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Abstract

This thesis addresses the problem of stereo reconstruction from a stream of events provided
by two dynamic vision sensors (DVS) in a stereo configuration. Dynamic vision sensors
consist of self-spiking pixels that independently and in continuous time react to relative
light intensity changes by generating ‘spikes’ encoded in Address Event Representation
(AER). In result, the output of the sensor is not a sequence of frames as in conventional
cameras, but an asynchronous stream of events indicating captured intensity changes. The
main advantages of these types of sensors are high temporal resolution (better than 10µs)
and wide dynamic range (> 120dB). Several approaches for stereo matching have been
introduced for dynamic vision sensors, including the application of conventional stereo
algorithms by operating on ‘pseudo frames’ built from the address event stream (image-
based methods). Although the image-based algorithms are acceptable in performance,
they do not exploit the sensor’s specific capabilities. Only few efforts have been invested
so far in stereo processing techniques that can be applied directly to the stream of events
(event-based methods). These methods preserve the asynchronous aspect of events, thus
are better suited for keeping the advantages of dynamic vision sensors. However, there
are still various challenges to tackle in event-based stereo matching.

In this thesis, we investigate the feasibility of fully asynchronous stereo vision tailored
for dynamic vision sensors. We start out with a thorough analysis of event data from
dynamic vision sensors in the context of stereo analysis with a focus on the events’
coincidence in time. We find that single event-to-event matching with the use of timing
information as a matching score lacks reliability while dealing with complex scenes and
challenging conditions. As the main contribution of this thesis we propose an adaptive
dynamic cooperative network, which is constantly updated while events are generated,
making it feasible to preserve the data-driven aspect of the sensor. We develop two
cooperative stereo matching algorithms with the first employing simple time-based event
matching as an input to the cooperative network. In the second algorithm, we suggest
using the spatio-temporal neighbourhood of the event as matching primitive and a
novel similarity measure, which is a combination of time-based correlation and polarity.
Extensive evaluation of the proposed cooperative stereo algorithms demonstrates that
the results are comparable or better than competing algorithms in the field. Furthermore,
we propose an asynchronous tracking method that is realised by clustering events in
three-dimensional space with Gaussian mixture models and demonstrate its performance
in conjunction with the cooperative stereo matching results.
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Kurzfassung

Diese Arbeit befasst sich mit dem Problem der Stereo-Rekonstruktion aus Event-Daten,
die von zwei Dynamic Vision Sensoren (DVS) in Stereo-Konfiguration geliefert werden.
Dynamic Vision Sensoren bestehen aus Pixeln, die eigenständig und zeitkontinuierlich
auf relative Änderungen in der Lichtintensität reagieren, indem sie sogenannte Spikes
erzeugen, welche in Address Event Representation (AER) dargestellt werden. Dadurch
ist die Ausgabe des Sensors keine Bildsequenz wie bei herkömmlichen Kameras, sondern
ein asynchroner Strom von Events, welche die erfassten Intensitätsänderungen anzeigen.
Die Hauptvorteile dieser Art von Sensoren sind die hohe zeitliche Auflösung (besser als
10µs) und ein großer Dynamikbereich (> 120dB). Mehrere Ansätze für Stereo-Matching
wurden für Dynamic Vision Sensoren vorgestellt, einschließlich der Anwendung von
konventionellen Stereo-Algorithmen, welche auf sogenannten Pseudoframes arbeiten, die
aus dem Strom der Address Events aufgebaut werden (bildbasierte Methoden). Obwohl
die Leistung der bildbasierten Algorithmen akzeptabel ist, nützen sie die speziellen
Fähigkeiten des Sensors nicht aus. Bisher wurden nur wenige Versuche unternommen
Stereo-Verarbeitungstechniken zu entwickeln, welche direkt auf die Event-Ströme an-
gewendet werden können (Event-basierte Methoden). Diese Methoden bewahren den
asynchronen Aspekt der Events und sind daher besser geeignet, die Vorteile von Dynamic
Vision Sensoren zu erhalten. Allerdings gilt es noch verschiedene Herausforderungen beim
Event-basierten Stereo-Matching zu bewältigen.

In dieser Dissertation untersuchen wir die Machbarkeit von vollständig asynchroner
Stereo Vision, die auf Dynamic Vision Sensoren zugeschnitten ist. Wir beginnen mit
einer ausführlichen Analyse der Event Daten von Dynamic Vision Sensoren im Kontext
der Stereoanalyse mit einem Fokus auf die zeitliche Koinzidenz der Ereignisse. Es zeigt
sich, dass einzelnes Event-zu-Event Matching unter Verwendung der Zeitinformation als
Matching-Maß nicht zuverlässig ist, wenn man mit komplexen Szenen und herausfor-
dernden Bedingungen konfrontiert ist. Als wichtigsten Beitrag dieser Arbeit schlagen
wir ein adaptives dynamisches kooperatives Netzwerk vor, welches während der Gene-
rierung von Events ständig aktualisiert wird, wodurch der datengetriebene Aspekt des
Sensors erhalten bleibt. Wir entwickeln zwei kooperative Stereo-Matching Algorithmen,
wobei der erste Algorithmus einfaches zeitbasiertes Event-Matching als Input für das
kooperative Netzwerk verwendet. Im zweiten Algorithmus schlagen wir die Verwendung
einer räumlich-zeitlichen Nachbarschaft des Events als Matching-Basis und ein neuartiges
Ähnlichkeitsmerkmal, welches zeitabhängige Korrelation und Polarität kombiniert, vor.
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Umfangreiche Auswertung der vorgestellten kooperativen Stereo-Algorithmen zeigt, dass
die Ergebnisse vergleichbar oder besser als konkurrierende Algorithmen auf dem Gebiet
sind. Darüber hinaus schlagen wir eine asynchrone Tracking-Methode vor, welche durch
Event-Clustering im dreidimensionalen Raum mit Hilfe von Gaußschen Mischmodel-
len realisiert wird, und demonstrieren ihre Leistungsfähigkeit in Verbindung mit den
kooperativen Stereo-Matching-Ergebnissen.
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CHAPTER 1
Introduction

1.1 Background

The performance of the biological nervous system in terms of processing visual informa-
tion is outstanding. Considering aspects such as efficiency, power consumption and size,
computers are by no means a competition to the abilities of the human brain. The main-
stream, conventional vision systems invest efforts in highly sophisticated computational
models. However, computers in their current form cannot achieve the performance of
the human brain, especially regarding tasks such as vision, hearing and learning [99, 14].
The research field of bio-inspired vision explores ways of improving conventional image
based computer vision, by trying to implement in hardware the mechanisms observed in
biological retina, e.g. features extraction. Recently, bio-inspired Dynamic Vision Sensors
(DVSs) [83, 115] have gained a lot of recognition, mainly due to their advantages such
as high-temporal resolution, wide dynamic range and low power consumption. These
characteristics make them suitable for new trends in robotics, such as high-speed motion
analysis and tracking or autonomous navigation in uncontrolled environments.

One of the fundamental abilities of the human biological vision system is three-dimensional
perception of the surrounding world. The ability to perceive depth is explained by the
fact of having two eyes, i.e. binocular (stereo) vision. Objects in the scene, when observed
from two viewpoints, are projected on each of the two views at slightly different positions.
From such displacement, in the stereo literature called disparity, the depth information
can be inferred. Stereo vision is a well-researched field in conventional computer vision
and a vast amount of work has been proposed to calculate the disparity from two
images. However, dynamic vision sensors differ from conventional digital cameras in their
construction with respect to chip architecture and functionality. The sensors consist of
self-spiking pixels, which react to relative contrast by firing an event upon a detected
change in light intensity.
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1. Introduction

In Figure 1.1, a schematic overview of the depth estimation procedure is presented. The
stereo system consists of two dynamic vision sensors, which generate events upon activity
in the scene, in this case two people walking in front of the sensor. We can observe that
the position of the left projection of each person is different from the right one. Knowing
the correspondence between the events (symbolically depicted as arrows, differentiated
with colour by object), and hence the magnitude of an object’s disparity, allows for depth
calculation.

Figure 1.1: Schematic description of the stereo matching task. The motion of two walking
people captured by a stereo DVS system is represented by a spatio-temporal stream of
events. Correspondence between the left and right view is established to calculate the
depth information, encoded in colour.

While dynamic vision sensors offer numerous advantages, they also introduce several
challenges to the way the data has to be processed afterwards. Most of the well-established
computer vision algorithms operate on pixels’ values within images, therefore they cannot
be directly applied to the stream of events. In this thesis, we investigate methods for
efficient stereo matching tailored to the nature of event-based vision. We focus on
preserving the asynchronous aspect of the data processing to fully exploit the capabilities
of the sensor, especially in terms of temporal resolution.
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1.2. Contributions

1.2 Contributions
The main objective of our research is to provide an asynchronous approach to stereo match-
ing of event-data from dynamic vision sensors. The research questions and contributions
of this PhD thesis can be summarized as follows.

What challenges do dynamic vision sensors introduce to the task of stereo matching?
There are two major differences between image-based and event-based vision, the first
one is connected with the dimensionality of the input data, i.e. spatiotemporal data, and
the second one is associated with the visual representation of a captured scene, i.e. sparse
data. We analyse how these differences affect the formulation of the stereo matching
problem. We demonstrate how asynchronous stereo matching helps to preserve the
temporal resolution and depth accuracy regardless of the speed of objects moving in the
scene. We show that asynchronous processing cannot assume any fixed time aggregation
of the events, hence stereo matching should be performed on an event basis. We define a
set of requirements for an efficient event-based stereo algorithm.

Is it possible to find correspondences between single events within asynchronous data
streams and what are the constraints? Operating directly on the stream of events is
important to keep the processing asynchronous. Most of the approaches use the events’
coincidence in time to establish correspondence. By theoretical and experimental data
analysis, we investigate how the representation of the same object varies across different
sensors, and show that using only time and polarity as matching constraints might not
be sufficient to handle more complex, dynamic scenes.

What could be an appropriate model for asynchronous stereo matching? Event-based
matching should include additional constraints to improve the matching accuracy, i.e.
smoothness constraint. Building on early studies of stereo computation [93], we propose
a novel approach, the adaptive dynamic cooperative network, as a possible model for
asynchronous stereo matching. The cooperative network is constantly updated while
events are generated, making it feasible to preserve the data-driven aspect of the sensor.
The network uses cooperative and inhibitory mechanisms to optimise the results of
time-based event matching.

How could the reliability of event-based matching be improved? Matching events by
their timings is prone to errors, thus we investigate ways of improving the accuracy
of event-based matching. We show that by using an event’s context, the ambiguity in
correspondence finding can be reduced. We suggest using a spatiotemporal neighbourhood
of the event as a matching primitive. The matching score is a combination of time-based
correlation and polarity. These define a novel matching function of our second cooperative
stereo matching algorithm.

Can asynchronous stereo matching achieve an accuracy comparable to image-based ap-
proaches applied to event data? We provide an extensive evaluation of our cooperative
stereo algorithms. Using a ground-truth dataset, we show that asynchronous stereo can
achieve comparable or better results than competing image-based algorithms in the field.
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1. Introduction

In addition, we evaluate the robustness of the cooperative algorithms to changing scene
appearance, complexity and dynamics. Although we have designed our algorithms assum-
ing a static sensor setup, we further demonstrate their applicability to data sequences
captured by a moving DVS observing a stationary scene.

What could be a feasible approach for asynchronous multiple object tracking? When the
DVS is in a static position, only scene dynamics is captured and therefore data provided
by the sensor represent the trajectories of moving objects. While tracking a single object
can be considered rather trivial, dealing with multiple objects occluding each other makes
the task of tracking a challenging problem. We propose a novel asynchronous tracking
algorithm realised by clustering events with Gaussian mixture models. The algorithm
addresses the challenge of multiple objects tracking in the presence of occlusions. The
occlusions are tackled by clustering events in three-dimensional space, using as input
the spatial location of events and depth estimates, calculated by asynchronous stereo
matching algorithms. We evaluate the suitability of both cooperative stereo matching
algorithms to the task of tracking.

1.3 Resulting Publications
The work presented in this thesis resulted in the following publications:

• Ewa Piatkowska, Ahmed Nabil Belbachir, and Margrit Gelautz: Spatiotemporal
Multiple Persons Tracking Using Dynamic Vision Sensor, IEEE Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 35–40, 2012.

• Ewa Piatkowska, Ahmed Nabil Belbachir, and Margrit Gelautz: Asynchronous
Stereo Vision for Event-Driven Dynamic Stereo Sensor Using an Adaptive Co-
operative Approach, IEEE International Conference on Computer Vision (ICCV)
Workshops, 45–50, 2013.

• Ewa Piatkowska, Ahmed Nabil Belbachir, and Margrit Gelautz: Cooperative and
Asynchronous Stereo Vision for Dynamic Vision Sensors, Measurement Science
and Technology, Volume 25, Number 5, pp. 1-8, 2014.

• Ewa Piatkowska, Jürgen Kogler, Ahmed Nabil Belbachir, and Margrit Gelautz:
Improved Cooperative Stereo Matching for Dynamic Vision Sensors with Ground
Truth Evaluation, IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pp. 370–377, 2017.
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1.4. Thesis Organisation

1.4 Thesis Organisation
The subsequent chapters of this thesis are structured as follows: Chapter 2 provides
background information about neuromorphic vision, including characteristics of dynamic
vision sensors and event-based visual processing. Chapter 3 briefly describes the funda-
mentals of stereo vision, and presents the state-of-the-art in the field of depth estimation
using dynamic vision sensors. Chapter 4 analyses two main challenges of asynchronous
stereo vision, which are related to the aspect of event-based matching and asynchronous
processing. In Chapter 5, the dynamic and adaptive cooperative network is presented as
a feasible method for asynchronous event-based stereo matching and two cooperative
stereo matching algorithms are described. An extensive evaluation of both algorithms
and their comparative analysis are presented in Chapter 6. Furthermore, the suitability
of the proposed algorithms is evaluated in higher-level computer vision tasks, such as
multiple object tracking, which is described in Chapter 7. Chapter 8 summarises the
major outcomes of our research and provides an outlook on future directions in the field.
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CHAPTER 2
Neuromorphic Vision Sensors

Dynamic vision sensors (DVSs) stem from the field of neuromorphic vision, which focuses
on the design of sensors that replicate the physical architecture and functionality of
biological vision systems. In this chapter, we shortly introduce the goal and means of
neuromorphic engineering, and describe main efforts made in replicating the retina. Next,
we describe the architecture of dynamic vision sensors in more detail and present the
specifics of event-based vision, including its benefits and application areas.

2.1 Neuromorphic Vision
Neuromorphic vision is a subdomain of neuromorphic engineering, a research discipline
introduced by Carver Mead in the late 1980s. Neuromorphic engineering focuses on the
emulation of neural architectures and functionality of the biological nervous system in the
electronic devices [99]. The functional implementation is commonly made in silicon using
analog Very Large Scale Integration (aVLSI) [82]. The VLSI technology is used due to
the similarities to neural systems [15]. Both systems operate on millions of inexpensive,
failure-prone elements and since neurons use electrical signalling, biological processing
can be simulated by electronic circuits.

The human retina achieves a wide dynamic range of approx. 200dB (while conventional
cameras only 70dB) and high spatial resolution reaching the size of 2.6 µm in the fovea
(comparable with cameras resolution) [83]. Furthermore, humans can perform such
complex visual tasks as image identification in around 100-150ms of processing [149].
Motivated by the remarkable performance of biological vision systems, engineers have
investigated how a neuromorphic approach can help overcoming the limitations of
traditional cameras. Furthermore, the sensory systems are well documented by anatomists
and, thus, easier to ‘morph’ in silicon [14]. In the following section, we will briefly describe
the human retina and discuss the key features that are assumed to play an important
role in its efficiency.

7



2. Neuromorphic Vision Sensors

2.1.1 Biological Retina
The design of the retina is highly connected with its functionality. As depicted in
Figure 2.1, the retina has a layered structure. The processing starts at the back, in
the photoreceptors layer. In the human vision system, we can find at least two types
of photoreceptors, namely rods and cones. The former are used for low-light vision,
whereas the latter are adjusted for bright-coloured, daylight vision. The photoreceptors

Figure 2.1: The layout of the human retina [74].

are specialised in sensing particular parts of the spectrum, which plays an important role
in achieving a wide dynamic range. In addition, the human eye eliminates the information
about the absolute light illumination, leaving only the relative local ratio that describes
the scene regardless of the light conditions [83]. The key to the efficiency of the retina
is the parallel computation in networks of cells, starting from photoreceptors through
the layers of bipolar, horizontal, amacrine and ganglion cells. These cells are designed to
filter out redundant information and detect the most prominent features to be conveyed
to the brain for further processing. Except from the fovea, there is only one optic nerve
fibre for each 100 photoreceptors, therefore processing in the retina could be regarded
as a very sophisticated compression of the visual scene [149]. The contrast detection
is realised by receptive fields of ganglion cells, which are sensitive either to the light
areas on darker background (ON) or dark areas on lighter background (OFF). Axons of
ganglion cells bundled together into an optic nerve are passed to the Lateral Geniculate
Nuclei (LGN), which is structured into two pathways: magnocellular and parvocellular
path. The former provides fast, transient response and focuses on object boundaries
and detection to form a basis for depth and motion perception. The latter pathway has
sustained response and is oriented on colour and fine details of the objects’ appearance.
The signals along these two pathways are passed further to the primary visual cortex for
higher level visual processing [149]. Such functional division into two pathways captures
an important aspect of biological systems efficiency, i.e. the processing is done in parallel
over the networks specialised in particular tasks [82].

8



2.1. Neuromorphic Vision

2.1.2 Silicon Retina
The term silicon retina has been introduced in the context of the seminal work of
Mahowald and Mead [90]. The proposed vision sensor implements ‘spiking’ pixels, which
are sensitive to illumination contrast. The sensor was a demonstration of concept, however
due to performance limitations, it was not usable in real-world conditions.

Different aspects of biological retina have been investigated in the design of newer
generation silicon retinas. We can find implementations of the functionality of ganglion
cells and LGN pathways to perform contrast detection, including sustained cells for
spatial contrast (edge detection) [3, 123] and transient cells for temporal contrast (motion
detection) [92, 76, 83]. We can also observe a trend towards replication of both LGN
pathways in order to combine a fast response for motion and change detection with more
detailed spatial appearance features. Some approaches [167, 168, 115] implement these
functionalities on the pixel level, whereas more recent works [20, 80] use separate pixels for
dynamic and colour vision. Another group of sensors [64, 123] proposed the emulation of
horizontal cells to enable the detection of oriented movement. Different ways of encoding
visual information have been proposed, e.g. the order of events could denote the contrast
magnitude [3], or absolute pixel illumination, e.g. Time-To-First-Spike imager [116] and
Time-Based image sensor [87]. Some experiments have also been proposed to include the
fovea in the design of silicon retina [2], by using different architectures for central pixels
than for the peripheral ones.

Asynchronous Communication

Apart from the emulation of the retina’s functionality in terms of feature extraction, the
neuromorphic vision systems intend to replicate the communication schemes similar to
those between the neurons. This task has shown to be particularly challenging in two
aspects, namely connectivity and synchronisation. There is a huge amount of wiring
between the neurons and the number of inputs and outputs in neural systems is around
several thousands, whereas in Very Large Scale Integration (VLSI) circuits significantly
less (around 10) [14]. Due to space limitations, it is impossible to directly implement
the neural connectivity pattern in VLSI. The synchronisation issues in VLSI are solved
by an external clock. However, the sequential readout controlled by the clock is not
applicable for the design of neuromorphic chips because the communication in biology
is driven by the occurrence of events. The closest solution to tackle the connectivity
and synchronization issues is an asynchronous digital multiplexing technique that uses
Address Event Representation (AER) to encode events (‘spikes’) [90, 78, 38].

The communication scheme between two chips is depicted in Figure 2.2. The pixels are
self-timed and generate a temporal sequence of events upon visual stimuli. Whenever
the pixel spikes, its address is communicated through a multiplexing circuitry to the
receiver chip, where it is decoded into a sequence of events at corresponding locations.
Such communication scheme preserves detailed timing of events and an address event
protocol allows for arbitrary connectivity patterns.

9



2. Neuromorphic Vision Sensors

Figure 2.2: Address event representation [90].

2.2 Dynamic Vision Sensors
In the literature, various names have been used to denote a vision sensor that is sensitive
to temporal contrast such as transient vision sensor, temporal contrast sensor, silicon
retina, event-based vision sensor, dynamic vision sensor or, more recently, event camera.
Throughout this work, we mostly use the term dynamic vision sensor (DVS). In the
context of our work, two types of devices have been used for data acquisition, both
developed at the AIT Austrian Institute of Technology (see Figure 2.3). The first one is
the Universal COunting Sensor (UCOS) [125, 134], which is a stereo system consisting of
two 128×128 DVS sensors chips [82]. The second device, the CARE system [6], consists
of two Asynchronous Time-based Image Sensor (ATIS) sensor chips of 304×240 spatial
resolution [115]. The chips of both stereo systems are fabricated in the Complementary
Metal Oxide Semiconductor (CMOS) process.

(a) (b)

Figure 2.3: Stereo sensors used for data acquisition: (a) UCOS (image from [119]) and
(b) CARE.

DVS Pixel Design

Dynamic vision sensors are an efficient implementation of transient (magnocellular)
pathway. Based on the observation that measuring the magnitude of irradiance and
detecting its change over time may result in lower dynamic range and higher latency of
response [83], the DVS pixels are designed to handle only the temporal visual information.
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2.2. Dynamic Vision Sensors

The design of the DVS pixel is outlined in Figure 2.4a. The pixel’s integrated circuit
consists of three parts: photoreceptor, differentiator and comparators.

(a) (b)

Figure 2.4: DVS pixel design: (a) abstract pixel core schematic, (b) principle of opera-
tion [82].

The photoreceptor circuit controls the individual pixel gain and responds to changes
in illumination. The photocurrent I from the photodiode is proportional to the pixel
illumination. It is converted logarithmically into voltage Vp and passed to the differentiator.
The logarithmic response encodes the relative illumination (contrast). Analogically to
the biological system, the relative instead of absolute values are used, which improves
the wide dynamic range of the pixel.

The differentiator amplifies the changes in the photoreceptor output Vp resulting in Vdiff ,
defined in (2.1).

∆Vdiff = C1
C2
·∆Vp ≡ A∆Vp (2.1)

The closed-loop gain of the differencing circuit is denoted as A. The polarity of the change
is detected by discrimination between positive and negative irradiance fluctuations. If the
voltage Vdiff exceeds the ON or OFF threshold, respectively, the ON or OFF comparator
switches and issues an event. After the event is generated, the differentiator is balanced
to a reset level. Like in biological neurons, there is a refractory period in which the reset
switch is held closed, preventing the pixel from generating another event. In Figure 2.4b
the principle of a pixel’s operation is illustrated. The output of the photoreceptor Vp as
a function of time is shown in the top diagram. Below, the corresponding output of the
differencing circuit Vdiff is depicted with ON and OFF events marked.

Figure 2.5 depicts a schematic overview of a stereo DVS system, comprising two arrays
of DVS pixels. As discussed above, each DVS pixel acts independently and in continuous
time. Whenever the change in illumination is detected, the pixel ‘spikes’, i.e. it generates
an event which is communicated off-chip using the Address Event Representation (AER).
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The AER communication scheme is arbitrated, i.e. the pixel requests to access the shared
bus are queued. The generated events are communicated to the peripheral Address Event
(AE) circuits using a four-phase AE handshaking with the asynchronous row and column
arbiters. The address of the pixel is communicated in parallel. The communication

Timestamping

pixel
(1,1) 

...     ...     ... 

asynchronous column arbiter 
a
sy
n
ch
ro
n
o
u
s 
ro
w
 a
rb
it
e
r

bias generators

MUX

...

FIFO

CONTROL
(DSP) 

RIGHT SENSORLEFT SENSOR 

AE AE

bias settings bias settings

TAE

pixel
(1,1) 

...     ...     ... 

asynchronous column arbiter 

a
sy
n
ch
ro
n
o
u
s 
ro
w
 a
rb
it
e
r

bias generators

Sensor Array
 

Sensor Array
 

Figure 2.5: Schematic architecture of a stereo DVS system.

ensures the non-greedy arbitration in which row (column) can be serviced again only after
requests from all other rows (columns) are serviced. Events from the left and right sensors
are passed through the multiplexer unit (MUX) and then sent over a first-in-first-out
(FIFO) buffer where they are timestamped.

Furthermore, a DVS is equipped with an integrated programmable bias generator. This
allows configuring the internal pixel parameters (bias settings) to the desired functionality
of the sensor (e.g. high speed motion analysis) and according to environmental conditions
(e.g. night time or daytime vision). The most commonly used settings for the performance
adjustment are biases that control the bandwidth of the photoreceptor or follower circuit,
the contrast sensitivity thresholds and refractory period.
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2.3 Event-based Vision
Dynamic vision sensors provide data in the Address Event Representation (AER), i.e. each
event e ∈ E is defined by a tuple, as shown in Equation 2.2:

e = (ex, ey, et, ep, ec) | ex, ey ∈ N, et ∈ R,
ep, ec ∈ {0, 1}

(2.2)

where (ex, ey) is the pixel address, et is the event timestamp (time of occurrence), ep

is the polarity (ON or OFF), and in the case of a stereo configuration, ec denotes the
source of the event (the left or right sensor).

In Figure 2.6, a stream of events generated by one DVS upon a single edge motion
(rotation) is shown. The events are visualised in space and time. The trajectory of the
rotational motion is clearly visible in the data.

