3 – Condition dependent scheduling process 

As shown in Figure 3, a product x has a product dependent minimum condition 𝐻𝑃𝑚𝑖𝑛(𝑥) and a product 

specific wear-effect 𝛥𝐻𝑃(𝑥). In order to produce product x, the current condition must be greater than the 

minimum condition needed. If this prerequisite is true, product x can be produced which leads to a reduction 

of the equipment’s HP by 𝛥𝐻𝑃. However, if the prerequisite cannot be met, an immediate production of 

product x is not possible, but there are two new possibilities. On the one hand, an action (e.g. maintenance, 

setup etc.) can be carried out in order to increase the equipment’s HP by an action dependent amount 𝐻𝑃𝑎𝑐𝑡𝑖𝑜𝑛 

and hence enable production of product x. On the other hand, the decision-makers may modify the schedule 

and change the product in order to avoid time-consuming actions like maintenance. A change of the production 

sequences influences economic indicators and may affect neighboring production steps. Which one of the two 

possibilities is carried out depends on other inherent conditions of the production system such as work-load, 

capacities or even delivery dates. For a proper consideration of these multiple criteria, a fitness function has to 

be developed in order to support the decision maker. 

In a nutshell, the method shown in Figure 3 provides a decision-making support system within short term 

scheduling of the bottleneck machine by advising whether the production of a particular product is possible or 

not. This method for condition dependent scheduling is a further step towards enabling an autonomous 

production scheduling as it represents the decision module of such a system. 



 

 

5. CONCLUSION 

This paper introduced a categorization method for integrating machine tool condition monitoring and 

production scheduling and applied this method at an industrial use-case of a steel plate manufacturer. Thereby, 

the identified research gap of utilizing contemporary data within production scheduling was addressed. 

It is shown that there is a bidirectional dependency between product-quality and an equipment’s conditions. 

This is, especially true in the case of metal forming where the material properties of tools and products have 

narrow correlations. Although it is assumed that these correlations are not only existing within metal forming 

the findings of the present paper are limited to the metal forming industry as there is no empirical evidence in 

other areas. Hence, further application-oriented research is needed within other industrial areas. 

The paper further proposes a method for utilizing correlations between product-quality and an equipment’s 

condition for the decision-making process within product scheduling. The proposed method for a condition 

dependent scheduling has general applicability and can be used wherever these aforementioned correlations 

do exist and, consequently, a condition dependent product categorization is possible. The method shows a 

decision-making process, which supports process owners in deciding whether producing a particular product 

is possible, or not. 

However, it does not affect the whole production schedule as it is limited to a single decision. Consequently, 

as a next step, the method has to be integrated within a scheduling algorithm that considers planning aspects 

affecting the whole value stream such as delivery dates, productivity, stock levels or overall production costs. 

Therefore, the method also represents a first step towards an application-oriented autonomous production 

planning system but further research needs to be done in order to integrate the proposed method for condition 

dependent product scheduling. Finally, the impact of the different deployment strategies and especially its 

economic benefits needs to be validated in industrial use-cases. 
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