Figure 2.6: Sequence depicting a moving edge represented in space and time.

For processing and visualising purposes, the stream of events can be transformed into
image-like representation, so-called ‘pseudo-frames’. The value assigned to each pixel
of a ‘pseudo-frame’ is the accumulated sum of the events generated by the pixel over
a period of time. Some methods consider aggregation with respect to the polarity of
events. In Figure 2.7 a visual data sequence (person walking in front of the sensor),
recorded by a conventional camera, is compared with the image representation of the
event data. As we can observe, only edges of the moving person are captured. The
polarity of events is encoded as follows: white for ON events; black for OFF. Another way
to treat events is to consider them in their original dimensionality, i.e. space and time.
In Figure 2.8 a sequence of events is plotted as three-dimensional space-time cloud. For
visualisation purposes, the events of corresponding frames from Figure 2.7 are highlighted.
The polarity of events is depicted in colour with blue and red for OFF and ON events,
respectively. The cloud of events forms a trajectory of the moving person.
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Figure 2.7: Motion of a person walking in a room, captured by a conventional camera
(top row) and DVS (bottom row). The events are displayed in image-like representation.

Figure 2.8: Sequence depicting moving person (the same as above) represented in space
and time.

2.3.1 Advantages of Dynamic Vision Sensors

Differences between a conventional digital camera and dynamic vision sensor output are
significant and, due to them, dynamic vision sensors benefit from temporal redundancy
reduction, high temporal resolution, and wide dynamic range.

Data volume Conventional imagers capture a visual scene at a predetermined frame
rate, reading the information from all pixels even if their values have not changed since
the last frame. This leads to a high redundancy of the data and consumes unnecessary
power, as well as time and resources of acquisition and data processing. Considering
video content captured by a stationary camera, the most informative regions typically
correspond to movements (foreground) while the background, in most cases static, tends
to be highly redundant. In contrary, assuming a static DVS setup (excluding ego motion)
only the scene dynamics are captured by the sensor. As shown in Figure 2.7, the events
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are only generated upon changes in the scene, only the foreground is captured. The
data volume is reduced even further because the pixels are sensitive to the temporal
contrast, which results in detecting only moving edges. The background is neglected.
Moreover, temporal redundancy in DVS is handled on-chip since pixels do not react to
static content, and in contrary to frame differencing techniques, the temporal resolution
is not limited to the frame rate.

Temporal resolution Another advantage of dynamic vision sensors is the high temporal
resolution achieved by the asynchronous data generation. Unlike clocked cameras sampling
the scene at a fixed frame rate, the DVS pixels operate in continuous time. The fast
response of the sensor makes it suitable for high-speed motion analysis. The temporal
resolution can reach the equivalence of 100kfps (at illumination of more than 100lx,
timestamp resolution 500ns) [115]. As illustrated in Figure 2.9, the fast motion of a

(a) (b) (c)

Figure 2.9: Pendulum moving at high speed represented by a frame from conventional
camera (a) and DVS events accumulated over 17ms (b) and 0.5ms (c).

moving pendulum is recorded by an ATIS sensor and a digital camera under the scene
illumination of 100lux1. In Figure 2.9a a frame captured by the digital camera at 30fps
(exposure time of 33ms) is shown. For comparison, corresponding DVS data are visualised
as images, where events are accumulated over (b) 17ms (60fps) and (c) 0.5ms (2000fps).
Due to the high speed of the pendulum we can observe motion blur in Figure 2.9a-2.9b,
but not in Figure 2.9c where the accumulation period is shorter.

Dynamic range Dynamic vision sensors have a wide dynamic range due to the design
of the pixel and its sensitivity to temporal contrast rather than absolute illumination. As
mentioned before, dynamic vision sensors can reach the value of 240dB while standard
digital cameras typically around 70dB. This ability of the sensor is illustrated in Fig-
ure 2.10, where the output of the dynamic vision sensor is roughly the same regardless of
the illumination of the scene. In Figure 2.10a-2.10b a scene is captured under normal
illumination (approx. 100lx), whereas in Figure 2.10c-2.10d the same scene is captured
under strong light (1000lx). We can observe that the output of the DVS is essentially the
same in terms of data quality and appearance, while the standard camera cannot cope
with the high illumination; a part of the image is saturated and the object is not visible.

1Images in Figure 2.9-2.10 are from the ATIS demonstration, AIT Austrian Institute of Technology
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(a) (b) (c) (d)

Figure 2.10: Comparison of DVS (a,c) and digital camera (b,d) with respect to scene
captured at normal, ambient light (a,b) and strong light (c,d).

2.3.2 Application Areas

The advantages of dynamic vision sensors can be exploited in numerous application
domains. Depending on the sensor setup, we can distinguish two types of applications:
(1) monitoring and surveillance, assuming that the sensor is static, and (2) navigation
and control, if the sensor is moving. In the former, motion analysis is naturally supported
by the sensor due to the redundancy suppression and prominent feature selection done by
pixels (edge extraction). The generated output from the sensor denotes the scene dynamics.
Among possible applications we can find gesture recognition [79], object recognition [138],
people counting [134], tracking [133, 112, 101], including fall detection [6], and traffic
control [84]. Using DVS for surveillance applications has the additional advantage
of being more privacy-preserving than digital cameras. Due to the limited spatial
resolution of the sensor, the reconstruction of prominent facial features of the tracked
people is close to impossible. Dynamic vision sensors have also been used in other
fields, such as microscopy [105], high-speed tracking [77, 105] or space imaging for space
situational awareness [33]. The second type of applications focuses mostly on robotic
vision. Aspects such as efficiency and low power consumption are especially demanded
in robotic vision, and we can find several works being proposed for navigation and
control [39, 36]. The most popularity, however, dynamic vision sensors have achieved
once applied to Unmanned Aerial Vehicle (UAV) navigation [103, 68], where conventional
cameras are rather problematic, due to the motion blur and sensitivity to light condition
changes. We can find methods for visual odometry [104, 174], pose estimation [52], and
Simultaneous Localisation and Mapping (SLAM) [156]. Moreover, Dual Line Sensors
(DLSs) [114] have been applied in industrial machine vision applications, e.g. for quality
control, when objects moving at very high speed are being ‘scanned’ by the line sensor. In
addition, DLSs have also been successfully applied for panoramic scene acquisition [7] and
3D panoramic reconstruction from events generated by each line of the sensor, as presented
in [131]. Panoramic vision has also been achieved via event-based mosaicking [67]
generated from scenes captured by moving DVS.
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2.4 Summary
Advances in neuromorphic vision allow overcoming limitations of conventional digital
cameras, such as redundancy, speed and limited dynamic range. Dynamic vision sensors
have become a promising alternative to cameras whenever the speed of response, efficiency
and robustness to scene illumination are required. Recently, a lot of effort is being
invested in event-based vision algorithms to exploit the capabilities of the dynamic vision
sensors. Current trends in data processing, including artificial deep neural networks, are
encouraging and indicate that neuromorphic models in both software and hardware are
expected to get more and more attention in the future.
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CHAPTER 3
Stereo Vision and Related Work

Depth perception is essential in many vision tasks, e.g. navigation, localisation and
manipulation. One of the most established methods for depth estimation is stereo vision.
In this section, we briefly describe the fundamentals of stereo vision and give an overview
of conventional approaches to solving the stereo correspondence problem. Afterwards,
we present the state-of-the-art research in the field of depth estimation using dynamic
vision sensors.

3.1 Stereo Vision
The concept of stereo vision is inspired by biology following the observation that depth
perception is achieved by fusing the visual information captured by a pair of eyes. Stereo
vision, also called binocular vision, assumes that two cameras are located close to each
other to provide sufficient overlap between the views. The position of a 3D scene point
projected onto the left view is slightly different from that in the right view, due to the
difference in viewpoints. The displacement (disparity) of an object across the views is
inversely proportional to its distance to the cameras. The closer the object to the camera,
the bigger is the disparity between its projections.

The geometrical interpretation of the depth computation from two images of the same
scene relies on epipolar geometry. As shown in Figure 3.1a, the three-dimensional point P
is projected onto the left image as two-dimensional point pl. Having only one projection
of point P it is not possible to determine the Z coordinate, since P can lie anywhere
on the projection ray connecting the left camera centre Cl and point P . Therefore,
the second projection pr of point P is required, since the intersection of the projection
rays from the left and right view determines uniquely the position of the point P . The
task of stereo computation is to find corresponding projections of points in the scene
and calculate the depth based on their positions in the left and right view. The plane
connecting both camera centers (Cl, Cr) and the projected point P is called epipolar
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(a) (b)

Figure 3.1: Stereo geometry before (a) and after (b) the epipolar rectification [12].

plane. The intersections of the epipolar plane with the left and right image planes are
known as epipolar lines. The projections of the opposite camera centre, i.e. epipoles, are
denoted as el and er for the left and right projection, respectively. The corresponding
projections of the point P are known to lie on respective epipolar lines. This allows
for reducing the correspondence search space to one dimension. In order to restrict the
search space to horizontal lines, an epipolar rectification is performed. The left and right
camera image planes are projected onto one plane, so that the corresponding epipolar
lines are parallel to the baseline (see Figure 3.1b). After the rectification, corresponding
points have the same vertical coordinate (yl = yr) and the disparity is expressed as the
difference in horizontal coordinate d = |xl − xr|.

Figure 3.2: Depth reconstruction by triangulation [12].

The depth (Z coordinate) of the point P can be calculated via triangulation knowing the
position of its projections onto the left and right view and the parameters of the stereo
system, specifically, the baseline B, i.e. the distance between the two camera centres, and
the focal length f , i.e. the distance between the cameras’ focal points and their optical
centres. The relation between depth and disparity is shown in Figure 3.2. Following the
rule of similar triangles, the depth Z can be calculated as presented in Equation 3.1.

xl

f
= X

Z
and

xr

f
= X −B

Z
⇒ Z = f ·B

|xl − xr|
= f ·B

d
(3.1)
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The 3D reconstruction with known disparities and camera parameters is, in principle, a
straightforward calculation. The most challenging part in stereo computation, however,
is finding correct correspondences across the views.

Correspondence Search

Solving the correspondence problem is based on finding matching points in two or more
views of the same scene. Specifically, for each point from the reference view we search for
the best matching candidate in the opposite view. The quality of the matching candidate
at position (x, y) for disparity d is defined by the matching cost C as follows:

C(x, y, d) = ρ(τ(x, y), τ(x− d, y)) , (3.2)

where ρ is the (dis-) similarity measure (e.g. sum of absolute differences), which takes as
argument two matching primitives τ (e.g. pixel, patch, edge). The correct disparity is
selected out of all possible disparities in range D, as the one with the minimal matching
cost:

d(x, y) = argmin
d∈D

C(x, y, d) (3.3)

Finding correspondences between two images is a common task in computer vision for
locating similar regions across a collection of images. Apart from stereo vision, the task
of correspondence search is present also in motion estimation or tracking. In the context
of stereo vision, the correspondence search is referred to as stereo matching.

3.2 Conventional Approaches to Stereo Matching
A variety of different approaches have been proposed to perform stereo matching in
conventional, image-based computer vision. In this section, a general outline of the main
trends in stereo vision is given. A systematic overview of stereo matching algorithms can
be found in [145, 129, 26].

Sparse and Dense Stereo Correspondence

In general, stereo matching methods can be divided into sparse and dense approaches.
The former perform matching on previously extracted prominent features of the scene,
whereas in the latter every pixel is considered in the stereo matching. Sparse stereo
was more common in early stereo vision approaches, e.g. [93, 56, 98], mainly due to
limited computational resources. Later, sparse correspondences were applied in surface
fitting algorithms [137, 136] or as seeds to grow additional matches within dense stereo
methods [171]. Dense stereo has gained more attention due to the demand for image-based
rendering and 3D modelling. Dense disparity maps are more informative than just a
partial (sparse) scene reconstruction.

In their taxonomy of binocular dense stereo correspondence, Scharstein and Szeliski [129]
observe that stereo matching algorithms usually can be decomposed into four steps, namely
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(1) matching cost computation, (2) cost (support) aggregation, (3) disparity computation
and optimisation, and finally (4) disparity refinement. Examples of approaches applied
at each of these steps are described in the following.

Matching cost computation The similarity of two pixels is expressed in their similarity
in intensity level. Commonly used measures in pixel-based matching are Squared Differ-
ence (SD) (e.g. [97]) and Absolute Difference (AD) [65]. In addition, some efforts have
been invested in designing measures which are insensitive to camera gain or radiometric
differences, e.g. dense feature descriptors [150], census transform [166], gradient [126] or
entropy-based measures [178]. A more detailed review and evaluation of matching cost
methods can be found in [146, 59].

Aggregation Matching cost is calculated for all pixels in the reference image at all
possible disparities and stored in a Disparity Space Image (DSI). The aggregation is
performed by summing or averaging over the support region in the DSI, following the
assumption that pixels within a certain neighbourhood should have similar disparity
values. Support regions can be two-dimensional, if mostly front-to-parallel surfaces
are considered or three-dimensional [177], admitting also slanted surfaces. Local cost
aggregation tends to perform poorly at object boundaries (depth discontinuities), where
the smoothness assumption does not apply. To address this problem, adaptive window
techniques have been introduced, including adaptations of the window position [16],
size [107] or shape [147]. Another solution is to use fixed windows but with weighted
support, where the weight of each pixel in the support region is assigned individually
and based on its similarity [165], or geodesic distance [60] to the central pixel. Very fast
and accurate results have been obtained by using the guided filter applied to stereo cost
volume (DSI) filtering [61].

Disparity calculation / optimisation Stereo matching algorithms can be divided by
their way of disparity calculation into local and global approaches. Local stereo methods
rely on an implicit smoothness assumption realised by matching cost aggregation. The
correct disparity is determined by the local minimal matching cost, i.e. Winner-Takes-All
(WTA). In contrast, the global methods make explicit smoothness assumptions and model
the stereo matching as optimisation problem. In that case, the goal is to find a solution
d that minimizes a global energy, as formulated in Equation 3.4

E(d) = Edata(d) + λ · Esmooth(d) (3.4)

Edata(d) is the matching cost and Esmooth(d) is the smoothness cost. A discontinuity-
preserving energy function used to express the smoothness assumption can be modelled
with Markov Random Fields (MRFs) [54]. In addition, following the observation that
disparity and intensity edges are likely to coincide, Esmooth can be dependent on the
intensity differences by assigning lower penalties at depth discontinuities [16, 19]. Different
energy minimisation procedures have been employed in global stereo including: simulated
annealing [5], probabilistic (mean-field) diffusion [128], expectation maximisation [11],
graph cuts [19] or belief propagation [144]. Global energy functions are computationally
expensive and rather slow, therefore dynamic programming methods have been used for
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finding the global minimum within separate scanlines [106, 153, 13]. Another approach
is to perform semi-global matching, for example, by evaluating the cumulative cost
function in eight directions, as presented in [58]. In general, when combined with
sophisticated aggregation strategies and robust cost functions, dynamic programming
stereo can produce fast and high-quality results. An interesting alternative to global
disparity optimisation are cooperative algorithms [93, 95, 177, 155]. A global optimum is
achieved by iterative local update of disparity estimates using non-linear operations. The
global energy function is not specified; the assumptions of uniqueness and smoothness
are incorporated in the neighbourhood feedback mechanisms of the cooperative network.

Disparity refinement The direct output of stereo computation, whether local or global
matching, can sometimes be rather unappealing. Many errors in disparity maps are
caused by occlusions, i.e. parts of the scene visible only in one view. One way of
detecting occluded pixels is to perform a left-right consistency check [50, 32]. Disparities
of corresponding pixels from the left and right disparity maps are compared and, if not
equal, they are considered as invalid (occluded) and may be assigned with the disparity
value of the spatially closest background pixel on the same scanline. The quality of
the resulting disparity maps can also be improved by smoothing filters, e.g. median
filter [127]. Further enhancement of the disparity map can be achieved by subpixel
refinement methods [66, 124, 97].

Space-time stereo In the literature, we can find several methods that extend the
classical stereo vision technique into the time domain, motivated by the fact that the
correspondence of points is easier to establish using both spatial and temporal constraints.
Dynamic information can help in resolving the ambiguity in static stereo matching, due
to the scene variation over time. Space-time stereo can be achieved, for example, by
local aggregation using spatiotemporal integration windows [169], by combining motion
and stereo formulated as partial differential equations [141], or extending the Markov
Random Field (MRF) to three-dimensions, assuming that points should be spatially and
temporally smooth [157].

3.3 Depth Estimation using Dynamic Vision Sensors
Although the previous section focused mostly on stereo matching approaches, in the
following we summarise main directions in a broader field of depth estimation using event
data, not limited to stereo matching.

In Figure 3.3 we present a taxonomy of different methods for depth estimation using
DVSs. In the literature, depending on the setup, we can distinguish active and passive
depth reconstruction methods. The former assume combining dynamic vision sensors
with active depth sensing, e.g. laser scanner, as proposed in [21] for terrain reconstruction.
Application of DVS to active stereo helps to overcome conventional cameras’ shortcomings,
such as limited bandwidth, sensitivity to highly reflective surfaces or ambient light [96].
The passive methods rely only on the data captured by vision sensors, measuring
radiance reflected from scene objects. Among passive methods we can find depth
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Figure 3.3: Taxonomy of depth estimation methods for dynamic vision sensors.

reconstruction from two or more views of the scene, captured simultaneously, i.e. shape-
from-stereo [71, 111], or monocular depth estimation from a moving sensor, i.e. structure-
from-motion [68, 118]. Since DVS reacts to temporal illumination changes, there are two
ways of generating events, namely upon motion of the objects in the scene or upon the
sensor’ ego-motion. Further distinction could be made within the choice of handling the
events. Thus, we distinguish methods that operate on an image representation of events
(image-based) [134], directly on the stream of events (event-based) [121, 111] or using
other data structures (other) [175]. Regarding the correspondence search, a variety of
matching functions were proposed. In Figure 3.3, we organise them by three aspects,
matching primitive, constraints and cost/score calculation. We can also distinguish several
disparity calculation methods, such as aggregation, optimisation, post-filtering and use
of other cues, e.g. greyscale images [156] or motion characteristics [68, 27]. Finally, the
algorithms can be grouped by means of implementation, including software and hardware
solutions. The software applications are designed to run on a Central Processing Unit
(CPU) or Graphics Processing Unit (GPU). The embedded implementations are deployed
in hardware, e.g. on a Field Programmable Gate Array (FPGA), Digital Signal Processor
(DSP) or dedicated neuromorphic platforms. In the following, we provide an overview of
the main research directions and approaches to depth estimation using dynamic vision
sensors, organised according to our taxonomy.
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The first AER stereo chip and cooperative stereo The first prototypes of stereo
silicon retina were developed by Mahowald and Delbruck [91] in the late 1980s. The
authors tested the cooperative computation [94] using single line sensors. The analog
CMOS circuit was designed to find regions of correspondence between two one-dimensional
images. The correspondence circuit has been employed in two kinds of chips based either
on static or dynamic (temporal) contrast features. The sensors consist of two one-
dimensional pixel arrays of 40 pixels, connected to an array of correlators of dimension
40×3. A simplified view of the stereo chip architecture is shown in Figure 3.4.

Figure 3.4: A simplified stereo chip architecture [91].

The nonlinear combination of inputs from both silicon retinas is passed to the correlators,
which detect if the inputs refer to similar contrast and polarity. In order to suppress false
matches, feedback connections are used to perform positive coupling among correlators
at the same disparity. The correlators at the true disparity tend to be active and receive
more positive feedback than the surrounding correlators. The correct matches are said
to have high values. Therefore, a winner-takes-all (WTA) function is applied to select
the maximally driven correlator, which is assumed to be the true match. The complexity
of the circuit increases drastically for two-dimensional image matching. A great amount
of correlator units would be required to deal with higher dimensionality and resolution
as well. Since most of the parameters are realised by the chip architecture, a lack of
flexibility was considered the main limitation of the on-chip stereo approach.

Motivated by the success of the on-chip cooperative stereo computation, a similar approach
was implemented in software by Hess [57] in 2006. The algorithm performs disparity
estimation based on events from two DVS. Events of two corresponding rows are matched
by their coincidence in time, and accumulated over 20ms in a two-dimensional matching
matrix, where each diagonal represents a disparity level. The diagonal with the highest
sum of matches is considered the correct disparity. One limitation of the algorithm is that
it estimates only a dominant disparity in the scene. Since the local feedback operations
are not performed, this solution is not considered a cooperative stereo implementation.

Among the stereo matching methods proposed prior to this thesis (listed in Table 3.1),
we can distinguish two major ways of processing visual event data: image-based (also
called frame-based) and event-based algorithms.
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Method Setup Platform Matching Function Disparity Refinement
Mahowald [91] B S E VLSI T,P, ev 1D match., Coop.Net.
Hess [57] B S E CPU T,P, ev aggregation, WTA
Schraml [134] B S I CPU, DSP P, F, px(win), NSAD aggregation, WTA
Kogler[73] B S E CPU T,P, ev aggregation, WTA

B S I CPU P, px(win), Hamming aggregation, WTA
B S I CPU T,P, px(win), SAD aggregation, WTA

Eibensteiner [47] B S I FPGA T,P, ev aggregation, WTA
Benosman [8] B S E CPU T,P,G, ev
Rogister [121] B S E CPU T,P,Ord,G, ev
Carneiro [30] Tr S E CPU T,P,Ord,G, ev Bayesian filt. in 3D

Table 3.1: Taxonomy of event stereo matching methods proposed until 2013. Methods are listed
in chronological order and described by categories: (1) setup (B-binocular, Tr-trinocular, S-static,
I-image or E-event based processing), (2) matching constraints (T-time, P-polarity, F-frequency,
G-geometry, Ord-order), primitive and cost, (3) disparity refinement.

Image-based approaches to stereo matching Image-based methods explore the
possibility of adapting events to conventional computer vision algorithms. Events can be
converted to images by aggregation over a specific time period, as presented in [133, 73],
or reconstructed to grey-scale images by more sophisticated algorithms, as shown in [37]
or [4]. Once the events are encoded into an image form, conventional stereo algorithms
can be applied. Schraml et al. [133] evaluated window-based stereo matching with
different matching cost variants, achieving the best performance with Normalized Sum of
Absolute Differences (NSAD). Kogler et al. [73] proposed a window-based stereo matching
technique applied to a tri-logic image representation that stores the polarity of the most
recent event generated at a particular position.

Event-based approaches to stereo matching The second way of dealing with event
data, the asynchronous processing, is to operate directly on the stream of events. The
main challenge in event-based stereo matching is finding correspondences between events.
In conventional stereo, two pixels are compared by their values (greyscale, colour). Since
events do not convey the absolute brightness values, the task becomes more difficult. In
most of the approaches, events are compared by their occurrence in time, following the
assumption that the same stimulus should trigger corresponding pixels in the left and
right view at the same time. In the method proposed by Rogister et al. [121], matching
candidates selected from events within a defined temporal window are compared by their
Euclidean distance to the epipolar line. Additional constraints have been proposed to
reduce matching ambiguity, e.g., matching only events of the same polarity and orientation
or eliminating wrong matches by an ordering constraint [121]. Furthermore, in order to
smooth the final results, the disparities of events can be averaged over time [73]. Carneiro
et al. [30] apply Bayesian filtering to the initial matches projected into 3D space.
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The above-mentioned methods constitute the state-of-the-art in stereo matching using
DVS at the beginning of this PhD research. Our main goal was to improve the quality of
event-based methods, to make them comparable with image-based algorithms’ accuracy
and performance, and at the same time exploit the data driven aspect of the sensors. As
a feasible model for asynchronous stereo matching, we propose a dynamic cooperative
network that adapts the disparity estimates with each incoming event. We develop two
variants of the cooperative stereo, which are described further in Chapter 5.

Several methods developed in parallel with this thesis are included in Table 3.2. Kogler
et al. [71] suggested an adapted Belief Propagation (BP) and a Two-Stage Filter (2SF)
technique, and demonstrated that the latter gave better results. Belief propagation has
also been used by Xie [158] to refine the initial results of event matching [121] with
smoothness and uniqueness constraints. Zou et al. [179, 180] proposed a novel matching
primitive to enable context based event matching. The local, spatial context of each
event is constructed from the spatial distribution of neighbouring events in the signed
(polarity) distance space. Each descriptor is a 24-bin histogram of events frequency in
12 directions (in 30 degrees steps), calculated per each polarity. The matching cost is a
binwise difference between the histograms. Additional assumptions have been used to
improve the quality of event to event matching. Camuñas-Mesa et al. [28, 29] proposed
to use the orientation of edges accumulated over a fixed time period (e.g. 50ms). The
orientations are calculated by a bank of Gabor filters implemented as a network of
convolution modules on an FPGA.

Monocular dynamic setup Since many of the computer vision applications are highly
connected with tasks of navigation (robotics, UAV), and Simultaneous Localisation and
Mapping (SLAM), also in the context of event-vision we can recently find more and
more methods designed to work in a dynamic sensor setup (ego-motion). Among 3D
reconstruction methods, we can find multi-view stereo from a single sensor [118] or
simultaneous 3D reconstruction and 6 degrees of freedom (6DoF) motion tracking [68].
The former applies a space-sweep method [34] and performs depth estimation directly in
the 3D space. The latter method applies probabilistic estimation using e.g. Bayesian
or Kalman filters to the events with reconstructed greyscale values. Gallego et al. [53]
proposed a contrast maximisation framework for event-based vision tasks such as motion,
depth and optical flow estimation. The depth estimation is achieved by multiple-view
plane-sweep and the patch of warped events is created for different depth levels. The
correct depth is denoted by the highest contrast, i.e. best alignment of events to edges.

Binocular dynamic setup Unlike the above-mentioned methods, which assumed monoc-
ular vision, there are also methods designed for systems which generate visual information
from ego-motion, however are equipped with two sensors. An example of such approach
is the panorama stereo vision system [7]. Depth estimation from stereo panoramas was
proposed by Schraml et al. [131, 132]. The stereo matching considers spike trains, i.e.
event sequences and novel matching cost based on comparing event distributions using
inter-event distances. Very recently, Zhu et al. [175] proposed matching applied to time
synchronised event disparity volumes, using the motion of the camera to synchronise the
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Method Setup Platform Matching Function Disparity Refinement
Piatkowska [110] B S E CPU T,P, ev dynamic Coop.Net.
Camuñas [29] B S E FPGA,CPU T,P,Ord,G,Or, ev WTA
Kogler [71] B S I CPU P,F, px(win), SAD aggregation, BP, 2SF
Eibensteiner [45] B S I FPGA T,P, seg, SAD aggregation, WTA
Schraml [131] B D E CPU T,P, ev.seq. dynamic prog.
Kim [68] M D O CPU T,P,I, ev Kalman Filter
Rebecq [118] M D E CPU T,P, ev PS
Zou [180] B S I CPU P,F, ev.orient.hist binwise hist.dist., WTA
Piatkowska [113] B S E CPU T,P, spatiotemp.win dynamic Coop.Net.
Osswald [108] B S E ROLLS T, ev SpikingNet.
Dikov [41] B D E SpiNNaker T, ev Coop.SpikingNet.
Xie [158] B S E CPU T,G, ev BP
Andreopolous [1] M S E TrueNorth T,P, ev WTA
Gallego [53] M D O CPU T,P, ev PS, contrast max.
Zhu [175] B D O GPU ev.disp.volume focus/defocus max.

Table 3.2: Taxonomy of event depth reconstruction methods proposed since 2013. Methods are
listed in chronological order and described by categories: (1) setup (B-binocular, M-monocular,
S-static, D-dynamic, I-image or E-event based processing, O-other), (2) matching constraints
(T-time, P-polarity, F-frequency, G-geometry, Ord-order, Or-orientation, I-intensity), primitive
(ev-event, px-pixel, seg.-segment, seq.-sequence) and cost, (3) disparity refinement (BP-belief
propagation, WTA-winner takes all, 2SF-two-stage filter, PS-plane sweep).

events streams in time. The correct disparities of the event image pixels are determined
by the minimal motion blur. The methods have been evaluated on the Multi Vehicle
Stereo Event Camera dataset [176].

Hardware implementations Some of the above-mentioned algorithms have already
been realised on hardware platforms. The work presented in [134] was implemented on a
DSP and later also on an FPGA [44]. Regarding event-based matching, the time correla-
tion algorithm from [73] was realised on a DSP by Sulzbachner et al. [143] and FPGA by
Eibensteiner et al. [47]. More recent FPGA implementations include the segmentation
based stereo matching proposed by Eibensteiner et al. [45]. Furthermore, more efforts are
being invested into the development of algorithms in dedicated neuromorphic hardware
implementations. Neuromorphic architectures, such as TrueNorth [100] and Spiking
Neural Network Architecture (SpiNNaker) [51] have been shown to be highly efficient
image processing platforms, and especially well suited to be coupled with dynamic vision
sensors. Dikov et al. [41] used six SpiNNaker processor boards to implement a 106×106
cooperative network. Osswald et al. [108] proposed an implementation of a variant of
a cooperative, spiking neurons network on a Reconfigurable On-Line Learning Spiking
neuromorphic processor (ROLLS) platform [117]. Andreopoulos et al. [1] implemented
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3.3. Depth Estimation using Dynamic Vision Sensors

a full stereo pipeline on an IBM cluster of TrueNorth neurosynaptic processors. The
algorithm comprises data acquisition and rectification, multi-scale spatiotemporal stereo
matching and disparity map regularisation. The algorithm is estimated to be capable of
producing 2000 disparity maps per second.

3.3.1 Summary
Stereo vision is an extensively researched field in conventional computer vision. Over
the last couple of years, a growing number of methods has been proposed for depth
estimation using dynamic vision sensors. At the starting point of this thesis, the best
performance was achieved by image-based methods, whereas event-based stereo matching
was still in its very early stage. The main challenge of this thesis was to provide an
efficient event-based stereo matching algorithm, which is tailored to event data and
achieves a performance comparable to or better than image-based stereo. The recently
growing interest in event-based stereo vision has also led to newly published event-based
ground-truth datasets and benchmarks, which facilitate further research in the field.
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CHAPTER 4
Challenges of Asynchronous
Event-based Stereo Vision

As presented in the previous chapter, stereo matching is a challenging task in computer
vision, and numerous methods have been proposed to improve its accuracy, robustness and
performance. Whereas there are several solutions proposed for handling the ambiguity in
conventional stereo matching, only very little attention has been devoted to the analysis
of the problem in the event stereo domain. In this chapter, we focus on the challenges
introduced by the nature of dynamic vision sensors. We have identified two main aspects
that have to be considered when designing a stereo algorithm for dynamic vision sensors:
providing asynchronous processing and establishing similarity between the events. We
investigate the challenges associated with these two tasks, and based on that we derive
a set of requirements for a well-designed asynchronous stereo matching algorithm for
event-based stereo vision.

4.1 Asynchronous Stereo Processing
As mentioned in Section 3.3, there are two principal methods of processing event data,
frame-based and event-based. The former assumes fixed time aggregation of events into
‘frames’ (images), whereas the latter considers matching applied directly to the event
stream. Frame-based processing is less computationally demanding, therefore eligible for
real-time performance, which is required for many applications. In addition, transforming
events into image representation allows for exploiting the variety of available robust
conventional stereo methods. Nonetheless, the accuracy of the frame-based methods is
highly dependent on the quality of the input frames. Fixed-time aggregation requires
finding an optimal frame length to build a good visual representation of the captured
motion. In Figure 4.1, frames of different duration have been generated to compare the
quality of the moving hand motion representation. We can observe that in this example

31



4. Challenges of Asynchronous Event-based Stereo Vision

the optimal frame length can be found around 25ms. If the aggregation time is too short,
e.g. 5ms (see Figure 4.1a), the edges of the hand are quite ‘weak’, whereas too long
frames may result in ‘motion blur’ (see Figure 4.1e).

(a) 5ms (b) 10ms (c) 25ms (d) 50ms (e) 75ms

Figure 4.1: Influence of the frame length on the visual representation of a moving hand.

Dynamic vision sensors are data-driven and their output depends on a number of factors,
such as the scene illumination, the projected speed of objects or their appearance in terms
of relative contrast to the background. The first factor can often be assumed uniform
within a particular period of time, however, the appearance and speed are likely to vary
across objects in the scene. These two last factors influence the density and frequency of
the events generated upon the objects’ motion.

Figure 4.2: Events generated upon the motion of two edges rotating at different speeds.
The events are plotted in space and time over a 2s (left) and 0.2s (right) period.

Figure 4.2 depicts the events generated by two edges rotating at different speeds. Each
edge is presented by the polarity plot in the first time window; the aggregation time of
2ms and 5ms has been selected to represent the fast and slow edge, respectively. We
can observe the influence of speed on the frequency (density) of the generated events;
intuitively, the faster the object, the higher the frequency. On the left, the events are
plotted over a period of 2 seconds. We can recognise the rotational motion trajectory for
the slower edge (at the bottom of the scene), but not the fast edge, which forms a dense
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4.1. Asynchronous Stereo Processing

‘tube’ of events. However, if we zoom-in and plot part of the sequence over a 0.2s period,
then we can see that whilst the slower edge made only a half of the rotation, the faster
edge made three within the same time. Smaller aggregation time is beneficial for fast
objects, however longer time periods are required to obtain better representation of slow
objects. Therefore, the aggregation of events should be adjusted to the object’s speed
individually for every object in the scene. This is a potential limitation of the fixed-time
aggregation.

Figure 4.3 presents another situation where a single optimal frame duration cannot be
determined for all objects in the scene. Two people are walking at the same speed but
at different distances to the sensor. In this case, the event representation varies across
objects not due to their speed but the projected velocity of their motion. We can observe
in Figure 4.3a that the event ‘cloud’ generated by closer person is denser than the other
one.

(a)

(b) 10ms

(c) 30ms

Figure 4.3: Events generated upon motion of two people walking at different distances
from the sensor, presented with a spatiotemporal plot (a), and frames adjusted to the
person closer (b) and farther (c) to the sensor.

Figures 4.3b–4.3c present frames of duration 10ms and 30ms, which were found optimal
for the closer and farther person, respectively. As can be observed, in the shorter frame
the events generated by the farther person are not sufficient to form clear edges, as in
30ms frame. On the contrary, the closer person’s motion is projected as faster, therefore
we can observe a ‘motion blur’ in the longer 30ms frame. In this example, the difference
in speed is not that prominent, thus the stereo matching would be able to handle the
slight motion blur of the closer person. Nonetheless, it is easy to imagine situations where
the difference in velocity could be more significant, e.g. in a scene containing cars and
pedestrians.
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4. Challenges of Asynchronous Event-based Stereo Vision

Furthermore, even considering a single object in the scene we cannot make any assumptions
about the expected velocity, since the velocity could change over time (e.g. a car speeding
up or slowing down). Dealing with human motion, we need to take into account that
different parts of the body could be moving at varying speed, e.g. the torso moving slower
than hands or legs. Figure 4.4 depicts a person standing and moving arms and hands
in front of the sensor. Looking at the spatiotemporal view of the events, we can see
that the upper part (containing the arms) is significantly more dense than the lower
part containing torso and legs. However, the slight motion of the rest of the body is
still captured by the sensor. The optimal aggregation time for the hands is 10ms (see
Figure 4.4b), however at the same time the body is represented only by few events.
Nonetheless, these sparse events, when aggregated for a longer time period, e.g. 100ms,
can form clear contours of the body, legs, or face (see Figure 4.4c).

(a)

(b) 10ms

(c) 100ms

Figure 4.4: Events generated upon motion of one person moving arms presented as
spatiotemporal plot (a), and frames accumulated over 10ms (b) and 100ms (c) period.

Although frame-based methods proved efficient and accurate when applied to well-chosen
frame lengths, they lack robustness to the speed variation, as it has been demonstrated
by the examples above. Fixed-time aggregation assumes single frame length, which might
not be optimal for all the objects in the scene. This could have a direct impact on the
stereo matching results. If the frame is too short, hence not sufficient to build a good
representation of the object, then the object might be mismatched or even filtered out as
noise. On the contrary, if the frame is too long, the transition of the edges in time is
captured within one frame. Due to that, the depth of multiple edges is averaged over
the frame duration, which causes loss of precision and lowers the accuracy of depth
estimation. The loss of precision is quite visible when dealing with complex objects (e.g.
spherical surfaces, human body), since details of moving edges are lost and averaged over
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the captured trajectory. Moreover, it can happen that within one frame the trajectories
of fast objects might overlap, i.e. one object occludes the other, which in result introduces
unnecessary ambiguity to the stereo matching.

As mentioned previously (Section 3.3), one way of addressing the challenge of asynchronous
stereo matching is to avoid aggregation and apply processing directly to the stream of
events [73, 121]. Such methods perform event-to-event matching using constraints such as
time, polarity or orientation. However, the accuracy of event-to-event stereo matching is
rather low and can be compared to pixel-to-pixel matching in conventional stereo vision.
Additional constraints, such as a smoothness, would be necessary to improve the quality
of the results. Nevertheless, the smoothness constraint requires events aggregation over
time. An attempt to provide adaptive events aggregation has been proposed by [119].
The frame duration is adjusted according to the local density and timestamp thresholds
using local buffers for every pixel. This method, however, suffers from noise, which is
accumulated together with the other events and, due to a lack of spatial context, is
difficult to be detected and removed.

4.2 Event-based Matching
As we have learned from the previous section, event aggregation into frames may limit
the temporal resolution of the sensor, thus correspondence between data from the left
and right DVS should be established in an event-wise manner. In the following, we
revise three fundamental assumptions used in solving the correspondence problem in
conventional stereo vision, i.e. compatibility, smoothness, and uniqueness, and investigate
their applicability to event-based matching.

Compatibility of two corresponding points should be reflected in their similarity. In
conventional computer vision, compatibility is measured by the similarity of objects’
appearance — commonly it is the difference in pixels’ intensities. Since events denote
change of intensity, they do not carry the information about the absolute intensity
values. A common approach for comparing events is to use their timing according to the
assumption that the object moving in the scene should trigger the left and right sensor
at the same time. Moreover, apart from location and time, another feature is carried
in each event, namely the polarity, which denotes the direction of the detected change,
i.e. whether the event was generated upon increase or decrease of the light intensity. The
polarity can be used as a matching constraint since corresponding edges (events) are
expected to be of the same polarity.

Local smoothness assumptions are derived from the coherence of the matter, i.e. points
that belong to an object occupying a certain area are likely to vary smoothly in depth. In
the context of events, the assumption of local smoothness would apply in the spatial and
temporal domain. Events that represent the same edge are assumed to be locally smooth
since the edge was generated by the same object. Due to the high temporal resolution of
the sensor, the events form the trajectory of the moving object, therefore their depth
values are also assumed to vary gradually.
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4. Challenges of Asynchronous Event-based Stereo Vision

Uniqueness assumes that a point on the 3D surface occupies one position at a particular
time, therefore there could only be one corresponding candidate in the other view, which
denotes the correct disparity (depth) estimate. This assumption could be problematic
in event-based matching. Unlike conventional pixels, which represent the projection of
a scene point at the time the frame is captured, the DVS events reflect the change of
pixel’s intensity over time. This raises the question whether it is reasonable to assume
that, at the event level, the representation of a change in a point’s location will be the
same in the left and right view. It is also worth investigating if we can assume a unique
mapping of events, meaning that for every left event there is at most one corresponding
right event.

In addition to the above-mentioned three assumptions, other matching constraints could
be applied to event data. Employing geometrical constraints to sparse event data seems
applicable. A basic geometrical assumption is the use of epipolar geometry, i.e. events
that lie on the corresponding epipolar line are considered in matching. Furthermore,
assumptions about object representation characteristics could be used, e.g. line-fitting
algorithms. Moreover, the assumption about the order of objects across the views is
valid also in even-based matching, excluding rare situations, e.g. thin foreground objects,
which could appear in different order in the left and right view. The temporal order
of events, however, cannot be used as a matching constraint because time and order in
which the edges are formed on the left and right view may vary due to the fact that pixels
are independent and generate events in an asynchronous manner. Another feature that
can be used in matching events is orientation, which is usually defined as the orientation
of a line fitted to the local neighbourhood of the event. Events of similar orientation are
assumed to be possible matching candidates. Calculating the orientation for each event,
however, can be a computationally demanding task.

Solving the correspondence problem becomes challenging when dealing with more complex
scenes captured by dynamic vision sensors such as objects moving at different speeds, in
highly textured, or ‘cluttered’ scenes with many moving objects, which are often occluding
each other. Just like in conventional stereo, each of the aforementioned assumptions
could be violated in real world conditions. This may lead to erroneous similarity scores
between two candidates, when incorrect matches score higher than true ones. In some
cases, a similarity measure could be ambiguous, when more than one matching candidate
in the opposite view achieves the same score.

There are several factors that influence the response of a pixel, including (i) external
conditions, such as lighting, speed and direction of the moving object, or the colour of the
object (contrast); and (ii) internal parameters, including the hardware-specific variations
and bias settings that control the pixel’s response time, sensitivity, spike rate, etc. It
is very likely that these factors will not result in identical responses of the pixels from
the left and right sensor. In what follows, we investigate how much these factors can
influence the sensor response, and how much ambiguity needs to be handled by the stereo
algorithm.
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4.2.1 Internal Parameters that Influence Left and Right Response

We present an experimental analysis of the data recorded by the left and right sensor
upon the same visual stimuli. The test recordings were performed under a controlled
laboratory setup to suppress the influence of external factors on the left and right sensor
response. We analyse two aspects of the recorded data, (1) the similarity in temporal
characteristics of the left and right DVS response, and (2) the behaviour of sensors under
different bias settings, in terms of overall similarity of the left and right response.

Temporal Event Data Characteristics

It has been observed [121] that commonly used assumption about events coincidence
in time is rarely true in real DVS recordings, due to the latency in a pixel’s response
(which varies across pixels and boards), and jitter in the event’s timing caused by off-chip
transmission over a shared digital bus. In the following, we investigate (i) how much
variation could be introduced by hardware specific factors, (ii) how similar the temporal
information generated by corresponding pixels is, and (iii) if for each event there is a
corresponding one in the other view. In our experiment, we used the ATIS stereo sensor [6]
with time resolution set to 1ms. As a visual stimulus we used a green Light-Emitting
Diode (LED) blinking at a frequency of 10Hz. We measured the response of five different
pixel locations, marked as top, bottom, left, right, center. Additionally, for the center
pixel, we have recorded data at different distances from the sensor: 0.15m, 0.45m, 0.7m,
and 1.95m. The duration of all data sequences is 10 seconds. The summary of the events
statistics for each test sequence is given in Table 4.1. We compared the number of events

distance #events #events ratio difference
(m) left right left right (%)

bottom 0.45 7154 6762 0,514 0,486 2,8
top 0.45 11588 12515 0,481 0,519 3,8
left 0.45 12786 14266 0,473 0,527 5,5
right 0.45 11267 10371 0,521 0,479 4,1

center

0.15 15388 16564 0,482 0,518 3,7
0.45 19330 20599 0,484 0,516 3,2
0.70 17897 15134 0,542 0,458 8,4
1.95 14555 17371 0,456 0,544 8,8

Table 4.1: Summary of the recorded test data sequences.

generated by the left and right sensors. We calculated the ratio of the left (right) events
to all generated events, and the percentage of the difference in number of the left and
right events. Figure 4.5 shows the time histograms of 1ms bins, built separately for ON
and OFF events that were generated by two corresponding pixels (center at 0.45m).
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Although the responses of the left and right sensors are similar, we can observe that some
of the events cannot be matched (denoted by green circles).

Figure 4.5: The stereo DVS response to blinking light stimuli: time histograms of ON
(top) and OFF (bottom) events from the left (blue) and right (red) DVS. The histograms
show the number of events generated in 1ms.

Next, we analyse the histograms of the pixels’ responses averaged over a sequence of
1s duration, as shown in Figure 4.6. The shapes of the left and right distributions are
similar. However, we observe that the distributions are shifted in time due to a delay
between left and right response. Additionally, the histograms usually tend to differ in
height, meaning that one of the pixels generates more events than the other.

Figure 4.6: The stereo DVS response to blinking light stimuli averaged over 1s sequences:
time histograms of ON (top) and OFF (bottom) events from the left (blue) and right
(red) sensors.

We have inspected time histograms for all test sequences. In general, there is a clear
similarity between the response of the left and right sensor in terms of the shape of
distribution, as well as their agreement in time. Nonetheless, every histogram indicated
some events that cannot be matched; these are considered to be noise. Furthermore,
there is no regularity in response order or delay. Sometimes left events occur later than
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the right ones and vice versa. We have not observed any delay or dissimilarity correlated
with the address (location) of the pixel, however we have noted that the response time
tends to vary more with increasing distances of the object to the sensor. The number
of events generated by the left and right sensor board differs on average by around 5%.
Moreover, the disproportion increases with the distance, e.g. at 1.95m it reaches 8.8% of
difference.

Sensor’s Response Under Different Bias Settings

The second part of the data analysis is focused on the impact of bias settings on the
similarity of the sensors’ response. The sensor is controlled by a set of parameters, called
bias settings. These parameters are set by numerical values, which are then translated to
voltage values by the internal bias generator. It has been observed that, depending on
the sensor board, numerical settings might translate to slightly different voltage values.
Hence, there might be some variations in the behaviour of the sensors, even under the
same numerical bias settings. We investigate if by an appropriate choice of the bias
values, the similarity between left and right sensors’ output can be improved.

In our experiments the test data were recorded with the UCOS sensor [125, 134]. As a
test pattern we used two horizontal black bars on white background, placed on a drum
rotating at a speed of 2.25 m/s. The tests were recorded for 15s, separately for each
sensor, under exactly the same conditions, such as position, distance, angle of view,
lighting, speed of visual stimuli, and bias settings. We have selected several biases for
further investigation in the experimental tests. We start with an analysis of the influence
of the contrast sensitivity parameter, controlled by Q, QON, and QOFF. The smaller
the difference between |QON −Q| or |QOFF −Q|, the higher the sensitivity of a pixel to
contrast change. We have also used the BRefr bias, which is responsible for the refractory
period, i.e. time until the pixel can spike again. The length of the refractory period has
an impact on the data rate. The last two biases considered in our tests are BFo and BPr,
which are responsible for bandwidth control, and usually used for noise reduction.

We have recorded four bias tests (for more details see Appendix C), each focusing on
varying particular bias values, while keeping the other settings constant and default. The
results of the bias tests are presented in Figure 4.7. We can observe how the similarity in
the amount of events generated by the left and right sensor changes upon different bias
settings. Biases controlling the contrast sensitivity tend to have quite significant influence
on the sensors’ response, and careful selection of Q,QON, QOFF could help in reducing
the disproportion between the left and right events. In the context of BRefr, although the
best similarity of the left and right response is achieved for small bias value settings, this
setting is not optimal for the quality of the acquired data. Different bandwidth settings
show little impact on the similarity of the left and right response.

In addition, we have performed a so-called noise test, in which the recordings are made
with an idle scene (no visual stimuli), hence all of the generated events are considered
noise. Table 4.2 presents the statistics of the noise test and a default-test with a moving
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Figure 4.7: Bias tests with varying settings for the contrast baseline (a), contrast
sensitivity (b), refractory period (c), and bandwidth (d), and their influence on the ratio
of the left and right events.

object; both data recordings were made under optimal bias settings. We can observe
that the sensor platforms vary also in the generated noise ratio, expressed in almost 3%
difference between left and right sensor’s response. Moreover, there is a clear imbalance
in the ON and OFF events, indicating that the majority of the noise events are of OFF
polarity.

Difference between the left and right response
all events ON events OFF events duration

(kEv) (%) (kEv) (%) (kEv) (%) (s)
default-test 75,3 1,98 31,2 1,66 44,2 2,29 15
noise-test 127,7 2,89 89,4 34,18 200,2 4,88 238

Table 4.2: Summary of the results for default-test and noise-test.
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In general, we can observe that under different bias settings, sensors can generate a quite
imbalanced amount of events, in the worst case reaching up to 25% of difference between
the number of the left and right events (see Table C.2). Nonetheless, with a well chosen
set of bias parameters the imbalance can be reduced rather significantly, e.g. to 1.98%
in default-test. The tests indicate an average 8% of overall difference between left and
right events. We consider this value as an indicator for how much ambiguity could be
introduced by hardware specific cross-platform variations, and which should be handled
by the stereo algorithm.

4.2.2 Ambiguities Introduced by External Conditions
Apart from the internal parameters that affect the DVS behaviour, we also need to take
into account how external conditions influence the difference between the left and right
events. In the following, we describe two potential causes of ambiguity in event stereo
matching, the first one associated with the difference of an object’s representation due
to the projected motion velocity, and the second related to the variation of the scene’s
appearance depending on the viewing angle.

Relativity of Motion Speed

As presented in Section 4.1, the appearance of moving objects depends on their projected
velocity, i.e. affect the density of events in space and time. Objects closer to the sensor
are naturally projected as bigger, and their relative motion velocity as well as event rate
are higher. On the contrary, objects that are farther from the sensor are projected as
smaller and generate fewer events. Figure 4.8a–4.8b shows two people walking at different
distances; the events are generated by the left and right sensor, respectively. We selected
a horizontal patch (marked by green dotted lines) to analyse in more detail the time
history of the collected events. The time history for the left and right view are depicted
in Figure 4.8c and 4.8d. The event’s timing is encoded in colour ranging from cold (for
old events) to hot colours for the most recent events. We can observe that more events
are generated for the person closer to the camera, and the events show more consistent
temporal information along the edges. In fact, we can actually see that the edges are
changing position over time, as indicated by temporal transition from blue, green up
to red. This is mainly because the temporal window for the ‘closer’ person is too long.
When we consider the second, ‘farther’, person, he/she is not only represented by a fewer
events, but also the timing of events is less consistent.

We have selected a left event eleft generated by the ‘farther’ person and collected all
possible matching candidates from the opposite (right) view. In Figure 4.8e we plot
the matching score, i.e. the inverse of the timestamp difference between reference and
candidate event, for all candidates. We can observe that the corresponding event, eright,
achieves a relatively small score, when compared to candidates from the ‘closer’ person.
In such cases, the single event-to-event temporal matching is likely to produce erroneous
results, because events generated by the slow object are matched to the events of the fast
object, as they are more ‘recent’, and thus achieve a higher temporal matching score.
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Figure 4.8: Ambiguity in event matching caused by relative motion velocity. Polarity
plots of two people moving at different depths are presented for the left (a) and right (b)
view, where red indicates ON and blue OFF events. The time history for a selected patch
is shown for the left (c) and right (d) view. For the reference event eleft, the temporal
matching scores for all possible candidates are plotted in (e).

Viewpoint Difference

There are several situations where the viewpoint makes a difference, i.e. the scene
appearance varies while viewed from different angles. Firstly, parts of the scene which are
visible in one view might not be visible in the opposite view. This situation is referred to
as half-occlusions. Secondly, the view point also influences how the geometrical features
of the object are projected onto the image plane. For instance, the frontal view of a
cube would be represented by events formed into two edges, whereas while seen from a
different angle, the cube could appear as three edges (in conventional imaging, the cube
would appear as a square or two or three slanted planes, respectively).
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4.3. Requirements for Asynchronous Event-based Stereo Matching

Finally, the viewpoint might also influence the perceived contrast magnitude, hence the
generated event sequence would differ in the left and right sensor. Events depend on
the relative contrast between the colour of the moving object and the background. The
perceived background may vary across the views, as illustrated in Figure 4.9a.

(a) (b) left (c) right

Figure 4.9: Schematic illustration of polarity mismatch (a) caused by the difference in
background the object is projected onto in the left and right view. Demonstration on
DVS events presented by polarity plots for the left (b) and right (c) view.

This situation may lead to a significantly different contrast magnitude, thus amount and
frequency of generated events. In an extreme case, not only the magnitude is different but
also direction of change, which is expressed in polarity. As we can observe in Figure 4.9,
the left edge of the object (triangle) in the left view is projected onto the relatively lighter
background, whereas in the other view onto the darker one. Therefore, assuming that the
object is moving to the right, then in the left view the polarity of the edge is ON (change
from darker to lighter), whereas in the right view it is OFF (lighter to darker). We refer
to this situation as ‘polarity mismatch’. In Figure 4.9b–4.9c, the polarity mismatch is
demonstrated in the DVS event sequence.

4.3 Requirements for Asynchronous Event-based Stereo
Matching

The main motivation for asynchronous stereo vision is to preserve the high temporal
resolution provided by the sensor. It is also preferred to have data-driven processing,
meaning that only parts of the scene that are active are being considered in processing.
Finally, the asynchronous stereo approach can be a way of preserving the quality of the
matching regardless of the type and speed of captured motion. Finding an appropriate
model for asynchronous stereo matching is not a trivial task. In the course of our
investigation, we have identified a couple of aspects, which should be considered in the
design of asynchronous stereo algorithms.

Stream based processing Events should be processed as they are generated, preserving
their asynchronous character. In order to perform stream based stereo processing, the
correspondence search is done under uncertainty. There is no guarantee that for a given
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4. Challenges of Asynchronous Event-based Stereo Vision

time when the left event arrives, the corresponding right event is already available or if
there is a sufficient amount of local context information that could be used in matching.
Hence, the asynchronous matching should be able to handle such uncertainty, either by
sliding temporal windows, or adaptive aggregation.

Dynamic event aggregation to enable using local context for stereo matching. In
conventional image-based stereo methods, the quality of the initial matching costs is
usually improved through the smoothness constraint. The smoothness constraint can
be employed implicitly by local support aggregation or explicitly by global optimisation.
Whether it is the local aggregation or global optimisation, the set of initial matches on
which the smoothness constraint is employed have to be collected over time, e.g. stored
or buffered. The challenge is to find an efficient data structure to perform aggregation,
which dynamically adapts to generated events without limiting the temporal resolution.

Event-wise correspondence in finding correspondence between the left and right event
stream. The fundamental assumption in correspondence search is that matching points
should have similar appearance regarding intensity values, context colour or texture.
Since events denote the temporal intensity change, they do not carry the information
about the absolute intensity values. The challenge is to find an appropriate matching
primitive and formulate similarity measures to establish correspondence between two
events, while tackling the matching ambiguities listed in Section 4.2.

Performance trade-off Asynchronous processing assumes event-based processing which
in most cases will be more computationally demanding than applying algorithms for image-
like representation of event data. The challenge is to find an efficient way of processing
events, e.g. by using suitable data structures and parallel processing techniques.

4.4 Summary
The special characteristics of the data provided by dynamic vision sensors introduce new
challenges to the problem of stereo matching. We demonstrated by several examples that
fixed-time aggregation might limit the temporal resolution of DVS, and motivated our
analysis towards asynchronous stereo matching. Since asynchronous processing can be
only achieved by operating directly on the stream of events, we discussed the challenges
posed by event-based correspondence search. We presented an experimental analysis of
possible factors that might influence the variation between left and right response. Based
on our analysis, we have derived a set of requirements that a good event-based stereo
matching algorithm should address.
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CHAPTER 5
Adaptive Dynamic Cooperative

Stereo Matching

A good event-based stereo matching algorithm needs to fulfil two major requirements
(1) allow for asynchronous processing, and (2) handle the ambiguities in event-based
matching. We have considered these two requirements in the design of the stereo
matching algorithms. We revisit an early model of stereo computation, the cooperative
stereo [94] and demonstrate that it serves as a good model for asynchronous event
matching. The applicability of the cooperative approach to event data has already been
proven in [91, 57]. We extend the basic algorithm from [94] to provide the dynamic
adaptation of the cooperative network and hence, enable the asynchronous matching.
In the following sections, we present two cooperative stereo algorithms, the first one is
focused on performing asynchronous cooperative optimisation. The second algorithm
addresses the second requirement, namely finding an efficient matching function to handle
the ambiguities in event-based correspondence search.

5.1 Asynchronous Cooperative Stereo Matching Model
Marr and Poggio [94] model the problem of stereo matching with the cooperative network
where each node corresponds to an intersection of the left and right sightline (see
Figure 5.1). The nodes of the network denote all possible matches and the task of stereo
matching is to distinguish which nodes represent true matches (depicted in black in
Figure 5.1). In order to do that, the authors defined two constraints: uniqueness and
smoothness. The former reflects the fact that an object can occupy only one physical
position at a particular time, hence there is only one true match for particular point in
the scene. The latter constraint, says that disparity varies smoothly almost everywhere
due to the coherence of the matter. Both constraints are incorporated in the cooperative
network as local neighbourhood operations. Nodes at the same disparity level support
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5. Adaptive Dynamic Cooperative Stereo Matching

each other according to the smoothness rule, whereas nodes along the sightline inhibit
each other due to the uniqueness constraint. The network iteratively performs these local
operations in order to find a global optimum.

Figure 5.1: Schematic description of correspondence solving between projections from
the left and right eye [94].

We notice several aspects that make the cooperative approach very suitable for the
events generated by dynamic vision sensors. Firstly, this method is to a significant extent
based on implications from biological stereopsis, and therefore, adequate for the bio-
inspired DVS sensor. Secondly, the use of neural mechanism to achieve global optimum
through multiple local neighbourhood operations can be easily employed for dynamic
event processing. Finally, the cooperative stereo was designed for matching identical
features thus it can be considered very eligible for matching events.

In its original form, the cooperative network performs optimisation through a number
of iterations per stereo image pair. In our work, we propose to dynamically update the
cooperative network with each event generated by the sensor and mapped to the network.
In this way, the network acts as a dynamic history of previous matching results. This
allows for fully asynchronous matching because each event from the stream can infer its
disparity on the basis of information found in the network.

A schematic view of the cooperative network is given in Figure 5.2. Incoming events
from the left and right sensor are matched by their co-occurrence, i.e. the assumption
that quality of matching candidate is reflected in smaller time difference between their
timestamps. The stereo matching is done symmetrically for both views. A time-based cost
function can be used to assign the initial weights while mapping the possible matches into
the network. Additional constraints for the suppression of false matches are incorporated
in the network by the positive and negative feedback from local neighbours. Neighbours
at the same disparity level implement a cooperative process and give positive feedback
to the node, whereas the nodes across the disparity planes compete with each other by
negative feedback. Finally, a winner-takes-all (WTA) is used to derive the disparity
estimates. Nodes exceeding the activation threshold and having the highest weight within
the competing neighbourhood denote the correct matches. The cooperative network can
be considered a prototype of disparity space image (DSI), term commonly used in stereo
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5.2. Asynchronous Cooperative Stereo Matching Algorithm

Figure 5.2: Schematic illustration of the cooperative network with positive (green) and
negative (red) neighbourhood.

matching literature. Similarly to nodes in cooperative network, pixels in DSI store the
matching score/cost values per each matching candidate. However, the major difference
between DSI and the proposed cooperative network is that cooperative nodes interact
between each other and dynamically adapt their weights based on incoming data.

5.2 Asynchronous Cooperative Stereo Matching
Algorithm

In this section, we present our first stereo matching algorithm, further referred to as
Coopv1 algorithm, which implements the dynamic cooperative network. The proposed
algorithm can be divided into two processing steps, as illustrated in Figure 5.3.

Matching
Function 

Cooperative Network
Optimization

map to network final disparityinput event

Figure 5.3: Block diagram of the proposed algorithm.

Each event from the input stream is passed to the matching function, in order to find a
set of possible matches and to calculate an initial weight (matching score). We assume
that events have been previously rectified such that left and right views are geometrically
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aligned and possible matches can be found on the corresponding epipolar lines. From
the matching function, the weighted matching candidates are mapped to the cooperative
network. Subsequently, the network feedback is calculated for each possible match and,
finally, a winner-takes-all (WTA) is applied on the nodes to retrieve the correct disparity.
In the following sections, we described the algorithm’s steps in more detail.

Matching Function and Mapping Events to the Cooperative Network

Let e = (ex, ey, et, ep, ec) represent the event by its location (x, y), time t, polarity p and
camera c.

e = (ex, ey, et, ep, ec) | ex, ey ∈ N, et ∈ R,
ep, ec ∈ {0, 1}

(5.1)

The set of all events in the input stream is denoted by E. For each event, we search
for the set of possible matching candidates Me among events of the other view within a
given disparity range (dmin, dmax), as defined in Equation 5.2.

∀e∈E Me = {m | m ∈ E,
dmin < |mx − ex| < dmax,

my = ey,mt < et,mc = ¬ec}
(5.2)

Matching is done symmetrically for the left and right events. Additionally, according
to the canonical stereo setup, we assume that the true match for any of the left events
will always appear in the right view on the right-hand side from the reference event’s
position; analogically for the right events, the corresponding match is expected to appear
on the left-hand side in the opposite view.

In most event-based matching algorithms (e.g. [121, 57]) matching candidates are weighted
by their similarity in terms of timestamps to the reference event e as defined in Equa-
tion 5.3.The similarity function ρt for each of the candidates is computed as:

ρt(e,m) = 1
α · |et −mt|+ 1 (5.3)

The parameter α controls the slope of the matching score function. The lower the value
of α, the more restrictive is the matching function, i.e. weights drop more drastically
with higher distance in time.

In addition, the polarity constraint can be added to the matching function. As explained
in Section 4.2.2), the corresponding edges sometimes might have opposite polarities (the
so-called polarity mismatch), thus we propose to use polarity confidence pconf parameter,
as shown in Equation 5.4.

ρ(e,m) =
{

ρt(e,m), when ep = mp

pconf · ρt(e,m), when ep 6= mp
(5.4)
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5.2. Asynchronous Cooperative Stereo Matching Algorithm

The matches of opposite polarities are still considered in the matching cost calculation
but with lower confidence. In this way, in case of polarity mismatch, the corresponding
events are not immediately discarded and could still contribute to the score of correct
cooperative node (true match).

Cooperative Network Structure, Update and Disparity Calculation

For each incoming event, the set of possible matching candidates, weighted as described
before, is mapped to the cooperative network as follows:

∀m∈Me C∗ex,ey ,d =ρ(e,m),
where d = |ex −mx|

(5.5)

The C∗ denotes the initial weight of each matching candidate used to update the
cooperative network nodes at corresponding locations. The cooperative network is a
three-dimensional structure C = (X,Y,D), consisting of nodes Cx,y,d for each disparity
d ∈ D and spatial location (x, y), x ∈ X, y ∈ Y . Nodes act independently and are
connected to two types of neighbourhoods: supporting Φ and inhibitory Ψ. The first one
(Equation 5.6) implements the smoothness assumption, including support from nodes
at the same disparity plane and within a given radius swin. Function Φ(x, y) returns
indices (x′, y′) of nodes in a supporting neighbourhood of the node at position (x, y).

Φ(x, y) : (x′, y′) |
∣∣x− x′∣∣ < swin

∧
∣∣y − y′∣∣ < swin

(5.6)

The second one, defined in Equation 5.7, realises the uniqueness assumption through
competition between the candidate nodes along the disparity dimension. Function Ψ(d)
returns indices d′ of nodes in an inhibitory neighbourhood of the cooperative node at
position (x, y, d).

Ψ(d) : d′ | dmin <
∣∣d− d′∣∣ < dmax (5.7)

The cooperative network is constantly changing as the events are generated. Once
matching candidates for an event e are mapped to the network with initial weights C∗
from Equation 5.5, the affected nodes Cex,ey ,d are updated as follows:

Cn+1
ex,ey ,d =

∑
x′,y′∈Φ(ex,ey),d

Cn
x′,y′,d ∗ C∗ex,ey ,d − ε ·

∑
x,y,d′∈Ψ(d)

Cn
x,y,d′ (5.8)

Each event contributes to the local neighbourhood at different disparity levels. Addition-
ally, the node weights decay in time if they are not updated. This is achieved by update
of the whole network, performed in predefined periods of time.
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5.2.1 Proof of Concept: Experimental Results
In order to verify the proposed adaptive cooperative network, first tests have been
performed using synthetic data depicting different configurations of moving edges. We
used three sequences: (a) edge20, which consists of one moving edge at a disparity of
20 pixels; (b) 2edges, with two edges at different disparities (5 and 20 pixels) moving in
two opposite directions; (c) changDisp, with an edge of changing disparity (from 5 to 20
pixels). The synthetic datasets are presented in Figure 5.4.

(a) (b)

(c)

Figure 5.4: Synthetic datasets used in the experiment: (a) edge20, (b) 2edges, (c)
changDisp. The left view is depicted in blue and the right in red. The direction of motion
is indicated by arrows. Additionally, in (c) the change of disparity over time is illustrated
by showing the position of edges at three different timestamps (t0, t1 and t2).

A summary of the tests on synthetic data is listed in Table 5.1. The results are given by
the accuracy and performance. The accuracy is defined as a percentage of events where

accuracy performance
#events % time(s) Ev/s

edge20 51510 98 54.33 953.89
changDisp 51106 97 54.33 940.73
2edges 103020 95 120 858.5

Table 5.1: Results of the proposed cooperative stereo algorithm on synthetic test data.

disparity agrees with ground truth, considering up to one pixel difference as a correct
result. Our algorithm achieves more than 95% of accuracy. Considering the algorithm’s
performance, we need to take into account that the processing time is dependent on
the events’ rate (number of events per second), which may vary across the sequences.
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Moreover, the complexity of a scene can influence the processing time due to the higher
amount of possible matches to filter out. Therefore, we measured the performance by
the number of events that could be processed in one time unit (1 second) and this varies
around 900 events per second (Ev/s). These preliminary tests on synthetic data indicate
that the proposed Coopv1 algorithm is suitable for processing events and performing
asynchronous stereo matching.

As a next step of the proof of concept, we performed tests of the Coopv1 algorithm on
real DVS recordings which are presented in Figure 5.5. We used two sequences depicting
a single object in the scene, a tool moving at uniform disparity (d = 60) and person
depicting walking person captured from the sensor in the overhead position.

(a) (b)

Figure 5.5: Selected frames of the test event sequence tool (a) and person (b).

The obtained disparity maps were compared with the results of the algorithm proposed in
[133] which uses the conventional NSAD matching on image-like event data representation.
As we can observe in Figure 5.5a, the corresponding edges have opposite polarity. If
polarity is used as a constraint in the stereo algorithm, the correct (true) matches are
eliminated and not considered in matching. That leads to wrong disparity estimation
as visible in Figure 5.6b. In the Coopv1 algorithm, we employed a polarity confidence
(pconf) parameter, hence events of the opposite polarity are still considered in matching
but with lower confidence. Therefore, in this case, we obtain better results than [133]
which is visible in the disparity histogram. In Figure 5.6c we can observe that depth
estimates form high and narrow peak at the correct disparity, whereas in Figure 5.6d the
results tend to vary more, and we can distinguish two additional peaks (around disparity
50 and 70), caused by the polarity mismatch.

The results of stereo matching applied to the person sequence are depicted in Figure 5.7.
In this sequence, we are dealing with a complex object movement with non-uniform
disparity. Since the sensor has been placed in an overhead position, we can see that
the head of the moving person is the closest to the sensor, so it has a higher disparity
(yellow–red) than the shoulders or legs (green–blue). We can observe that the Coopv1
algorithm is capable of recognising different disparity levels even for quite challenging
object shapes. However, it tends to smooth the transition between disparity levels.
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Figure 5.6: Results of the proposed Coopv1 algorithm applied to the tool sequence (a).
The results are displayed in image-like representation for visual comparison with the
algorithm given in [133] (b). The depth information (disparity in pixels) is encoded
in colour. Additionally, the same results are presented by disparity histograms for the
Coopv1 (c) and the algorithm presented in [133] (d). The histograms show the number
of events assigned to individual disparities.

Figure 5.7: Results of the proposed Coopv1 algorithm applied to the person sequence.
Comparison of results displayed in image-like representation for our algorithm (a) and
the algorithm proposed in [133] (b). The disparity is encoded in colour.
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5.3. Enhanced Cooperative Stereo Matching Algorithm

5.3 Enhanced Cooperative Stereo Matching Algorithm
In this section, we investigate the possibility to improve the accuracy of the cooperative
stereo by a more reliable way of assigning the initial matching scores to the events, before
they are mapped to the cooperative network. As demonstrated in Section 4, event-
based stereo matching becomes very challenging while dealing with more complex scenes
and uncontrolled environment conditions. Therefore, simple time-based event-to-event
matching is in some cases prone to errors and the cooperative optimisation, though
effective, might not be sufficient to handle higher ambiguities in matching. In other
words, if incorrect initial weights are mapped to the network, then the error might be
propagated over time, leading to wrong depth estimates. In this section, we present an
enhanced cooperative stereo algorithm, further referred to as Coopv2 algorithm, which
incorporates event-based matching using events’ local spatiotemporal neighbourhood.

Spatiotemporal Context in Event-based Matching
Previously, in Coopv1 algorithm, we have used single event as a matching primitive
and measured the similarity based on the timing and polarity of events, as defined in
Equation 5.3. We investigate whether using the spatiotemporal neighbourhood of the
event can improve the stereo results. The similarity is established per each incoming
event, hence, in this way the asynchronous stereo processing is still feasible.

Figure 5.8: Matching events by their spatiotemporal neighbourhood of size
mwin×mwin×T.

As depicted in Figure 5.8, events are considered within their local spatiotemporal neigh-
bourhood. The neighbourhood Ne of event e is described by Equation 5.9. The radius of
matching window mwin is given as an algorithm parameter. The temporal dimension
of the neighbourhood is limited by T , which is correlated with parameter α, i.e. the
matching candidates of significantly low time-based matching score (Equation 5.3)) are
discarded.

Ne = {n | n ∈ E, ‖ex − nx‖ < mwin, ‖ey − ny‖ < mwin

‖et − nt‖ < T}
(5.9)
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The concept of matching events within their spatiotemporal context is explained by the
example illustrated in Figure 5.9. Let there be an event e generated by the left sensor
at time et = t4, at pixel location (ex, ey) = [8, 2] with a given history of previous events.
There are four matching candidates in the opposite view, at disparities d = {2, 3, 4, 5},
that is at pixel positions x = {6, 5, 4, 3}, and y = 2. The polarity of the events is
indicated by greyscale value, white for ON and grey for OFF events. The reference event
(depicted in green) is an OFF event, i.e. ep = 0. The correct match is the candidate
(ex, ey, et) = (3, 2, t3) at disparity d = 5, which can be inferred from the similarity in
neighbourhood pattern such as matching OFF edge. We can compare the reference event

Figure 5.9: Example illustrating the window-based event matching; the history of events
in the right and left view.

with its matching candidates considering a 3×3 neighbourhood. The possible comparisons
are listed in Figure 5.10, depicted as a difference between each candidate and reference
event windows.

Figure 5.10: Reference event (in green) within its local neighbourhood and matching
candidates from the opposite view (top). Time difference between candidate and reference
event (bottom).

An example of commonly used similarity measure (matching cost) in window-based
stereo is a sum of the pairwise differences in pixels intensity values, Sum of Absolute
Differences (SAD) or Sum of Squared Differences (SSD). Since measuring the difference
in intensity does not apply in matching events, the time and polarity constraints are
used. In Figure 5.10, the difference between events within regarded neighbourhoods
is expressed numerically, whenever the subtraction of event timestamps is possible to
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compute, i.e. there is an event available at corresponding locations (addresses). We can
observe that mere time-based event-to-event matching, as used in the Coopv1 approach,
would incorrectly assign the highest matching score to the candidate at disparity d = 2.
On the contrary, using a simple sum of absolute differences over the neighbourhood
already allows determining the correct candidate at d = 5 by the lowest aggregated
matching cost.

In the proposed Coopv2 algorithm, for each of the matching candidates m, the window-
based matching score ρwin is defined in Equation 5.10.

ρwin(Ne, Nm) =

∑
{(e,m)∈Ne×Nm|ex=mx∧ey=my}

ρ(e,m)

|Ne|
(5.10)

Individual scores are calculated between each of the events in Ne and the corresponding
event at the same position in the candidate’s neighbourhood Nm. As can be seen,
we are still using Equation 5.3 to compute the similarity between single events within
neighbourhoods. The matching scores are afterwards summed and normalised by the
amount of events in Ne. The normalisation is necessary to address situations where for
the reference event’s neighbourhood there are no corresponding events in the candidate’s
neighbourhood, i.e. {(e,m) ∈ Ne ×Nm|ex = mx ∧ ey = my} = ∅. We demonstrate this

Figure 5.11: Situation where high matching score (without normalisation), does not
reflect the similarity of the matching candidate.

situation in Figure 5.11 where none of the events in the reference window can be compared
with the candidate window, thus, without normalisation, the resulting matching score
equals single time-based correlation. In this case, the achieved high matching score does
not reflect the actual similarity of two windows. Therefore, using normalisation allows
also for checking the edge alignment within the compared neighbourhoods.

Cooperative Optimisation
Analogically to the Coopv1, the second step of the algorithm is the optimisation performed
by the cooperative network. For each incoming event, the set of possible matching
candidates is weighted by the similarity of their spatiotemporal neighbourhoods, as
defined earlier in Equation 5.10. The calculated matching scores are mapped to the
cooperative network as follows:

∀m∈Me C∗ex,ey ,d =ρwin(Ne, Nm),
where d = |ex −mx|

(5.11)
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The cooperative nodes are organised into two types of neighbourhoods, supporting Φ and
inhibitory Ψ, as defined in Equation 5.6, and Equation 5.7, respectively. Once candidates
of an event e are mapped to the network with initial weights C∗ from Equation 5.11, the
affected nodes Cex,ey ,d are updated as follows:

Cn+1
ex,ey ,d =


∑

x′,y′∈Φ(ex,ey),d
Cn

x′,y′,d ∗ C∗ex,ey ,d∑
x,y,d′∈Ψ(d)

Cn
x,y,d′


ε

(5.12)

We have slightly adjusted the cooperative update function from Equation 5.8, based on
conclusions from [177]. Normalisation is achieved by division by the sum of nodes from
the inhibitory neighbourhood. The parameter ε controls the amount of inhibition applied
to the cooperative nodes values.

Furthermore, in Coopv1 algorithm noise events were expected to be filtered out by a
density threshold incorporated directly in the cooperative network. This method however,
was found not to be reliable. In the Coopv2 algorithm, the additional noise removal filter
is employed at the stage of mapping an event to the cooperative network, taking into
account the initial weights of the matches and density of the local neighbourhood.

5.4 Summary
In this chapter, we presented two event-based stereo matching algorithms, namely Coopv1
and Coopv2. The first one, Coopv1, is focused on finding a feasible model for asynchronous
event-based stereo matching. The stereo matching is modelled with a dynamic cooperative
network where nodes are organised into two types of neighbourhoods: supporting and
inhibitory. Through the local node operations, the cooperative network is performing
the optimisation based on smoothness and uniqueness assumptions. The network is
adaptive, i.e. it is updated locally upon each event from the input stream, thus adjusting
dynamically to the characteristics of the object (e.g. speed, size, appearance). The
cooperative network is considered as a refinement for single event-to-event matching as it
not only uses the temporal similarity to match events but also applies spatiotemporal
smoothness constraint. The second, Coopv2 algorithm, was developed to improve the
accuracy of initial matching score function, thus to address the challenge of tackling
ambiguity in event-based correspondence search. We proposed an enhanced cooperative
stereo matching technique that calculates similarity over a local neighbourhood of each
event pair to compute initial matching weights for the cooperative optimisation.
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CHAPTER 6
Evaluation

In this section, we present an extensive evaluation of both Coopv1 and Coopv2 stereo
matching algorithms. A common way to evaluate stereo algorithms in conventional
computer vision is to use available public stereo benchmarks, e.g. Middlebury1, KITTI2
or ETH3D3. The quality of the stereo method is assessed using a set of ground-truth
images and defined metrics of accuracy and performance. However, the well-established
benchmarks do not apply in the context of event-based vision. There are several datasets
of DVS recordings which are focused on different aspects of event-based vision, e.g. driving
datasets [10], optical flow [122], action recognition [63] or pose estimation and SLAM [104].
Until very recently, there have not been any public datasets facilitating the ground-
truth evaluation of stereo DVS sequences. The announced multi-vehicle stereo event
dataset [176] is filling this gap.

In this work, we applied the method for ground-truth evaluation of DVS algorithms
proposed by Kogler et al. [70]. We use the dataset which was made available by the
authors for our assessment. We provide a comparative evaluation with competing stereo
algorithms. Furthermore, we investigate the influence of the matching function on the
overall result of the cooperative stereo. The ground-truth evaluation is accompanied
by a series of qualitative results obtained from recorded sequences of human motion.
Section 6.2 delivers experiments that demonstrate the robustness of our cooperative stereo
algorithms with respect to varying scene complexity and different sensor setup (static
and dynamic). We use synthetic data to create challenging test cases, e.g. simultaneous
very fast and slow motion, or cluttered scenes. Finally, we also apply our algorithms to
a moving camera setup using the pose estimation dataset [104]. The synthetic scenes
and three data recordings are used to evaluate whether the cooperative stereo approach
also applies in dynamic setup scenarios.

1http://vision.middlebury.edu/stereo/data/
2http://www.cvlibs.net/datasets/kitti/
3https://www.eth3d.net/
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Results Assessment and Visualisation
Throughout this chapter, we use several methods to assess the quality of stereo matching
results, in both visual and numerical ways. The numerical results are expressed with the
following metrics:

Mean distance error which is the average error between the reference (ground truth)
and estimated depth at a particular location. It is important to note that all error values
are calculated only for locations where ground truth is available. The mean distance
error is given in meters.

Relative distance error which is defined as a percentage of the mean distance error
with respect to the depth range of the scene.

Matching rate which shows how many events from the input stream were assigned
with disparity values. The matching rate is a real value from the [0, 1] interval.

As mentioned in [69], considering only the mean distance error for accuracy assessment
might be misleading. Low values of the mean error do not always confirm that the
algorithm performs well, since there might be only few events matched which contribute
to the error calculation. High matching rate and low mean distance error should be
considered together as indicators of an accurate stereo matching algorithm.

Additionally, the quality of the stereo matching will be presented through two types
of visualisation: (1) disparity (depth) map, in which the events are plotted with their
disparity (depth) encoded in colour, and (2) disparity (depth) histograms, to roughly
assess the general distribution of disparity (depth) levels in the scene.

6.1 Algorithm Analysis
In this section, we present a quantitative assessment of the proposed cooperative stereo
matching algorithms in terms of parameter selection, accuracy and comparison to com-
peting algorithms. The ground-truth dataset [70] comprises three test scenes,denoted as
Scenario A, B, and C, as shown in Figure 6.1.

Figure 6.1: Ground truth test scenarios [70].
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All test scenarios present indoor scenes captured by a stationary stereo camera setup. In
Scenario A and B, two people are walking in opposite directions at different distances
from the camera, with a small amount of occlusions present in Scenario B. Scenario C
depicts a person sitting relatively close to the camera and moving the upper body and
arms. The ground-truth depth for the event data was generated using a conventional
stereo system as reference, and its accuracy is estimated to be better than 0.027m for
distances up to 2m, with errors increasing up to 0.117m at a distance of 3.5m [70]. For
the calibration and rectification of the silicon retina stereo sensor, the calibration toolbox
of Bouguet [18] was used, as described in more detail in [46].

As already mentioned before, we distinguish two steps in the proposed cooperative
algorithms, the first one being the stereo matching function, and the second one the
cooperative network optimisation. To get a better understanding of the parameters

Matching
Function 

Cooperative Network
Optimization

map to network

WTA

input events

R1

R2
final disparity

α, pconf , mwin   swin, ε

Figure 6.2: Overview of the proposed cooperative algorithms. Results are measured after
each step (R1 and R2 ). The parameters considered in analysis are shown for each step.

and performance of each step of the algorithm, we analyse the output of both steps
individually, as indicated in Figure 6.2. R1 is the result of the matching function, where
the initial matching scores are calculated and the best matching candidate (the one with
the highest weight) is considered correct. The results of the second step (R2 ) are the
overall results of the cooperative stereo matching, where the initial weights are fed into the
optimisation network. In the analysis, we consider the proposed cooperative algorithms,
Coopv1 and Coopv2, as presented in Chapter 5. We take into account the parameters of
the matching function {α, pconf,mwin} and cooperative network {swin, ε}, which are
defined in Section 5.2 and 5.3.

In the following subsections, we investigate (i) how different parameters influence the
results for each variant of the algorithm, (ii) what the optimal values of parameters per
each algorithm are, and (iii) how the proposed algorithms perform compared to other
competing algorithms in the field.

6.1.1 Matching Function Analysis
The matching function, being the first step of the algorithm, finds a set of matching
candidates for each incoming event. There are three parameters of the matching function,
namely: (i) α, which is a factor for measuring the correlation of events in time, (ii) pconf,
which measures confidence in polarity matching, and (iii) mwin, which is the size of the
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matching window. In what follows, we compare how the above-mentioned parameters
influence the accuracy of the matching function (R1 ) and overall cooperative stereo
algorithms (R2 ). If not stated otherwise, the default parameters settings used in the
matching function analysis are as follows: mwin and swin are set to 9×9, pconf is set to
0, α to 0.05, ε to 0.05 and 0.75 for Coopv1 and Coopv2, respectively.

Time Correlation

We start our experiments with an analysis of the parameter α, which is used in the
time-based matching score for each matching candidate, as defined in Equation 5.3. The
parameter α controls the magnitude of the score depending on the time difference in the
events’ timestamps. In order to assess the influence of α on the algorithms’ performance,
we observe how the measured mean distance error varies with different parameter values
set to {0, 0.005, 0.01, 0.05, 0.1, 0.5, 1}. The results calculated for all three ground-truth
scenarios are shown in Figure 6.3.
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Figure 6.3: Influence of parameter α on the results of the matching function (R1 ) (a,c)
and on the overall results after cooperative optimisation (R2 ) (b,d) for the Coopv1 and
Coopv2 stereo matching algorithms, respectively.
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The results show that the mean error increases with higher values of α, hence less
restrictive time function. We can assume that the variation of time difference between
corresponding events is rather high and it is beneficial to perform less restrictive time
correlation. Judging from the results, Scenario B seems to be more challenging than
the other two scenarios, as it tends to achieve the highest mean error. Moreover, the
lowest error for this scenario can be noted for α = 0, hence without time correlation. In
the case of Scenario A and C, using time correlation with small α value achieves the
best matching function results. Comparing the matching function results (R1 ) with the
overall results (R2 ), we can clearly see that the mean error is substantially reduced by the
cooperative optimisation. In general, the R2 results show a steady increase of error with
higher values of α, except of the Coopv2 results in Scenario C, where the best accuracy is
achieved with α = {0, 0.005} (see Figure 6.3d). Although the optimisation performs very
well in reducing ambiguities introduced by temporal correlation, we look at the trends in
R1 to pick the optimal value of α = 0.005. As we have noticed before in Scenario B, the
time correlation may introduce additional errors into results of matching function (R1 )
and worsen the overall accuracy of the algorithm. In Figures 6.3a–6.3c we can observe
that the time constraint improves results only for Scenario C, whereas A and B show
slightly higher error values. Omitting the time constraint, i.e. α = 0, seems to have little
effect on the overall results (R2 ). Even though all matching candidates are assigned with
the same matching score, the cooperative optimisation can still achieve reasonable results.
This leads to the conclusion that the accuracy of the proposed algorithms is mostly
dependent on the cooperative network mechanisms and employed smoothness assumption.
We investigate whether the timings of corresponding events convey useful information
or just increase the ambiguity in event-based stereo matching. In Figure 6.4 we present
histograms of disparity estimates R1 for the Coopv1 algorithm with α = 0.005.

(a) Scenario A (b) Scenario B (c) Scenario C

Figure 6.4: Results of the matching function for Coopv1 (R1 ) presented by the histogram
of calculated disparities for all test scenarios.

For Scenario A and B, two peaks corresponding to two people walking at different distances
are expected in the disparity distribution (indicated by the red arrows). Looking at the
histograms, however, the peaks are not very pronounced in Scenario A (Figure 6.4a),
and slightly more visible in Scenario B (Figure 6.4b). On the contrary, in Scenario C
(Figure 6.4c) the distribution clearly describes the underlying visual data, i.e. one person
that spans over a particular depth range. Summing up, the histograms indicate that
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correlation between events is conveyed in events timestamps, however, the ambiguities in
temporal matching increase with the complexity of the scene. Therefore, using additional
constraints is necessary to make the event-based stereo matching more reliable.

Polarity Constraint

The polarity of events is taken into account by considering the polarity constraint in the
matching function. In the proposed algorithms, the events of opposite polarity are not
totally discarded but their weights are decreased according to the polarity confidence,
i.e. pconf parameter, as defined in Equation 5.4. The higher the value of the pconf
parameter, the more confidence we put in matches of the opposite polarity. When the
pconf parameter equals zero, the events of the opposite polarity are not considered in
matching. In Figure 6.5 the results of the stereo algorithms Coopv1 and Coopv2 are
shown for each of the scenarios and varying pconf parameter.
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Figure 6.5: Influence of parameter pconf on the results of the matching function (R1 )
(a,c) and the overall results after cooperative optimisation (R2 ) (b,d) of the Coopv1 and
Coopv2 stereo matching algorithms, respectively.
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Looking at the Coopv1 plots (Figure 6.5a–6.5b), we observe that influence of the (pconf )
parameter does not drastically influence neither the matching function (R1 ) nor the
overall (R2 ) results. The mean error does not change much until pconf=0.6, where a
slight increase in error can be noted. Interestingly, for Scenario A, the overall results
of Coopv1 (Figure 6.5b) show a slight improvement for values between pconf=0.4 and
pconf=0.6. This effect has been investigated in further tests, which confirmed that
the optimal value of pconf is 0.4 taking into account all three scenarios and optimal
parameters for the cooperative network, i.e. swin set to 39×39. Compared to Coopv1,
the results obtained by the Coopv2 algorithm (see Figure 6.5c) show higher influence
of the pconf parameter on the resulting mean error in both R1 and R2. In fact, a
steady increase of error can be noted, therefore for Coopv2 the optimal value of the pconf
parameter is set to 0, as it delivers the best results for all regarded test scenarios.

Matching Window

Finally, the mwin parameter is analysed for the Coopv2 stereo matching algorithm. The
accuracy of the window-based matching is expected to increase when higher sizes of
matching area are used, as they provide a more distinctive representation of matching
candidates. We investigate the behaviour of the cooperative network with a matching
window ranging from 3×3 up to 63×63.
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Figure 6.6: Influence of the size of the matching window parameter mwin on the results
of the matching function (R1 ) of the Coopv2 algorithm.

The results are shown in Figure 6.6. As expected, the mean error decreases with bigger
matching window sizes, reaching an optimum around a window of size 33×33. We can
observe that the Coopv2 algorithm with the optimal mwin achieves very accurate results
even without cooperative optimisation. This raises the question whether the cooperative
optimisation is necessary. We investigate this further in Section 6.1.2 and learn that,
even though the numerical results indicate optimal values, the visual results show that
adjacent edges of the objects are not well preserved using only the window-based matching
function without subsequent optimisation.
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Matching Function Variants

The matching cost function can have a big impact on the quality of the overall stereo
algorithm results. We have demonstrated how different parameters influence the matching
accuracy. Having some intuition about the optimal values of the matching parameters,
we test the overall behaviour of the matching function with different combinations of
matching constraints. Each parameter is set to its optimal value, as derived above.
In Figure 6.7, the results of matching function (R1 ) in terms of mean distance error are

Comparison of different matching function variants
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Figure 6.7: Comparison of different variants of matching function, presented for Coopv1
and Coopv2 algorithms.

compared for the Coopv1 and Coopv2 algorithms. We selected the following configurations
of constraints: no constraints (0), time constraint only (+T), polarity constraint only
(+P), and combined time and polarity constraints (+TP). We can observe that Coopv1
achieves better results using only the polarity constraint, than with temporal correlation
in Scenario A and B. In Scenario C, however, time combined with polarity constraint
improves the results significantly with respect to any other variant of constraints. The
results of the Coopv2 algorithm, even with no constraints, indicate a clear improvement
over Coopv1. We can also observe that the impact of the polarity constraint on the
Coopv2 results is quite significant. In our further experiments, we use a combination of
polarity and time constraints (+TP), with their optimal values per each stereo algorithm.

6.1.2 Cooperative Network Analysis
There are two key parameters within the cooperative network. The first one, swin, defines
the size of the supporting window (neighbourhood), thus controls the amount of support
from the neighbouring cooperative nodes. The second parameter, i.e. ε, controls the
amount of inhibition applied to the nodes in the network. Different cooperative update
functions are used in the Coopv1 and Coopv2 stereo algorithms, thus we do not expect
that optimal values of swin and ε are the same in both cases. The experimental tests and
conclusions are described individually for each cooperative stereo variant. Throughout
our experiments we keep the parameters α, pconf, dmin and dmax at constant values of
0.005, 0.4 (for Coopv1 ) or 0 (for Coopv2 ), 7, and 70, respectively.
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Supporting Neighbourhood

We start with an analysis of the Coopv1 stereo matching algorithm, using square support
window sizes ranging from 3×3 to 63×63. In Figure 6.8 we can observe that larger
sizes of the supporting window result in a significant gain in accuracy. The optimum
is achieved around a window size of 39×39. Subsequently, we investigate the influence
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Figure 6.8: Influence of the support window size (swin) on the Coopv1 results.

of the matching and supporting window size on the results of the Coopv2 algorithm.
In Figure 6.9, the window size for one parameter (mwin or swin) is varied individually
from 3×3 to 63×63, while the other parameter is kept constant at 9×9. For Scenario A
and C, we can observe an improvement of the accuracy with increasing window sizes over
almost the whole tested range. For Scenario B, the plots for mwin and swin indicate a
minimum value for window sizes around 39×39. For values larger than 39×39, further
improvements gained for Scenario A and C are also relatively small.
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Figure 6.9: Results of the Coopv2 stereo algorithm with varying matching window (mwin)
(a) and supporting window (swin) (b) sizes.

The next step of our analysis was to find the best combination of the mwin and swin
values. A well known observation in window-based stereo matching is the so called ‘edge
fattening’ problem, caused by larger sizes of the matching window. The matching window
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should be big enough to cover neighbouring events belonging to the same object, thus
efficiently benefiting from the smoothness constraint, and at the same time small enough
not to overlap on other, adjacent objects. Dealing with sparse event data, the potential
‘edge fattening’ problem is reduced to situations where two objects are very close to each
other (adjacent edges), e.g. in Scenario B. As indicated by the results for Scenario B in
Figure 6.9a, after the optimum is reached for mwin around 39×39, the mean error starts
increasing again with higher mwin values. Such an effect is not observed with increasing
swin values. Therefore, the next test was performed for swin set to 39×39 and varying
mwin values. As we can observe in Figure 6.10, there is an optimum reached around
window size mwin=11×11.
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Figure 6.10: Results of the Coopv2 stereo algorithm with varying matching window
(mwin) size and supporting window size swin set to 39×39.

We investigate in more detail several combinations of mwin and swin. Table 6.1 gives
the mean error (in meters) achieved by the Coopv2 algorithm with mwin={7×7, 11×11,
39×39} and swin={11×11, 33×33, 39×39}. During our experiments we have observed
that the visual ‘goodness’ of results do not always align with the smallest mean error.
That is why three potential parameter combinations have been selected for further
inspection, as highlighted in Table 6.1.

swin 11×11 33×33 39×39
mwin 7×7 11×11 39×39 7×7 11×11 39×39 7×7 11×11 39×39
A 0.221 0.169 0.093 0.106 0.103 0.088 0.105 0.099 0.087
B 0.269 0.236 0.142 0.148 0.119 0.148 0.14 0.11 0.15
C 0.189 0.145 0.059 0.084 0.06 0.052 0.078 0.056 0.05

Table 6.1: Results given in mean distance error [m] of the Coopv2 algorithm with different
sizes of matching window (mwin) and supporting window (swin). Results are presented
for all three test scenarios (A, B, C) and the best result per each scenario is shown in
bold.
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(a) (b) (c)

Figure 6.11: Results of the Coopv2 stereo matching algorithm on Scenario B with three
different window size combinations: (a) mwin = 39×39 and swin = 11×11 (b) mwin =
11×11 and swin = 39×39 (c) mwin = 39×39 and swin = 39×39.

Figure 6.11 depicts the depth maps of the Coopv2 stereo results on Scenario B. The
results clearly show that with high mwin values, the adjacent edges of two people are
not preserved well. Therefore, in further evaluations, we have selected 11×11 and 39×39
as the size for mwin and swin, respectively.

Inhibitory Neighbourhood

The second important parameter of the cooperative network is the ε parameter, which
controls the amount of inhibition applied to each node in the network. We start with
an analysis of the Coopv1 algorithm. Having set the swin parameter to size 39×39, we
search for the optimal value of the ε parameter. As depicted in Figure 6.12a, the results
show a drastic jump in distance error at a particular ε value, 0.1 for Scenario A and B,
and 0.3 for Scenario C. We observed that the best values of the parameter can be found
between 0 and 0.1, hence the optimal ε is set to 0.05.
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Figure 6.12: Influence of the ε parameter on results of the Coopv1 (a) and Coopv2 (b)
stereo matching algorithms.
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For the Coopv2 stereo algorithm, the parameter ε tests are presented in Figure 6.12b.
The tests were performed with the parameters mwin and swin set to 11×11 and 39×39,
respectively. We can observe that the mean error decreases with higher values of ε, with
an optimum reached between 0.7 and 0.8. Consequently, the ε parameter is set to 0.75.

6.1.3 Comparative Evaluation
We compare results of the proposed cooperative stereo algorithms, Coopv1 and Coopv2,
with other frame-based and event-based matching algorithms in Table 6.2. The first
algorithm T-Corr is a simple event-to-event matching method based on time correla-
tion [72, 69]. The second algorithm SAD+2SF was introduced in [71]. It is a frame-based
matching approach, which relies on the Sum of Absolute Differences (SAD) as matching
function and an additional post-processing technique, the two-stage filter (2SF), that
incorporates median filtering. The error rates for T-Corr and SAD+2SF were taken from
the literature [69] and [71], respectively. The third algorithm is the proposed Coopv1
stereo matching using time-based single event matching. Its parameter swin is set to the
window size of 39×39. Finally, the results of the enhanced cooperative stereo algorithm,
Coopv2, with window-based matching used for calculating the initial weights, are listed
in the last column of Table 6.2.

T-Corr [72] SAD+2SF [71] Coopv1 Coopv2
Scenario A 0,581 0,119 0.304 0.089
Scenario B 0,618 0,222 0.345 0.152
Scenario C 0,277 0,088 0.193 0.069

Table 6.2: Comparative evaluation of the event-based stereo matching algorithms using
the ground-truth test scenarios A, B and C.

As expected, the highest mean distance error in Table 6.2 was found for the basic
event-to-event matching technique (T-Corr). Comparison of the two right-most columns
demonstrates the clear gain in accuracy achieved by the Coopv2 stereo, with the average
error (computed over all three scenarios) dropping by over 50 percent to 0,11m in the
final result. Additional window-based matching employed in Coopv2 caused an increase
in runtime of a factor 1.9, when compared to Coopv1. The Coopv2 also outperforms
SAD+2SF with error differences much smaller in this case. The improvement achieved
by Coopv2 with respect to the initial Coopv1 algorithm can also be seen on the depth
maps in Figure 6.13. The noise visible in Coopv1 results is noticeably reduced in the
results of Coopv2 algorithm.
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Scenario A

(a)

Scenario B

(b)

Scenario C

(c)

(d) (e)
(f)

Figure 6.13: Qualitative results (depth maps) of the cooperative stereo matching al-
gorithms: Coopv1 (a,b,c) and Coopv2 (d,e,f). The results are presented for all three
ground-truth scenarios (Scenario A, B, and C).
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6.1.4 People datasets

One of the applications intended for the dynamic vision sensor is human motion analysis
and people tracking. In this section, we evaluate the proposed algorithms on recordings
of walking people. In our experiments, we use several test cases, focusing on different
aspects: the first two sequences depict a transition in distance to the sensor of one
(people1 ) and two (people2 ) people, whereas the last, people3, shows transient occlusions
of one person by another. The visualisation used in this section is kept consistent for all
test cases. The first row shows the selected key frames from the video camera. Below, the
results of the Coopv1 and Coopv2 algorithms are presented for the corresponding time
steps. In Figure 6.14, the results for the test case people1-1 is depicted. We can observe

(a) Selected key-frames from people1-1 data sequence.

(b) Results of the Coopv1 stereo algorithm.

(c) Results of the Coopv2 stereo algorithm.

4 6 8 10 12 14 16 18 20 [px]

Figure 6.14: Results of the cooperative stereo algorithms on the people1-1 sequence
depicted as colour-coded disparity maps (a) for Coopv1 (b) and Coopv2 (c).

that the Coopv2 algorithm recognises several disparity levels, e.g., the hand being closer
to the camera, whereas the Coopv1 tends to smooth out such details. Another example
can be noticed at time step t = 2.30s, where the frontal leg is correctly assigned with
higher disparity (closer to the camera). Further test cases within the people1 sequence
depict a person’s transition in distance to the camera, as illustrated in Figure 6.15.
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(a) Selected key-frames from people1-2 data sequence.

(b) Results of the Coopv1 stereo algorithm.

(c) Results of the Coopv2 stereo algorithm.

(d) Selected key-frames from people1-3 data sequence.

(e) Results of the Coopv1 stereo algorithm.

(f) Results of the Coopv2 stereo algorithm.

0 2 4 6 8 10 12 14 [px]

Figure 6.15: Results of the cooperative stereo algorithms on the people1-2 (a) and
people1-3 (d) sequence depicted as disparity maps for Coopv1 (b,e) and Coopv2 (c,f).
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Both versions of the cooperative stereo algorithm handle the transition in depth very
well, however, the Coopv2 gives slightly better results in terms of details (e.g. leg in
Figure 6.15c at time step 5.55s or hand at time step 16.40s in 6.15f).

The last part of the people-1 test case is presented in Figure 6.16. In this example, the
person walks towards the sensor up to quite close distance (time step t=27.85s). We
can observe that dealing with closer distances, thus higher disparity levels, there is a
difference between disparities estimated by the Coopv1 and Coopv2 algorithm. The
Coopv1 tends to recognise disparity as lower than Coopv2. Moreover, we can observe the
Coopv1 results contain some mismatches within the objects.

(a) Selected key-frames from people1-4 data sequence.

(b) Results of the Coopv1 stereo algorithm.

(c) Results of the Coopv2 stereo algorithm.

0 2 4 6 8 10 12 14 16 18 [px]

Figure 6.16: Results of the cooperative stereo algorithms on the people1-4 (a) sequence
depicted as disparity maps for Coopv1 (b) and Coopv2 (c).

The second test case, people2, shows two people approaching and moving away from the
sensor. The results of Coopv1 and Coopv2 are shown in Figure 6.17. We can observe
that both Coopv1 and Coopv2 successfully recognise objects at two different disparities.
Both algorithms produce some mismatches as well, e.g. the foreground person at time
step 5.75s (last frame). There is a slight difference in the character of mismatches; the
Coopv1 results tend to contain single mismatches within the objects, whereas the error
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(a) Selected key-frames from people2-1 data sequence.

(b) Results of the Coopv1 stereo algorithm.

(c) Results of the Coopv2 stereo algorithm.

0 5 10 15 20 25 [px]

Figure 6.17: Results of the cooperative stereo algorithms on the people2-1 (a) sequence
depicted as disparity maps for Coopv1 (b) and Coopv2 (c).

produced by Coopv2 has more semantic meaning, e.g. high disparities (error) assigned
to noise events near the person’s shoulder. Furthermore, there are some events generated
by the shadow of a person, which are especially visible at time step 4.20s. The events
are not filtered out by the noise filter, since they are quite dense and appear in both the
left and right event stream. In this case, the Coopv1 algorithm provides better disparity
estimates for the shadow than Coopv2, which produces more mismatches, especially in
the regions that are not visible in the opposite view (half-occluded).

Figure 6.18 shows selected key frames of the people2 sequence where one person is moving
very close to the sensor, whereas the other quite far. The ‘foreground’ person is more
visible in the DVS data, as the field of view of the camera is too small. In the first two
frames, it can be clearly seen that Coopv1 results contain some mismatches within the
person, whereas Coopv2 returns consistent edges and fills out the neighbouring events
with correct disparities. We notice that parts of the person which are very close to the
sensor (e.g. arm in last two frames) are assigned relatively higher disparities by Coopv2
than visible in the Coopv1 results, where the arm has the same disparity as the rest of
the upper body.
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(a) Selected key-frames from people2-2 data sequence.

(b) Results of the Coopv1 algorithm.

(c) Results of the Coopv2 algorithm.

0 5 10 15 20 25 28 [px]

Figure 6.18: Results of the cooperative stereo algorithms on the people2-2 sequence
depicted as disparity maps (a) for Coopv1 (b) and Coopv2 (c).

Finally, Figure 6.19 depicts the results of the cooperative stereo algorithms dealing with
occlusions in the last people3 test case. The first set of key frames demonstrates that
the Coopv1 results are erroneous for the occluded person shortly after the occlusion (t
= 1.45s). This is most likely caused by high confidence of previous matches assigned
to the foreground person. Therefore, it might take a few time steps to recover from
occlusion. This ‘long recovery’ effect is visible in both versions of the cooperative stereo.
Another interesting side effect of the cooperative stereo network is the ‘see through’
effect, where some events from the foreground person are erroneously assigned to the
occluded objects in the background, if historical previous matches have strong confidence
values. This effect is visible in Figure 6.19e (at t=6.70). In addition, in some cases
parts of the adjacent edges of two persons are mismatched (e.g. Figure 6.19c in time
step 1.05). We assume that this is related to the trade-off with matching window size.
Bigger windows tend to give smooth results, whereas smaller ones preserve more details.
In the experiments, we have used the parameters derived in the analysis in Section 6.1.2.
However, we can assume that the matching window size should be adjusted to the scene’s
depth range and focal length of the sensor.
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(a) Selected key-frames from people3-1 data sequence.

(b) Results of the Coopv1 algorithm.

(c) Results of the Coopv2 algorithm.

(d) Selected key-frames from people3-2 data sequence.

(e) Results of the Coopv1 algorithm.

(f) Results of the Coopv2 algorithm.

2 4 6 8 10 12 14 16 18 20 [px]

Figure 6.19: Results of the cooperative stereo algorithms on the people3 (a,d) sequence
depicted as disparity maps for Coopv1 (b,e) and Coopv2 (c,f) algorithm.
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6.2 Experiments
Having derived the optimal parameters for both cooperative stereo algorithms through
the analysis presented in the previous section, we demonstrate the applicability of the
algorithms using various datasets, including both synthetic and real event sequences. The
goal of our experiments is to evaluate the robustness of the proposed cooperative stereo
algorithms with respect to varying scene complexity, contrasting speed, and different
sensor’s setup.

6.2.1 Synthetic Datasets
So far, we have evaluated the performance of the cooperative stereo algorithms mainly
on indoors scenes depicting moving people. In this section, we present two synthetic
datasets, synth-Scene1 and synth-Scene2, which focus on two different challenges in
event-based stereo. The first one is intended to test how well the algorithm tackles
cluttered scenes, including objects with complex textures, whereas the second one focuses
on the asynchronous aspect of event data, that is, the ability to handle objects moving
at drastically different speeds. The synthetic scenes are created from a 3D animation,
modelled in 3D studio Blender4. The event streams are generated using greyscale images
which are rendered separately for the left and right camera. The method used for synthetic
data generation is described in detail in Appendix B. A snapshot of the synthetic scene
for synth-Scene1 modelled in blender is shown in Figure 6.20a.

(a) (b)

Figure 6.20: Simulated dataset synthScene1 : (a) snapshot of a synthetic 3D model, and
(b) rendered greyscale image with generated synthetic events.

The animation depicts six objects of various sizes and textures, moving at a similar speed
in different directions. Figure 6.20b is a greyscale image, rendered from the 3D scene
for the left sensor (in the stereo rig). The actual synthetic data, namely the generated
address events, are plotted over the greyscale image, to show the corresponding edges

4https://www.blender.org/
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(contrast) that triggered the events. The synthetic event sequence contains some noise
events to make it more realistic.

In Figure 6.21 we compare results of the Coopv1 and Coopv2 algorithms against the
ground truth. As can be observed, both cooperative algorithms obtain very good results,
and tackle the complexity of textures well. Details such as boxes transitions (slanted

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6.21: Comparison of stereo accuracy on a part of the synth-Scene1 sequence,
compared between ground truth (a,d), Coopv1 (b,e) and Coopv2 (c,f). In the first row,
the disparity values are plotted over greyscale images. In the second row, the same
results are depicted as depth maps. In addition, depth estimates histograms are shown
for Coopv1 (g) and Coopv2 (h) in the third row.

surfaces) are preserved; Coopv1 tends to provide slightly less accurate results but smoother
transitions between different disparity levels. Coopv2 gives more accurate results within
front-to-parallel surfaces, however the transitions on slanted surfaces are less smooth.
This can be also seen in the histograms, where Coopv1 shows more diverse depths,
whereas Coopv2 results in higher peaks on particular depth values.
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In Figure 6.22, we demonstrate how both stereo algorithms tackle occlusions. The results
are compared with ground truth, which is shown in the first row. Some objects are
better estimated by Coopv2 than Coopv1, e.g. in the foreground upper box, especially
its bottom edges. However, the recovery from occlusion tends to be more challenging for
Coopv2 than Coopv1. Another interesting observation is that Coopv1 tends to estimate
objects to be farther, whereas Coopv2 closer. The ground-truth value is in between.

Depth map at time t = 2.06[s] Depth map at time t = 2.11[s] Depth map at time t = 2.23[s]

(a) ground truth

(b) Coopv1

(c) Coopv2

1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 [m]

Figure 6.22: Comparison of stereo accuracy on three parts of the synth-Scene1 sequence:
(a) ground truth, (b) Coopv1 and (c) Coopv2.

The numerical results for the whole synth-Scene1 sequence are presented in Table 6.3.
Both algorithms obtain a mean depth error of less than 10cm. Since depth errors depend
on the depth range of the scene, we measure the relative error, which is defined as mean
depth error divided by the depth range of the scene. Here, the relative error is 1.85% for
Coopv1, and 1.58% for Coopv2. We can also see that Coopv1 achieves a slightly higher
matching rate than Coopv2.
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Coopv1 Coopv2
mean error [m] 0.089 0.076

relative error [%] 1.85 1.58
matching rate 0.94 0.93

Table 6.3: Results of cooperative stereo algorithms on synth-Scene1 sequence.

The second synthetic scene is intended to test the algorithms’ ability to handle asyn-
chronous data input. Since dynamic vision sensors generate events upon change, the
frequency of events is dependent on the speed of the object as well as its proximity to
the sensor. The stereo algorithm is required to maintain equal accuracy for all objects,
regardless of their speed or appearance. The animation for the synthScene2 includes
three balls moving at different speeds. A snapshot of the modelled 3D scene is shown in
Figure 6.23.

(a) (b)

Figure 6.23: Snapshot of a 3D model for synthScene2 : (a) 3D view of the scene and (b)
top-down view on the object trajectories.

In Figure 6.24, event sequences of three different time durations are plotted over the
corresponding greyscale image. We can observe that the time window which is optimal for
one object would not be sufficient for another. For instance, the fastest moving ball (1),

(a) (b) (c)

Figure 6.24: Simulated dataset synthScene2. Event sequences of duration (a) 100µs,
(b)1ms and (c) 10ms are plotted over the rendered greyscale image.
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requires less than 1ms time window for accurate processing. This time window, however,
would be too short to capture the motion of the slowest ball (3). One or two events
triggered by the slowest ball would easily be considered noise in frame-based processing.

We demonstrate that both cooperative stereo algorithms perform asynchronous stereo
matching and can correctly estimate the depth of each moving object. In Figure 6.25,
a comparison of Coopv1 and Coopv2 results is shown in the form of disparity maps
displayed over greyscale images. Here, the time window of 1ms is used to present in
detail the disparity estimates for the fastest ball (1). As we can observe, the fast ball (1)

Disparity map at time t=0.03[s] Disparity map at time t=0.06[s] Disparity map at time t=0.11[s]

(a) Coopv1

(b) Coopv2

Figure 6.25: Comparison of stereo accuracy on three 1ms parts of the synth-Scene2
sequence for Coopv1 (a) and Coopv2 (b) algorithm.

also rotates whilst it approaches the sensor. We can see that both algorithms give correct
disparity estimates and show accurate transitions between disparities within the ball’s
surface. The second ball, moving at medium speed, is also recognised at the correct
disparity, whereas the slowest ball (3) is not visible at all in this time window. In order
to see the events of ball (3), the results are presented in ten time longer windows in
Figure 6.26.

Table 6.4 presents numerical results calculated per each object individually. As we can
see, the medium speed ball (2) has the lowest mean error for both stereo algorithms.
This might be related to the periodical update in the cooperative network, which is
adjusted to a standard object speed. In other words, the parameters of the algorithm
are optimal for medium speed objects. Nonetheless, the accuracy of both extreme cases
(slow, fast) is not drastically worse. In general, fast objects are less problematic since they
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Disparity map at time t=0.03[s] Disparity map at time t=0.06[s] Disparity map at time t=0.11[s]

(a) Coopv1

(b) Coopv2

Figure 6.26: Comparison of stereo accuracy on three 10ms parts of the synth-Scene2
sequence for Coopv1 (a) and Coopv2 (b) algorithm.

modify the cooperative network frequently, and trigger updates within corresponding
areas. Contrarily, slow objects are likely to be filtered out or erroneously matched to
more active parts of the scene.

Coopv1 Coopv2
fast medium slow fast medium slow

mean error [m] 0.064 0.036 0.063 0.032 0.026 0.036
relative error [%] 1.68 0.95 1.65 0.83 0.68 0.96

matching rate 1.00 0.99 0.73 1.00 1.00 0.45

Table 6.4: Results of cooperative stereo algorithms on synth-Scene2 sequence, calculated
individually for each moving object (ball).
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6.2.2 Ego-motion Datasets

In the last set of experiments, we test the suitability of the cooperative stereo algorithms
on sequences captured by moving stereo sensors. This is partly motivated by the growing
interest in applying the dynamic vision sensor to SLAM and visual odometry for pose
estimation and mapping of the surrounding from moving platforms, e.g. unmanned aerial
vehicles (UAVs). We have used several datasets [104], both synthetic and real, captured
and published by the Robotics and Perception Group5 at University of Zurich.

First experiments are performed on the synthetic datasets. We have extended the
available Blender scenes, 3planes and 3walls6. The camera parameters and scene setup
have been kept the same as in the original models. We have added a second camera to
simulate a stereo setup, using an appropriate baseline (depending on the scene depth
and content). We have used the events generator (see Appendix B) to convert greyscale
images into event sequences. A snapshot of the synthetic scene 3planes modelled in
Blender is shown in Figure 6.27.

(a) (b) (c)

Figure 6.27: Snapshot of the 3D model of the synthetic scene 3planes: (a) 3D view on
the scene, (b) view on the scene from the left virtual camera, and (c) rendered greyscale
image with simulated events plotted over it (ON events are shown in red, OFF in blue).

The only animated object in the scene is the camera, which hovers over three parallel
planes, placed at three different distances. The left camera view of the scene is shown in
Figure 6.27b. The generated synthetic events are plotted over the rendered greyscale
image, as shown in Figure 6.27c.

The results of the cooperative stereo algorithms for the 3planes scene are depicted in
Figure 6.28. Compared to ground truth, both algorithms deliver high-quality disparity
estimates. The results show only little difference between the Coopv1 and Coopv2 algo-
rithms. Furthermore, the disparity histograms for both algorithms show high similarities.
The mismatched events are rare and tend to be scattered in Coopv1, whereas in Coopv2
we observe some mismatched areas.

5http://rpg.ifi.uzh.ch/davis_data.html
6https://github.com/uzh-rpg/rpg_davis_simulator
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6.28: Disparity (depth) values of events within a part of the synthetic 3planes
sequence compared between ground truth (a,d), Coopv1 (b,e) and Coopv2 (c,f) results.
In the first row, the colour-encoded disparity values are plotted over greyscale images.
In the second row, the same results are depicted as depth maps. In addition, depth
histograms are shown for Coopv1 (g) and Coopv2 (h).

The second available synthetic scene 3walls is presented in Figure 6.29. The scene has
been built to resemble the landscape seen from a camera, mounted on a flying vehicle
(drone). The virtual stereo camera looks onto three textured walls whilst it is moving
along a quite complex motion path, as depicted in Figure 6.29a.

In Figure 6.30, the results of the cooperative algorithms on the 3walls sequence are
depicted. The results show that the slanted surfaces and depth transitions are well
captured by each algorithm. From the disparity maps we can see that Coopv2 recognises
well the transitions close to the sensor (areas on the floor), whereas in Coopv1 there are
some mismatches in that area. In contrast, dealing with the farthest parts of the scene
(corner), Coopv1 shows better results than Coopv2 (see Figure 6.30e-6.30f). Nonetheless,
the surfaces in Coovp1 are not smooth, the events tend to scatter across some disparity
levels.
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(a) (b) (c)

Figure 6.29: Snapshot of the 3D model of the synthetic scene 3walls in Blender (a), the
view on the scene from the left virtual camera (b), and rendered greyscale image with
simulated events plotted over it (c).

(a) (b) (c)

(d) (e) (f)

Figure 6.30: Disparity (depth) values for events within a part of the synthetic 3walls
sequence compared between ground truth (a,d), Coopv1 (b,e) and Coopv2 (c,f) results.
In the first row, the colour-encoded disparity values are plotted over greyscale images. In
the second row, the same results are depicted as depth maps.

Table 6.5 summarises the numerical results of the stereo algorithms for both synthetic
3planes and 3walls sequences. In terms of accuracy the Coopv2 algorithm performs
slightly better than Coopv1. In addition, we list the results of the EVMS algorithm
as published in [118]. These results, however, cannot be directly compared with the
cooperative stereo for two reasons: firstly, the algorithm’s input may vary from ours
since the synthetic events were generated by a different algorithm. Secondly, the EMVS,
instead of two, makes use of the multiple views of the same scene.
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3planes 3walls
Coopv1 Coopv2 EMVS [118] Coopv1 Coopv2 EMVS [118]

mean error [m] 0.036 0.032 0.15 0.356 0.201 0.52
relative error [%] 2.30 2.05 11.31 3.56 2.01 6.86

matching rate 1.00 1.00 n/a 0.96 0.95 n/a

Table 6.5: Results of the Coopv1 and Coopv2 stereo algorithms on synthetic 3planes and
3walls sequences.

Further tests were performed on the data recordings provided in [104]. We have used
three sequences: slider-close, and slider-far, which are recorded by a camera sliding at a
particular distance to the wall, and slider-depth, sliding in front of a more complex scene
of objects. The setup used for these recordings is depicted in Figure 6.31.

(a) (b)

Figure 6.31: The setup for recording event datasets, for (a) slider-close, slider-far, and
(b) slider-depth sequence [104].

For the sequences slider-close and slider-far, the distance from the sliding sensor to the
wall is known and could be used as a ground-truth depth, whereas for slider-depth no
ground truth is available for reference. Since the event stream is available only for one
view (monocular setup), in order to facilitate the stereo configuration, the second view is
achieved by translating the event stream in time. The difference in time between the left
and right sequence defines the baseline.

Selected parts of the slider-close and slider-far sequences are presented as polarity plots
together with the results of the cooperative stereo algorithms, visualised as colour-encoded
depth maps over greyscale images in Figure 6.32 and Figure 6.33, respectively. The
results show similar tendencies as in the synthetic data tests. The depth estimates are
satisfying for both Coopv1 and Coopv2 algorithms. In the former, some singled out, rare
mismatches can be observed, whereas in the latter depth estimates are aligned to the
planar surface. These observations are also supported by the numerical results, as listed
in Table 6.6. The mean error in the Coopv2 depth estimates is equal or lower than for
Coopv1. In terms of matching rate, the Coopv1 achieves slightly higher rate than the
Coopv2 algorithm.
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(a) (b) (c)

(d) (e) (f)

Figure 6.32: Two parts of the slider-close sequence depicted as polarity plots (a,d). The
stereo results of Coopv1 (b,e) and Coopv2 (c,f) algorithms are presented as depth maps.

(a) (b) (c)

(d) (e) (f)

Figure 6.33: Two parts of the slider-far sequence depicted as polarity plots (a,d). The
stereo results of Coopv1 (b,e) and Coopv2 (c,f) algorithms are presented as depth maps.
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We compare the cooperative algorithms with the EMVS [118], which in this case is
feasible, since the algorithms operate on the same event dataset. The EMVS compared
to the Coopv1 shows a lower mean error for slider-close and slider-far. Interestingly,
in the latter case, although the mean error indicates that the two algorithms achieve
similar accuracy, the relative error shows a more significant difference. We assume that
the results EMVS considered a different depth range. In our calculations, we have set the
depth range to the farthest point in the scene, which is the highest depth in ground-truth
estimates, i.e. 0.231m and 0.584m, for slider-close and slider-far, respectively. The
Coopv2 outscores the other two algorithms on both data sequences.

slider-close slider-far
Coopv1 Coopv2 EMVS [118] Coopv1 Coopv2 EMVS [118]

mean error [cm] 1.56 1.07 1.22 2.03 1.55 2.01
relative error [%] 6.76 4.62 5.29 3.48 2.66 4.33

matching rate 0.93 0.83 n/a 0.89 0.85 n/a

Table 6.6: Results of the cooperative stereo, Coopv1 and Coopv2, algorithms and EMVS
algorithm on slider-close and slider-far sequence.

The last sequence, slider-depth, depicts a more complex scene with several objects placed
at different distances from the sliding sensor. In Figure 6.34, the scene captured at
selected time steps is presented by polarity plots over greyscale images. The ground-truth
depth values for this sequence are not available, therefore the results can only be assessed
visually. Judging from the disparity maps, the overall performance of both cooperative
algorithms is satisfying. Disparities of different objects are correctly recognised, e.g.,
details within the triumphal arch, or the edges of the pyramid. We can observe that the
Coopv1 depth estimates contain single high-score errors, such as red and green points in
the dartboard (see Figure 6.34b). In this regard, the Coopv2 performs better. Sometimes,
however, the Coovp1 estimates appear more accurate than Coopv2. For instance, in
Figure 6.34k, the edge of the tower is quite consistent in disparity values, whilst in
Figure 6.34l the edge is slightly de-fragmented (bottom part) and some neighbouring
objects (cup and box behind the tower) are erroneously assigned with higher disparities.
To better understand the difference between the results achieved by Coopv1 and Coopv2,
Figure 6.35 shows events in three-dimensional space (x, y and depth), for the same time
steps as in the previous figure. There are two main observations from the results. Firstly,
the Coopv1 algorithm produces estimates scattered over several neighbouring disparity
levels, whereas Coopv2 tends to align them to planar surfaces. Secondly, Coopv2 seems to
have a lower matching rate than the Coopv1 algorithm. Such an effect might be caused by
the difference in matching cost calculation. Since Coopv2 employs more accurate initial
matching scores, only the ‘most likely’ matches are passed to the cooperative network
optimisation. The Coopv1 algorithm is less restrictive in initial matching scores and
admits more matching candidates for further processing, hence, the resulting matching
rate may be higher.
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(a)

Coopv1

(b)

Coopv2

(c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.34: Selected time steps of the slider-depth sequence depicted as polarity plots
(a,d,g,j). Results of Coopv1 (b,e,h,k) and Coopv2 (c,f,i,l) are presented as disparity maps
over greyscale images.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

0 0.25 0.5 0.75 1 1.25 1.5 [m]

Figure 6.35: Results of the Coopv1 (a,c,e,g) and Coopv2 (b,d,f,h) stereo matching
algorithms for the selected time steps of the slider-depth sequence presented in three-
dimensional space (x, y, depth). Depth is also encoded in events colour.
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6.3 Summary
In this chapter, we presented an extensive evaluation of the proposed Coopv1 and Coopv2
stereo matching algorithms. We started with an analysis of the algorithms’ parameters to
learn about their influence on the overall accuracy. We found out that the time correlation
for event matching is not reliable and depends on the characteristics of the scene/object
motion. It is preferred to use higher tolerance in time-based matching, i.e. lower values
of α. Additional constraints are useful to mitigate temporal mismatches, e.g. using the
polarity constraint. Further improvements have been confirmed for the window-based
matching applied in Coopv2. We observed that even with a small, 3×3 matching window
size, the resulting mean error can be reduced by approx. 25%. Looking at different
variants of the matching function, we discovered that Coopv1 performs remarkably well
with no constraints applied in initial matching. The Coopv2 matching is less sensitive
to temporal ambiguities, hence, using both polarity and temporal constraints yields
good results. Moreover, the results of the matching function and overall algorithm are
measured separately. When compared, the results indicate a significant gain in accuracy
achieved by the cooperative network optimisation. A series of tests has been performed
to find an optimal choice of matching and supporting window sizes. We have observed
that larger sizes of the matching window may lead to ‘edge fattening’ problems, i.e. when
adjacent edges are not preserved well. Therefore, the best results are achieved for bigger
support and moderate matching window sizes. The results of the comparative evaluation
demonstrated that the Coopv2 algorithm shows clear improvement in accuracy over
Coopv1. Coopv2 also outperforms several competing algorithms in the field.

In addition, we have tested the cooperative algorithms on various datasets, including
synthetic and real event sequences. The synthetic datasets have been used to test
specific challenges in event stereo vision, such as scenes with complex textures, clutter or
occlusions, and objects moving at very different speeds. The former tests the ability to
resolve matching ambiguities, whereas the latter focuses on handling the asynchronous
aspect of event data. Judging from the results, both algorithms obtain promising results,
and successfully tackle the complexity of objects’ appearance. In the asynchronous stereo
challenge, we measure the accuracy of an algorithm individually per each moving object.
The results show that both algorithms obtain better performance for objects moving at
regular speed, while still maintaining relatively high accuracy for extremely slow and fast
objects.

Finally, we demonstrated the applicability of the proposed cooperative methods to event
sequences captured by a moving camera (ego-motion). The results consistently show
that Coopv2 obtains higher stereo accuracy when compared to Coopv1, where some high
impact single errors increase the overall mean error of the depth estimates. Arguably,
the Coopv1 algorithm would apply for fast and quick approximations of the scene, which
is useful in applications where the speed of response is more important than accuracy.
In contrary, the Coopv2 algorithm would be a better choice in applications where the
accuracy is more important and response time is less critical.
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CHAPTER 7
Event-based Spatiotemporal

Multiple Object Tracking

An increasing interest in automated video analysis creates a demand for fast and robust
tracking algorithms. The task of visual tracking is to detect moving objects in the scene
and estimate their motion trajectories based on the change of their location over time.
Research on visual tracking is motivated by a number of potential applications including
automated visual surveillance [154], human pose estimation [109], action recognition [31],
traffic monitoring [75, 84] or autonomous vehicle navigation. Depending on the application,
different objects are being tracked, e.g. pedestrians [162], vehicles [84], sport players [86]
or groups of animals, e.g. [88]. Visual tracking has proved to be a challenging task due
to many factors, e.g. complexity of non-rigid motion, abrupt changes in appearance
caused by drastic pose or scale change, occlusions or illumination variations. Tracking
multiple objects needs to tackle additional challenges such as configuration changes,
that is determining how many objects have left or entered the scene, the ambiguity
in identification caused by similar appearance of objects, as well as occlusions and
interactions between the objects. To address these challenges, a variety of solutions
have been proposed in the literature. In what follows, we briefly describe the main
approaches and algorithms in both image- and event-based tracking. Subsequently, we
formulate event-based tracking as a task of clustering events in three-dimensional space
using a Gaussian Mixture Model (GMM) and describe in detail the proposed algorithm.
We address the challenge of occlusions by using depth information to reason about the
objects’ motion trajectories. Finally, in the experimental section, we demonstrate that
the proposed tracking algorithm successfully tracks multiple objects and can tackle full
and transient occlusions, as well as changes in configuration, such as entrances, exits,
and stops.
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7. Event-based Spatiotemporal Multiple Object Tracking

7.1 Related Work
In conventional image-based tracking, the object’s position is identified in each frame
of the video sequence (see Figure 7.1a). The detected objects are then identified across
consecutive frames in order to estimate their trajectories. In the context of dynamic
vision sensors, however, many computer vision tasks, including tracking, require quite a
different approach than the image-based processing. This is mainly due to the specifics of
the data provided by the sensors. As explained in detail in Section 2.3, the dynamic vision
sensors operate in frame-free mode. In a stationary setup, sensors naturally support the
task of tracking by performing an on-chip segmentation of the moving objects from the
static background. As depicted in Figure 7.1b, all data provided by the sensor correspond
to the contours of the moving object, thus delivering motion information. Thanks to the
high temporal resolution of the dynamic vision sensor, the obtained address event stream
represents almost continuous motion. Instead of estimating the trajectories from the
object’s location, event-based tracking deals with discovering which events were generated
by a particular moving object.

(a) (b)

Figure 7.1: Tracking using conventional camera-based vision systems (a). The person is
identified in each frame and based on that the motion trajectory is estimated. In DVS
data, the trajectory of the moving person is formed by the cloud of address events (b).

We can distinguish three subtasks of multiple object tracking, namely: (i) detection
and localisation of the moving objects in each frame, (ii) identification of the detected
objects across consecutive frames, and (iii) trajectory estimation. The first task deals
with finding an appropriate representation of the object that is being tracked. Among
the methods proposed in the literature, we can find shape and feature representa-
tion [135], e.g. points [152], contours [160]. The target object can also be described by
its appearance features such as colour [48], colour histogram [102, 142, 159], or texture
descriptors [23, 31, 151]. Templates (e.g. raw pixel template [161]) and models (e.g. ac-
tive appearance models [43], articulated shape models [164]) can also be applied. The
second task associates detected objects between consecutive frames using a similarity
measure, which depends on the selected object representation, e.g. for the raw pixel
template the normalised cross correlation is used in [161], or the Battacharyya distance
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for comparing colour histograms in [159]. Finding the correspondence between frames is
used to derive and estimate the motion trajectory by connecting an object’s position over
time. This step is also referred to as object to track assignment and can be achieved by
deterministic or statistical methods. The former perform combinatorial optimisation of
the correspondence cost depending on the constraints and assumptions about the motion,
e.g. proximity, maximum velocity and local smoothness [152]. Methods such as bipartite
graph matching [23], dynamic programming [9], or min-cost max-flow net [170, 31] are
used to solve the association between objects and their estimated trajectories. The other
group of tracking methods perform statistical or probabilistic inference about the object’s
motion, where apart from the measured position of the detected objects, also the chosen
uncertainty model is taken into account, i.e the measured position is corrected by the
prediction, which is based on the previous steps. For this purpose, probabilistic filters can
be applied, e.g. discrete Kalman filter [24, 35], extended Kalman filter [102], or particle
filters [172, 23].

Furthermore, several approaches have been designed specifically to address occlusions.
Hue et al. [62] proposed a part-to-whole approach in which the appearance model is
constructed in a way that allows occlusion detection. In feature-based tracking, partial
occlusion can be handled by feature clustering, based on the assumption that points which
belong to the same object should be characterised by similar motion parameters [142, 25].
Zhang et al. [170] generate occlusion hypotheses based on pairs of observations which are
then fed to a cost-flow network to derive the most likely solution. Mitzel and Leibe [102]
apply a buffer-and-recover strategy in which each occluded object’s track is being kept for
a number of frames. Once it reappears, the track and identity of the object are recovered
and the trajectory under occlusion can be extrapolated from the last seen position.

For a more extensive reading about conventional tracking approaches, we refer the reader
to existing reviews of different scope, such as human motion analysis [49], appearance
models [81], or tracking in general, e.g. [163, 139, 89].

Event-based Tracking
Dynamic vision sensors can overcome some of the limitations of conventional camera
vision, especially in the aspects of high-speed motion analysis. For this reason, event-
based tracking has been used in specific applications where high-speed tracking at low
computational cost is a requirement and conventional imaging performance is simply not
sufficient. For instance, DVS has been used for tracking microspheres for optically based
measurements in fluid flows [42], or tracking helium-filled soap bubbles for visualisation of
flows in wind tunnel tests [17]. Another type of application could be microrobotics, where
precision and high speed are of critical importance to perform automated vision-based
micromanipulation, as presented in [105]. In the literature, we can also find more general
works on tracking features for optical flow estimation. Lagorce et al. [77] present a pool
of different filters, including Gaussian or Gabor functions, to track features in the event
stream. A particle filter for tracking with ego motion has been implemented in [55] for
robotic applications, such as ball tracking and gaze following. Brändli et al. [22] proposed
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parametrizing the event stream as a set of line segments, whereas Zhu et al. [173] consider
all events in optical flow estimation based on association probabilities. Furthermore,
there are also hybrid approaches that perform a combination of tracking using greyscale
images and stream of events, e.g. tracking features (edges) using an iterative, geometric
registration approach [148], or support image-based tracking by identification of regions
of interest indicated by clusters of events [85]. The above-mentioned feature tracking
algorithms are used as a basis for more complex tasks, e.g. ego-motion estimation or
simultaneous localisation and mapping (SLAM).

Tracking as Clustering

A very intuitive approach for event-based tracking is to perform clustering of events
directly as they come from the sensors. Each cluster represents a moving object and
the evolution of the cluster over time describes its trajectory. Such an approach was
used in the work by Litzenberger et al. [84] and Schraml et al. [130]. The former
presents an embedded vision system for tracking vehicles using a single DVS. Events
generated by the sensor are assigned to circular clusters by a Euclidean distance where
the position of the event is evaluated by the value of the cluster’s seek radius. The
algorithm was inspired by a mean-shift method, as the centre of the cluster moves
toward the occurrence of the majority of the most recent events. The algorithm benefits
from the stream-based processing; the events do not have to be buffered, therefore the
low-memory constraint, that is important for embedded implementation, is satisfied.
Schraml et al. [130] proposed an algorithm for people tracking in crowded areas using a
stereo DVS mounted in an overhead position. Incoming events are assigned to the clusters
by the Manhattan distance in space and time. Additionally, depth information together
with local density of address events are used for noise suppression. The cluster’s form and
size are determined by the radial dilation factor, which depends on the spatial density of
events. The clustering algorithms are well suited for embedded vision systems due to
low memory usage and stream-based events processing. They are, however, dependent
on experimentally adjusted parameters (e.g. object size limits) which are specific for
a particular application. Moreover, both algorithms assume non-overlapping object
trajectories, therefore the problem of occlusions in multiple object tracking has not been
addressed by them.

7.2 Event Clustering with Gaussian Mixture Models
Building on the above-mentioned clustering methods, we propose to perform multiple
object tracking through clustering events in three-dimensional space using Gaussian
Mixture Models (GMMs). Our motivation towards applying the Gaussian Mixture Model
is based on two main features of GMM clustering. Firstly, our algorithm intends to
perform multiple object tracking in the presence of occlusions. Most of the distance-based
clustering methods usually assume hard boundaries of the clusters. In the occurrence
of pronounced occlusions, however, the resulting motion paths are overlapping and the
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strict boundaries between objects are difficult to define. GMMs offer the possibility to
capture the uncertainty in the model and better tackle the return of the object after
being occluded. Secondly, using a distance similarity measure to assign events to clusters
presumes circularity of a cluster’s shape. This assumption, however, may not hold in
most of the real world applications. Describing clusters with a Gaussian distribution is
less restrictive. The modelled clusters have a centre of gravity specified by the mean
vector whereas the size and shape is loosely represented by the covariance matrix.

Having only one object moving in the scene, the task of tracking is trivial while all
generated events represent motion of this object (not counting additional noise). However,
multiple objects tracking is rather challenging, as events need to be associated with
particular objects’ motion paths. The dynamic vision sensor encodes only the relative
light intensity change, thus we cannot use appearance features such as colour or texture
to differentiate objects among each other. To this end, we propose to use the depth
information estimated by the stereo matching algorithm. Adding another dimension
helps with tackling the occlusions, since the objects are usually in different distances from
the sensor. While estimating the object’s motion path, we incorporate two assumptions
about: (i) the spatial consistency, i.e. events generated by motion of the object occupy a
coherent region in 3D space, and (ii) the temporal smoothness, which ensures that the
position as well as the size of the object do not change drastically over time.

7.2.1 Object Representation

Figure 7.2a presents the events generated by four people walking in the scene. Each
person can be characterised by a cluster of events in close spatial proximity, also referred
to as the cluster’s density. Furthermore, the motion of the object is also characterised by
the amount of events generated at the particular address, as depicted in Figure 7.2b.

(a) (b)

Figure 7.2: Events generated upon movement of four people presented as a projection
onto XY plane (a). Amount of events generated at each (x,y) location (b).
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(a) (b)

Figure 7.3: Gaussian Mixture model, comprising four components, describes the distri-
bution of all events in space and time. The model is presented in (a) two-dimensional
(contour) plot and (b) three-dimensional (surface) plot.

Let e = (ex, ey, ed, et) represent the event by its location (x, y, d), and time t:

e = (ex, ey, ed, et) | ex, ey, ed ∈ N, et ∈ R (7.1)

The event disparity ed is computed by the stereo algorithm. We assume that the events
generated by a moving object belong to a Gaussian distribution. Then, GMM could be
used to describe the events distribution of all K moving objects in the scene. A Gaussian
mixture is defined as weighted sum of the mixture components, as given in Equation 7.2.

p(e|λ) =
K∑

i=1
wig(e|µi,Σi), (7.2)

where g(e|µi,Σi) is a component defined as d-variate Gaussian density function with
mean µi and covariance matrix Σi:

g(e|µi,Σi) = 1
(2Π) d

2 |Σi|
1
2
exp{−1

2(e− µi)′ Σ−1
i (e− µi)} (7.3)

In our case, we use a trivariate Gaussian density function (d = 3) as the events are
clustered in three-dimensional space, including the address (ex, ey) and the estimated
disparity ed. As depicted in Figure 7.3, the fitted model captures the density in space
and time. Please note that for visualisation purposes we only present the GMM over two
dimensions (XY), however the underlying calculations are always done in 3D space. The
complete GMM is defined by the parameters of each Gaussian component: the weight,
mean vector and covariance matrix:

λ = {wi, µi,Σi}i=1···K (7.4)
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7.2.2 Model Parameters Estimation and Adaptation
Given a set of events E = {e1, e2, . . . , eM} generated by moving objects over a particular
period of time, the goal of tracking is to find such a GMM that best matches the
distribution of E. In other words, to estimate the model parameters λ is to maximise
the likelihood p of the GMM given the set of events E, as defined in Equation 7.5.

p(E|λ) =
M∏

n=1
p(en|λ) (7.5)

An efficient approximation of the model parameters can be obtained by the Expectation
Maximization (EM) algorithm (see Appendix A). Once the optimal mixture model
λ = {wi, µi,Σi}(i=1...K) is found, each incoming event en is assigned to the ith cluster by
the value of the maximum a posteriori probability calculated as given in Equation 7.6.

P (i|en, λ) = wig(en|µi,Σi)∑K
k=1wkg(en|µk,Σk)

(7.6)

Clusters evolve in time due to the objects’ motion, as illustrated in Figure 7.4. The
optimal parameters for events generated in one time window will inherently need to be
changed once the new events are generated.

(a) (b)

Figure 7.4: The clusters evolve in time, hence the model parameters need to be changed
to fit the new events. The scene before (a) and after (b) the clusters’ adaptation.

Although EM accurately estimates the Gaussian mixture parameters, it is very sensitive
to new data, thus, not well suited for the task of tracking. Instead, we use the algorithm
proposed by Reynolds [120], which was successfully used in speech analysis to derive a
speaker model from a generic background model. We find the proposed method especially
applicable to our case, as the new model parameters are to a high extent based on the
previous (prior) model, which is nicely aligned with our assumption about the temporal
smoothness of the motion. The model parameters are obtained through maximisation of
the a posteriori having some initial prior model, in our case, the model from the previous
time step.
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Given prior model parameters λprior and new events (training vectors) {e1, e2, ..., eM}, we
first determine the probabilistic alignment of new events to the prior model, by computing
the a posteriori as defined in Equation 7.6. Subsequently, the so-called sufficient statistics
on the event data are calculated for each ith component in the prior model. These are
basic statistics required to estimate the desired adapted model parameters, namely the
count ci to compute the mixture weight:

ci =
M∑

n=1
P (i|en, λprior), (7.7)

the first moment Si for the mean estimation:

Si(e) = 1
ci

M∑
n=1

P (i|en, λprior)en, (7.8)

and, finally, the second moment Si(e2) used to calculate the variance:

Si(e2) = 1
ci

M∑
n=1

P (i|en, λprior)e2
n (7.9)

Next, these new statistics are combined with the prior model parameters to obtain the
adapted parameters for the ith mixture component, that is for the adapted weight:

ŵi = [αw
i ci + (1− αw

i )wi)]γ, (7.10)

mean:
µ̂i = αm

i Si(e) + (1− αm
i )µi, (7.11)

and variance:
σ̂i = αs

iSi(e2) + (1− αs
i )(σs

i + µ2
i )− µ̂2

i (7.12)

The coefficients αw
i , α

m
i , α

s
i control the balance between the old and new model parameters

and their values depend on the expected weights of the mixtures. The γ coefficient in
Equation 7.10 is used to ensure that weights sum to unity. The higher the amount of new
events assigned to the cluster, the more it will be changed in the adaptation step. The
values of adaptation coefficients are dependent on the state of the cluster, e.g. hidden
or occluded clusters rely mostly on the last position (prior model), thus they require
smaller values of adaptation coefficients.
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7.3 Object Detection for Model Initialisation
The accuracy of the clustering algorithm to a high extent depends on the initial model
parameters. Starting with the wrong assumptions about the number of moving objects,
their position and size may result in error propagation and incorrect tracking, since the
estimated model is inferred from the previous steps. In order to provide reliable initial
model parameters, we propose an object detection algorithm which is based on the events
histogram analysis. In Figure 7.5, we illustrate how the algorithm works.
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Figure 7.5: The event sequence projected onto XY (a) and XD (b) plane. The corre-
sponding histograms of events are presented along the x, y, and d dimension in (d), (e)
and (f), respectively. The peaks in histograms are detected and the boundaries of each
object (person) are marked with dashed lines, in corresponding colours. The estimates of
detected objects’ bounding boxes are shown in (c).

As mentioned before, moving objects are represented by a group of events in close
proximity in space and time. Looking at the histogram of events for a particular period
of time, e.g. 10ms, along a given spatial dimension (see Figure 7.5d–7.5f), we can observe
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that peaks in the histograms correspond to objects’ locations in this spatial dimension.
The algorithm recursively searches for such peaks and analyses each combination of
coordinates, to finally derive a list of objects’ bounding box estimates, as marked in
Figure 7.5c.

7.4 Tracking Algorithm
We have designed a tracking algorithm that can be applied to multiple object tracking,
assuming that the objects are represented by quite dense event clouds. The algorithm
automatically starts tracking after the initial model parameters are derived, as described
in Section 7.3. The events are clustered continuously until a control function is triggered
by exceeding either the time or model quality threshold. For example, the model is
adapted periodically by the control function, every 10ms. However, if meanwhile there
are many new events generated or the number of outliers is too high, the control function
is triggered earlier. The control and adaptation part of the algorithm is depicted in the
flowchart of Figure 7.6. In each control function iteration, the events that arrived in the
time since the last update are clustered with the previous GMM (prior model).

events cluster(events, GMM)

∆nlogl < Th1 
no

#outliers > Th2 

object detection on outliers 
add new cluster(s)

∆(μ, Σ) 
 anomalous

cluster outliers
as noise

for each cluster 
 

ASSERT CLUSTER STATEADAPT MODEL

KEEP PRIOR
MODEL

no

GMM

no

yesyes

yes

calculate control parameters 
∆nlogl, ∆(μ,Σ), #events  

ENTRANCE

Figure 7.6: Flowchart of the tracking algorithm.

Subsequently, the control function parameters are computed, starting with the variation
of the negative log-likelihood, denoted by ∆nlogl. Negative log-likelihood estimates
how well the model fits the current data. Once the control is triggered, the nlogl is
calculated for both the prior model and the posterior model on the current event set. The
posterior model is derived using the parameter update as defined in the EM algorithm,
Equation A.4 - A.6. The difference ∆nlogl between nlogl of the prior and posterior
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model shows how much innovation the new data brings with respect to the previous
time step. If ∆nlogl is close to zero that means the prior model fits the data well and
no or very little adaptation is required. Otherwise, especially if the difference drops
below threshold Th1 = −0.1, an adaptation is necessary. In addition, we have observed
that ∆nlogl lower than −0.6 usually indicates a significant configuration change, such as
an entrance of new objects. Generally, in the task of multiple object tracking we need
to handle special situations, such as the entrance of new objects, when the object gets
occluded, stops moving or exits the scene. The algorithm treats the entrance of a new
object separately, the other situations are considered a change of an existing cluster’s
state. We distinguish three cluster’s states, namely active, occluded, and hidden, and
transitions T0-T6 between them as depicted in Figure 7.7.

T1

T2

ACTIVE

T5

HIDDEN

T3

T4

OCCLUDED
T0 T6

ENTRANCE EXIT

Figure 7.7: Diagram of cluster states and state transitions.

Once a new object is detected, it is by default considered active. From this state, it can
change to being occluded or hidden, as indicated by transitions T1 and T2, respectively.
The hidden state reflects the situation where, for a particular cluster, there are no events
generated that indicate the object’s presence. This could mean that the objects has left
the scene, stopped moving or is not visible to the sensor. The object’s disappearance
is described by transitions T2 and T3. If an object is absent, i.e. hidden, for a longer
period of time, it is assumed to have exited the scene (T6 ) and the object’s tracker is
terminated. However, if the object starts moving again after a short absence or is fully
visible after being partially occluded, the tracker recognises the situation as the object’s
return (T5 and T4, respectively). This is similar to the buffer and recover strategy [102]
and particularly useful in handling full, transient occlusions. In what follows, we describe
in more detail how the algorithm tackles the entrance, exit, and occlusion.

7.4.1 Entrance
A new cluster for an object is created when a significant amount of events (more than
threshold Th2) do not fit to any existing cluster in the prior model. The outlier detection
is based on Mahalanobis distance calculated for each event. Another two parameters are
used to differentiate noise events from the entrance of new objects, namely the change
in mean and variance of the mixture components, denoted ∆µ and ∆Σ, respectively.
Following the assumption about the temporal smoothness, we expect that neither position
nor size of the object should change drastically over time. Therefore, any anomalous
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change in these parameters is assumed to indicate that clusters are being adapted to events
of another (new) distribution. In Figure 7.8a we can observe the outliers corresponding
to two new people (depicted in black), which could not be fitted to the prior model.
We can clearly see the drastic drop in the value of parameter ∆nlogl (Figure 7.8d) and
increase in the outliers’ rate (Figure 7.8e). After calculating the posterior model for one
(pre-existing) object (Figure 7.8b), the model changes in size to include the outliers, as
indicated by the covariance change parameter (Figure 7.8f). Anomalies in clusters size or
position indicate a possible configuration change and need for new clusters to allocate
the outliers. To this end, the object detection is performed on the outliers to derive
initial parameters for new objects’ trackers. The model with two additional Gaussian
components is then fitted to the data. The adapted model is depicted in Figure 7.8c.
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Figure 7.8: Entrance of two people (at time step t = 16): events clustered with prior
model (a), estimated a posteriori with one mixture component (single person) (b) and
adapted model with two additional clusters (c). Below, the control parameters: ∆nlogl
(d), outliers’ count (e), and ∆Σ (f), are plotted over the whole data sequence (annotations
given for current time step).

7.4.2 Exit
As mentioned before, there are three possible reasons why an object disappears, either it
exits the scene, is not visible or stops moving (hidden). In the proposed algorithm, the exit
can only be reached through the hidden state. Figure 7.9 shows the gradual disappearance
of a person. In the event sequence two people, interchangeably, are approaching and
moving away from the camera and a third one (on the left) is sitting and slightly moving.
The events at selected time steps are shown to illustrate the observed exit of the third
person (Figures 7.9a–7.9c). The cluster corresponding to the third person first changes
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Figure 7.9: Events sequence demonstrating the exit of a person (depicted in red) from
the scene presented by selected time steps (a) t = 33 (b) t = 38 and (c) t = 57. Control
parameters (d) event count in each cluster, and (e) each cluster’s weight are plotted over
the whole sequence.

its state from active to hidden (T2 ), and then after a longer time of inactivity it is
considered to exit the scene (T3 ). To detect the disappearance of the object, we look at
two control parameters: the GMM components’ weight and absolute amount of events in
each cluster. Figure 7.9d and 7.9e show how these parameters’ values change over time.
We can clearly see that blue and green clusters change in size whilst they are farther or
closer to the sensor, whereas the red cluster gradually disappears; starting from the step
t = 33 both control parameters associated with the red cluster (third person) decrease to
finally reach zero around step t = 40.

7.4.3 Occlusion

The occlusion handling is explicitly included in the design of our tracking algorithm.
Analogically to the disappearance (exit) detection, when dealing with occlusion we look
for anomalies in the amount of events assigned to the cluster. The control parameter
used here, however, is not as previously the absolute amount of events in the cluster, but
the ratio of its change over time. This allows for detection of partial occlusions, when
a cluster changes its state from active to occluded (T1 ). Figures 7.10a - 7.10c depict
two people walking in parallel to the sensor’s image plane. One person gets occluded
by another, who is walking closer to the camera. We can see that the person gets fully
occluded and then returns after a short time.
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(a) (b) (c)

Figure 7.10: Event sequence showing one person occluding another. Selected key time
steps demonstrate the scene shortly before (a), during (b), and after (c) occlusion.
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Figure 7.11: The change in amount of events in each cluster plotted for the whole
sequence.

In Figure 7.11 the change in amount of events in the cluster is depicted. The red curve,
corresponding to the occluded cluster, firstly shows a clear drop below 0.5 caused by
occlusion and then jumps to above 2.5, which indicates the return of the cluster to active
state.

7.5 Experimental Results
We evaluate our tracking algorithm on datasets described earlier in the context of stereo
evaluation (Chapter 6), which contain both synthetic and recorded event streams. To
provide a thorough evaluation of the proposed tracking algorithms, we have selected data
sequences which include different tracking challenges such as partial and full occlusions,
object stop or exit, as well as entrances of new objects into the scene. In order to facilitate
the quantitative evaluation of the tracking algorithm, we needed to obtain ground-truth
information about trajectories of objects moving in the scene, i.e. associate events to
corresponding objects. For synthetic data, we render the ground-truth labels from the
model. In the sensor recordings, however, the events have been labelled manually.

According to [140] there are three key properties of multiple object tracking that need to
be evaluated, namely: configuration, identification and speed. The configuration refers
to the correct estimation of the location and number of objects in the scene. The second
property measures the accuracy of object identification, which in case of event-based
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tracking refers to assigning events to appropriate clusters. Finally, the performance of
the algorithm in terms of speed measures how much time is required to process a video
frame (image). Preferably, tracking should allow for close-to-real-time processing, e.g.,
assuming the frame rate of 25fps to enable processing of one frame in less than 40ms.

In the context of the first two properties, in order to check how well the objects are
detected and located in comparison to ground truth, we performed a coverage test that
includes two metrics: recall (ρ) and precision (ν), as explained in Equation 7.13.

ρ = |E ∩GT |
|GT |

ν = |E ∩GT |
|E|

(7.13)

The recall (ρ), also referred to as hit rate, calculates how many estimates E were
correctly assigned to the cluster out of all ground-truth events GT , whereas the precision
(ν) measures how many of the events assigned to the cluster are ground-truth events.
Moreover, the algorithm’s performance in terms of speed is assessed by two further
metrics: (i) how many events the algorithm is capable of processing in one second, and
(ii) time taken to process one second of data. The latter depends on the density of events
in space and time, which is directly related to scene characteristics such as the number
and speed of the moving objects.

7.5.1 Object Tracking
We start with tests on synthetic data. The first sequence, synth-Scene1, depicts six
objects of different shapes and sizes moving around the scene. The selected time
steps of tracking results are presented in Figure 7.12. The clusters are denoted by
different colours and the estimated mixture models, represented by the cluster centre µ
and contours of the computed Gaussian function. The algorithm has been applied to
stereo estimates calculated by the Coopv1 algorithm (see Section 6.2.1). The tracking
algorithm successfully tackled configuration changes, such as an object’s stop, return,
entrance and occlusion, as can be observed in Figure 7.12, at time steps t2, t3, t4, and t10,
respectively. In addition, in order to visualise the tracking results over the whole sequence,
in Figure 7.13 the trajectories of each clusters’ centre are plotted in top-down view (x
and d coordinates). The ground truth trajectory is given for reference in Figure 7.13a,
and two further plots present results of tracking applied to stereo estimates calculated by
Coopv1 (Figure 7.13b) and Coopv2 (Figure 7.13c). The colours of the clusters are kept
consistent with Figure 7.12 to facilitate the understanding of the trajectory plots. As
can be observed, the tracking applied to both stereo algorithms’ results are very similar
to ground truth, except for the red cluster (obj-2 ) which shows some inconsistencies at
the end of the sequence (at time steps t9 - t11). This is mainly caused by the fact that
the object moves very slowly, thus is represented by a small number of events. Due to
that, the estimated cluster’s position starts adapting to events that are either noise or
events generated by other clusters but with wrong stereo estimates.
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7. Event-based Spatiotemporal Multiple Object Tracking

Figure 7.12: Selected time steps from the synth-Scene1 sequence. Tracking has been
applied to results of the Coopv1 stereo matching algorithm.

(a) (b) (c)

Figure 7.13: Trajectories of synth-Scene1 clusters’ centres for ground truth (a) and results
of tracking applied to Coopv1 (b), and Coopv2 (c) stereo results.

The second synthetic event sequence, synth-Scene2, depicts three balls moving at different
speeds. It has been designed for testing the asynchronous aspect of the algorithms,
since there is no optimal time window that would fit for processing of all three objects.
The tracking algorithm, in this regard, allows for asynchronous processing, since the
adaptation function is called whenever the mixture model no longer fits the incoming
event data. Figure 7.14 presents results of the tracking algorithm applied to Coopv2
stereo estimates. In order to give an overview of the tracking results, the ground-truth
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Figure 7.14: Selected time steps from the synth-Scene2 sequence. Tracking has been
applied to results of the Coopv2 stereo algorithm.

trajectory plots are shown in Figure 7.15a. The most prominent trajectory is that of the
blue cluster (obj-1 ), which represents the ball which moves at the highest speed, whereas
the other objects move at relatively lower speed and, hence, have shorter trajectories.
We can observe that the results of tracking applied to disparity estimates calculated by
the Coopv2 algorithm (Figure 7.15c) are almost the same as the ground truth. However,
in the tracking results obtained using Coopv1 (Figure 7.15b), we can observe that obj-1
loses track of the fastest ball (blue), which is then picked up by the red cluster (obj-2 ),
and finally a new cluster (depicted in green) is created to accommodate the events.
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Figure 7.15: Trajectories of synth-Scene2 clusters’ centres for (a) ground-truth and results
of tracking applied to Coopv1 (b), and Coopv2 (c) stereo results.

The reason for this tracking failure is explained in Figure 7.16, where clustered events
are depicted in three-dimensional space (x,y,d). In Figure 7.16a we can see that the
disparity estimates obtained from the Coopv1 algorithm are incorrect for some parts of
the moving ball, hence causing the clustering error. For comparison, the results of Coopv2
are shown in Figure 7.16b, where the disparity estimates are changing smoothly over
time. The correct behaviour of the tracking algorithm heavily depends on the quality of
the disparity estimates.

The numerical results of the tracking algorithm are summarised in Table 7.1. For synth-
Scene1, tracking on both stereo estimates gives comparable results. In synth-Scene2, due
to the clustering failure described above, the precision and recall are lower for Coopv1
than for Coopv2. In general, dealing with both stereo algorithms, the scores for recall (hit
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7. Event-based Spatiotemporal Multiple Object Tracking

(a) (b)

Figure 7.16: Comparison of tracking results obtained from Coopv1 (a) and Coopv2 (b)
stereo estimates. In (a) the tracking algorithm fails to correctly cluster some parts of the
object, because the object’s trajectory is not continuous in space and time.

Measure synth-Scene1 synth-Scene2
Coopv1 Coopv2 Coopv1 Coopv2

precision 0,989 0,984 0,850 0,994
recall 0,924 0,907 0,841 0,988

Table 7.1: Results of the tracking algorithm on synthetic datasets.

rate) tend to be lower than for precision. This means that the algorithm can accurately
distinguish between clusters, however, still misses assignments of some events.

In addition, we calculated the configuration accuracy as the amount of time steps where
the number of objects is correctly recognised divided by the overall amount of time steps
in the sequence. The configuration accuracy drops below 1 (equals 0.62) only in the
example presented above, i.e. the synth-Scene2 tracking applied to the Coopv1 stereo
results. Otherwise, the tracking correctly recognises the number of objects throughout the
duration of the sequences. In terms of performance, the algorithm processes approximately
235 kEv/s (i.e. kilo events per second), and takes on average 13 seconds to process one
second of the data sequence. The latter score is relatively high, because the synthetic
data sequences are quite high in spatiotemporal density of the events.

7.5.2 People Tracking
After the initial experiments on the synthetic datasets, we perform further tests on the
event sequences recorded with stereo DVS. The test data depict people walking in a
room, in the depth range between 1.5m and 3m. Figure 7.17a shows selected time steps
of the people1 sequence with one person walking. This is the easiest case, where the only
task is to correctly distinguish events generated by the person from noise events. The
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next sequences depict three people, two of them moving back and forth (people2 ) and
in parallel to the sensor’s image plane at two different distances (people3 ), and a third
person sitting and slightly moving. An overview of the people2 sequence is presented in
Figure 7.17b, and people3 in Figure 7.17c. It is worth to note that both stereo algorithms
(Coopv1 and Coopv2 ) cannot provide a correct depth estimates for the third person in
the people2 and people3 sequences, due to the half-occlusion, i.e. parts of the person are
only seen in one (left) camera. Nevertheless, each variant of cooperative stereo expresses
different tendencies in coping with such ambiguity in matching, which in turn might have
an impact on the accuracy of the tracking algorithm.

(a) people1

(b) people2

(c) people3

Figure 7.17: Selected time steps from the people1 (a), people2 (b), and people3 (c) test
sequence. Tracking has been applied to results of the Coopv1 stereo algorithm.

Figure 7.18 presents the comparison of trajectories estimated for results of Coopv1 and
Coopv2. The overall performance of both stereo variants is quite similar. In case of
Coopv2, the disparity estimates tend to be more aligned to front-to-parallel planes, causing
discontinuities in cluster representation across the disparity domain. This in turn may
result in higher configuration error, i.e. there are several trackers assigned to one object,
as can be observed in Figure 7.18f. The cooperative stereo algorithms, both Coopv1
and Coopv2, work in continuous manner and calculate depth based on the history of

109



7. Event-based Spatiotemporal Multiple Object Tracking

60 110 160 210 260

x

5

6

7

8

9

10

11

12

13

d

t
1

t
2

t
3

t
4

(a)

0 50 100 150 200 250

x

0

2

4

6

8

10

12

14

16

18

20

22

d

t
1

t
2t

3

t
4

t
1

t
2
t
3

t
1

t
2

t
3

t
4

(b)

0 50 100 150 200 250

x

0

2

4

6

8

10

12

14

16

d

t
1

t
2 t

3
t
4

t
1

t
2

t
3

t
4t

1

t
2

t
3
t
4

(c)

60 110 160 210 260

x

5

6

7

8

9

10

11

12

13

d

t
1

t
2

t
3

t
4

(d)

0 50 100 150 200 250

x

0

2

4

6

8

10

12

14

16

18

20

22

d

t
1

t
2t

3

t
4

t
1

t
2

t
1

t
2

t
3

t
4

t
2

t
2..4

(e)

0 50 100 150 200 250

x

0

2

4

6

8

10

12

14

16

d

t
1

t
2

t
3

t
4

t
1

t
2

t
3

t
4

t
1

t
2

t
2

t
3

t
4

t
2..4

(f)

Figure 7.18: Trajectories estimated for people1 (a,d), people2 (b,e) and people3 (c,f) event
sequences. The results are compared for stereo estimates obtained by Coopv1 (a,b,c) and
Coopv2 (d,e,f).

depth estimates stored in the cooperative network. For this reason, sometimes, when one
object occludes the other, there still will be some events assigned to the occluded area
based on the historical events available in the cooperative network. This results in the
‘see through’ effect, as presented in Figure 7.19. In consequence, the cooperative stereo
algorithms support the task of handling the transient occlusions.

(a) (b) (c)

Figure 7.19: Part of the people3 sequence demonstrating the full occlusion of one person
by another, projected onto XY plane (a), XD plane (b), and shown in 3D space in (c).
Some of the events from the foreground person are assigned a disparity of the background
person based on historical estimates in the cooperative network. This appears as a ‘see
through’ effect.
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There are some limitations of the event-based tracking, which can be observed in the
results. To begin with, the sensors generate events upon any perceived motion, including
also shadows. In Figure 7.20, we can observe that the shadow (lower right corner) of the
person (in green) is represented by event clouds of density sufficient to be recognised as
two additional objects.

(a) (b) (c)

Figure 7.20: Clustering events generated by shadow. The events are presented in three
ways, in two dimensions: front view (XY plane) (a), top-down view (XD plane) (b), and
in three dimensions (XYD) (c).

(a) (b)

Figure 7.21: Comparison of results of the tracking applied to Coopv1 (a) and Coopv2 (b)
tackling the entrance of a new person. The figure demonstrates that with de-fragmented
clusters the tracking assigns more trackers to one object.

As mentioned previously, since the tracking algorithm is based on density-based clustering,
it gives better results when events of the same object are represented by a continuous
cluster of events. Otherwise, the tracking may recognise disjoint elements of the object
as separate objects, which results in the assignment of several clusters to one object. In
Figure 7.21 we compare how the entrance of a half-occluded person is handled by tracking
applied to Coopv1 and Coovp2 stereo estimates. In case of Coopv1, the entering person
is correctly clustered as one object, because the events are evenly distributed across
disparity levels, as can be seen in Figure 7.21a. On the contrary, dealing with depth
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7. Event-based Spatiotemporal Multiple Object Tracking

estimates from Coopv2 (Figure 7.21b), the tracking algorithm erroneously recognises
three clusters which are assumed to be separate objects.

The numerical results of the tracking algorithm on people datasets are presented in
Table 7.2. Both precision and recall are quite high and consistent across all datasets
and two cooperative stereo algorithms. The tracking limitations presented above usually
manifest themselves in configuration errors.

people1 people2 people3 people4
Coopv1 Coopv2 Coopv1 Coopv2 Coopv1 Coopv2 [133]

precision 0,992 0,990 0,964 0,982 0,961 0,959 0,968
recall 0,988 0,991 0,959 0,959 0,950 0,953 0.919

Table 7.2: The numerical results of tracking algorithm on people datasets.

In the people2 and people3 sequence, the configuration errors are mainly caused by a
half-occluded person. We measured the fraction of the whole sequence duration when
our tracking algorithm correctly identified the number of objects in the scene. For the
people2 sequence, Coopv1 achieves 0.86 configuration accuracy, whereas Coopv2 performs
significantly worse, i.e. the number of objects is correct only within 0.29 time steps
of the sequence. For the people3 sequence, both Coopv1 and Coopv2 result in similar
configuration accuracy, around 0.78. In terms of performance, the tracking algorithm
achieves a speed of approximately 152 kEv/s. The average time taken to process one
second of the people sequences is 0.2s. Therefore, in real-world recordings of moving
people, even an unoptimised Matlab implementation of the algorithm still allows for
real-time tracking.

In addition, we present the event sequence people4, which has been used in the initial
validation of the tracking algorithm, presented in [112]. The sequence depicts four people
walking in the room, partially or fully occluding one another. This particular data
sequence has been chosen to demonstrate the ability of the tracking algorithm to tackle
multiple person tracking in the presence of occlusions. The tracking has been applied
to depth estimates calculated using the algorithm from [133]. We have measured the
precision and recall based on the manually labelled ground truth. The algorithm achieves
0.968 recall and a slightly smaller precision, namely 0.919. The visual results of the
tracking on people4 are presented in Figure 7.22 and 7.23. The first one demonstrates
correctly identified people entering the room, one after another. Figure 7.23 shows the
results of tracking dealing with occlusions. We can see that the algorithm can successfully
differentiate events across clusters, even in a quite challenging setup (crowded scenes).
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Figure 7.22: Part of the people4 sequence where people sequentially (one after another)
enter the scene. The identified people can be differentiated by colours.

Figure 7.23: Results of the tracking on the people4 sequence. The algorithm correctly
identifies moving people in a crowded scene, and successfully tackles the partial occlusions.
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7.6 Summary
In this chapter, we have presented an algorithm for multiple objects tracking using
dynamic vision sensors. We have formulated the task of tracking as clustering events in
three-dimensional space, using as input information about the event’s spatial coordinates
(x,y) and disparity estimated by the stereo matching algorithm. We have investigated
the possibility to use Gaussian Mixture models, not only to detect objects but also to
track their evolution in time.

The proposed tracking algorithm successfully deals with multiple moving objects of
different size and speed. The clusters are continuously adapted to the new incoming
events. The algorithm facilitates the asynchronous clustering of events, since the control
function for cluster adaptation is called not only in predefined time intervals, but also
upon major changes in the scene characteristics. As demonstrated by experiments, the
tracking algorithm is able to tackle both partial and full occlusions, as well as changes
in scene configuration, such as the entrance of new objects, when objects stop moving
or exit the scene. An advantage of the algorithm is that objects are clustered in three
dimensions (x,y and disparity), which makes the tracking more accurate and robust than
its application to two-dimensional data. Nevertheless, the results are very dependent
on the quality of the input disparity estimates. If parts of the object are assigned with
incorrect disparities, the tracking algorithm could either assign them to a wrong cluster
or erroneously create a new one, assuming the entrance of a new object. Furthermore,
the clustering with Gaussian Mixture Models requires a careful choice of the initial model
parameters. To this end, we proposed an efficient and accurate object detection algorithm,
which finds the object locations by analysis of event histograms. The object detection is
used in the first step of the algorithm to provide an initial prior model of the scene. In
addition, it is also used to tackle the entrance of new objects, which was found especially
useful in cases where several objects enter the scene at the same time.

We have demonstrated that the proposed method is well-suited to the nature of the
event data. The overall performance of the algorithm is satisfying, reaching both a
precision and recall on average higher than 0,96. Nevertheless, one of its limitation is the
need of adjusting the algorithm thresholds (outlier and anomalies detection) using some
assumptions about the scene and objects characteristics (e.g. average size, estimated
depth range, granularity of clusters, etc.). Moreover, we observed that there are some
tracking challenges, which might be very difficult to tackle algorithmically. For example,
if objects are moving close to each other in the same direction, they form a coherent
cluster of events, making it impossible to distinguish one object from the other. Another
challenge are events generated by shadows, which are either recognised as part of the
object, or a new one moving next to it.
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CHAPTER 8
Conclusions

In this thesis, we explore feasible approaches to asynchronous processing of event data
with a special focus on depth and motion estimation from a stationary stereo dynamic
vision sensor (DVS) system. In the following, we summarise the main conclusions of this
PhD research.

8.1 Summary
A major part of this thesis deals with event-based stereo correspondence. We have
identified two main challenges of event-based stereo matching: the first one is associated
with ambiguity in event-to-event matching, whereas the second is related to asynchronous
event data processing. According to our experimental analysis, the commonly used
time-based event-to-event matching is very prone to errors and cannot be reliably used in
complex scenes. Furthermore, the response from the left and right sensor may vary due
to a number of factors, such as viewing angle, relativity of objects’ motion velocity, or
specifics of DVS hardware platforms. Our experiments show that, exposed to the same
visual stimuli and under the same conditions, there could be around 8 percent difference
between the amount of left and right events. We derive that additional assumptions may
be useful to resolve the matching ambiguity, e.g. a local smoothness constraint. Therefore,
we introduce a smoothness constraint that is inherently associated with the aggregation
of local context over time. We further demonstrate that fixed-time event aggregation
limits the temporal resolution of the sensor, hence the second challenge we face is to find
an appropriate way of event-based processing that preserves the asynchronous aspect of
event data and thus allows exploiting the full potential of dynamic vision sensors. We
propose two novel asynchronous event-based stereo matching algorithms that are tailored
to the advantages and peculiarities of dynamic vision sensors.

The first algorithm, Coopv1, tackles the challenge of asynchronous stereo matching. We
leverage an early model of biological depth computation proposed by Marr and Poggio [93]
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to model the stereo problem with a dynamic cooperative network where the nodes of the
highest activation denote the correct disparity. We extend the basic cooperative algorithm
into the spatiotemporal domain by introducing a dynamic cooperative network that stores
the history of recent activity in the scene. The cooperative aspect can be considered
as a refinement of temporal event-based matching as it implements the smoothness
constraint by local neighbourhood operations. The network operates in continuous time
and thus preserves both spatial and temporal smoothness. In our experiments, we find
that the Coopv1 algorithm improves the accuracy of single time-based correlation by
approximately 40 percent.

The second stereo matching algorithm, Coopv2, is focused on improving the accuracy of
event-based matching. Building on the Coopv1 algorithm, we propose an enhanced cooper-
ative stereo matching technique which calculates the similarity over a local neighbourhood
of each event pair to compute the initial matching weights for the cooperative optimisa-
tion. A ground-truth based evaluation shows that using the local neighbourhood in event
matching (Coopv2 ) reduces the measured mean error by over 50 percent. A quantitative
comparison with a competing image-based stereo algorithm confirms the favourable
performance of the Coopv2 algorithm with respect to the current state-of-the-art.

In addition to ground-truth evaluation, we have tested both of the proposed cooperative
stereo matching algorithms using a variety of datasets, including self-recorded sequences of
non-rigid human motion, synthetic data of complex scenes with challenging occlusion cases,
and recordings captured by a moving DVS. Our experiments demonstrate the robustness
of the cooperative algorithms against varying scene complexity and simultaneous motion
of contrasting speed. Furthermore, we show the applicability of our algorithms to a
dynamic stereo setup, which has recently gained attention in the context of dynamic
vision sensors.

An intuitive application of dynamic vision sensors is motion analysis. In this context, we
propose an event-based multiple object tracking algorithm that leverages the disparity
estimated by the cooperative algorithms to tackle the challenges of occlusions. The
algorithm performs clustering of events in three-dimensional space by describing the
scene activity with Gaussian Mixture Model. The clusters’ dynamics are accounted for
by constant adaptation of the model to the incoming events. In our experiments, we
show that the algorithm gives satisfying results and is able to tackle different tracking
challenges, such as a changing number of moving objects, or partial and full occlusions.
In tests on tracking people, the algorithm achieves both precision and recall above 0.96,
and is capable of real-time performance.
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8.2 Future Work
We have demonstrated that the proposed adaptive cooperative stereo algorithms can
successfully cope with the asynchrony of events and provide good quality results, regardless
of the speed of moving objects. However, there are still open areas that could be addressed
in future research:

Adaptive support Incorporating an adaptive local neighbourhood directly into the
cooperative network might further improve the accuracy by adaptation of the support
weights to better reflect the underlying objects’ structure in space and time.

Geometrical constraints Another possibility in matching that appears especially
applicable for sparse event data is to employ geometrical constraints on incoming events.
An option would be to refine the initial event-based matching by line or surface fitting in
3D space.

Postprocessing One direction to explore would be to shift the focus from the initial
matching step to more advanced post-processing techniques, e.g. filtering and smoothing.

Combined stereo and tracking The tasks of stereo and motion computation are
correlated. We demonstrated in Chapter 7 that using stereo information in tracking
is beneficial and helps handling occlusions. Further research could investigate how
information provided by the tracking algorithm, such as the clusters’ position, size or
speed, could also be used to improve the stereo matching accuracy.
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APPENDIX A
Expectation Maximization

The Expectation Maximization (EM) [40, 120] algorithm is used for the estimation of
parameters of a statistical model with unknown parameters and known observations. The
algorithm performs an iterative search for a (local) maximum likelihood or Maximum A
Posteriori (MAP). In this thesis, the Expectation Maximization is used in the context of
the proposed tracking algorithm, i.e. clustering events with Gaussian Mixture Models
(GMM).

A Gaussian Mixture Model is defined by the parameters of its n components, as given in
Equation A.1:

λ = {wi, µi,Σi}i=1,··· ,n, (A.1)

where wi, µi, Σi denote, respectively, the weight, mean vector and covariance matrix of
the ith Gaussian component.

Given a T-element set of data X = {x1, x2, · · · , xT }, the goal is to find GMM λ that
best matches the distribution of X. The EM algorithm iteratively changes the model
parameters to maximise the likelihood p(X|λ) between the data X and the corresponding
Gaussian distribution λ:

p(X|λ) =
T∏

t=1
p(xt|λ) (A.2)

In each iteration, the model parameters are evaluated for each d-dimensional sample
from the dataset X by calculating the a posteriori probability for the ith component by
formula:

P (i|xt, λ) = wi g(xt|µi,Σi)∑n
k=1wk g(xt|µk,Σk) , (A.3)

where g(xt|µi,Σi) is a component defined as d-variate Gaussian density function with mean
µi and covariance matrix Σi. The dimensionality d is determined by the dimensionality
of elements of the underlying dataset X.
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Next, the parameters are re-estimated according to the a posteriori probability derived
in a previous step. The new GMM parameters are calculated as follows:

w̄i = 1
T

T∑
t=1

P (i|xt, λ) (A.4)

µ̄i =
∑T

t=1 P (i|xt, λ)xt∑T
t=1 P (i|xt, λ)

(A.5)

σ̄i =
∑T

t=1 P (i|xt, λ)x2
t∑T

t=1 P (i|xt, λ)
− µ̄i

2 (A.6)

The steps are repeated until reaching convergence, which could be controlled by a
likelihood improvement threshold or maximum number of iterations.
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APPENDIX B
Synthetic Data Generation

For the purpose of extensive evaluation of the presented algorithms, beside the recorded
sensor data, we have also used several synthetic test scenarios. In the following, we briefly
describe the procedure of generating synthetic stereo datasets. Firstly, the synthetic
scenes, including objects, their animation and stereo camera are modelled using Blender1.
We have used the same camera settings as ATIS with respect to pixel size, sensor
resolution and baseline between the left and right camera. The animation is rendered,
i.e. projected separately into the views of both the left and right camera, at high frame
rate (1000 fps). The resulting rendered images are converted to greyscale and used for
the reconstruction of event streams separately for each view. The sequence of images is
combined into a spatiotemporal cube of X×Y×F dimensions, where X×Y is the spatial
resolution of the sensor (virtual camera) and F is the number of rendered frames. The
cube serves as an input to the dynamic vision sensor simulator, which converts greyscale
images into a sequence of events. In addition, the simulator behaviour can be adjusted
by a set of parameters, such as the preprocessing (smoothing filter size), magnitude of
simulated noise and sensor’s bias settings, such as pixel sensitivity thresholds (ON, OFF),
refractory period and timestamp resolution. Analogically to the real sensor, each pixel is
independent and its behaviour is simulated by the Event Generator2, that implements
a pixel’s function as described in Section 2.2. The Event Generator generates events
based on the contrast changes for a single pixel over a whole image sequence duration
(all frames).

Figure B.1 demonstrates the results of the event generator function called for one pixel.
The top graph shows the continuous contrast change of a pixel, interpolated to the
required timestamp resolution from the input sequence frame number (F) and rendering
frame rate. Below, the output of the simulated differentiating circuit is given, showing

1https://www.blender.org/
2Functions for sensor simulation and event generation were written and made available by courtesy

of Stephan Schraml, AIT Austrian Institute of Technology.
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Figure B.1: Demonstration of the event generation for a single pixel.

the difference in relative intensity contrast. Events are generated when the contrast
exceeds a predetermined sensitivity threshold, depicted in red and yellow for ON and
OFF thresholds, respectively. The bottom graph of Figure B.1 shows the generated ON
and OFF events. As we can see, the density of the events is higher in places where the
contrast curve slope is steeper, whereas with slow changes, the events are sparser. In
addition, thanks to the interpolation of the contrast curve, it is also possible to more
realistically assign the timestamps beyond the resolution given by the frame rate of the
rendered image sequence.
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APPENDIX C
Sensor Bias Settings Tests

It has been observed that the amount of events generated by the left and right dynamic
vision sensor can differ considerably. One reason for such dissimilarity between the
outputs of the sensors could be the sensors’ electronics. We investigate if by more precise
bias parameter settings (individually for each sensor) we can reduce the dissimilarity of
the left and right events distribution. A summary of our findings is given in Section 4.2.1.
In the following we provide a detailed description of the experiments and a complete list
of results.

Experiment Setup
We recorded data from the left and right sensor at exactly the same conditions, such as
position, angle of view, distance, bias settings, lighting, and speed of the moving object.
For the experiments, we have used the UCOS [125] stereo sensor. As a test pattern, we
used two horizontal black bars on white background, placed on a drum rotating at a
speed of 2.25 m/s, as shown in Figure C.1.

(a) (b)

Figure C.1: The setup for the experiment. (a) The rotating drum with the test pattern;
the sensor is placed on the sliding panel to adjust exactly the same position for the left
and right sensor. (b) Side-view with marked distances.
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C. Sensor Bias Settings Tests

description default (V)
Q contrast baseline 0.38
QON contrast sensitivity (relative to Q) 0.55
QOFF 0.25
BRefr pixel’s refractory period (influences data rate) 2.9
BFo bandwidth control for noise reduction 2.13
BPr 2.78

Table C.1: Sensor parameters (bias settings) considered in experiments.

An overview of DVS parameters that have been used in our experiments is listed in
Table C.1. We have started with recording several tests with default bias settings. We
have also performed the noise test, where an idle scene was recorded to establish how
much noise is generated by the sensor. Next, we have designed several tests to analyse
sensor’s behaviour under varying bias settings, each focusing on different parameter. Four
test series were recorded for a duration of approx. 15s, specified as follows:

test1 changing contrast baseline Q = 0.3, 0.35, 0.4, 0.45, 0.5, while keeping the contrast
sensitivity constant, i.e. |QON −Q| = |QOFF −Q| = 0.5.

test2 changing contrast sensitivity |QON −Q| = |QOFF −Q| = {2.5, 2, 1.5, 1, 0.5}, while
keeping the constant baseline Q = 0.4.

test3 variation of the refractory period, i.e. BRefr = {2.7, 2.75, 2.8, 2.85, 2.9}.

test4 variation of bandwidth parameters, i.e. BFo and BPr ranging from 2.1 to 2.9V .

Experiment Results
We measure the total number of events, given in kilo events (kEv), the events ratio, i.e. the
percentage of the left (or right) events to the total amount of events. The difference
between the left and right response is measured for all events, and separately for ON and
OFF events. The difference is expressed in the amount of events (kEv) and as percentage
(ratio).

In Table C.2, the results of four bias tests are listed. We can observe that poorly chosen
bias settings can lead to almost 25% of difference between the left and right events. The
parameters that showed the most influence on the symmetry between left and right are
Q, QON, and QOFF. Furthermore, Table C.3 lists the results of three noise tests. The
results of the bias tests are analysed in the context of ambiguities in event-based stereo
matching described in Section 4.2.1.
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# events # events ratio Difference between left and right sensor
ON OFF all events ON OFF

(kEv) (%) (%) (kEv) (%) (kEv) (%) (kEv) (%)

test1

3137.3 27.56 72.44 382.1 12.18 171.2 19.80 553.3 24.34
3555.5 42.46 57.54 89.3 2.51 67.2 4.45 22.1 1.08
3806.5 49.27 50.73 75.3 1.98 31.2 1.66 44.2 2.29
3616.7 50.10 49.90 43.2 1.20 8.0 0.44 35.3 1.95
3794.1 49.08 50.92 126.4 3.33 73.1 3.92 53.3 2.76

test2

1507.4 43.49 56.51 362.8 24.07 155.3 23.69 207.5 24.36
2951.7 47.52 52.48 248.0 8.40 84.7 6.04 163.3 10.54
2263.2 49.34 50.66 35.7 1.58 17.1 1.53 18.6 1.62
4789.5 38.41 61.59 262.9 5.49 40.9 2.23 221.9 7.52
5890.6 16.58 83.42 7.2 0.12 3.8 0.39 10.9 0.22

test3

4160.2 28.02 71.98 25.7 0.62 15.3 1.31 10.4 0.35
3807.7 32.82 67.18 135.7 3.56 100.9 8.07 34.9 1.36
3610.4 41.91 58.09 75.8 2.10 144.8 9.57 69.0 3.29
3607.9 50.58 49.42 230.6 6.39 82.3 4.51 312.9 17.55
3877.6 50.28 49.72 198.1 5.11 14.9 0.76 213.0 11.05

test4

3301.2 59.61 40.39 421.2 12.76 176.9 8.99 244.3 18.32
3270.7 59.48 40.52 489.6 14.97 225.7 11.60 263.9 19.92
3066.6 59.60 40.40 492.3 16.05 241.9 13.23 250.4 20.21
3030.4 59.99 40.01 486.8 16.06 254.2 13.98 232.6 19.19
2780.4 59.85 40.15 443.3 15.94 244.3 14.68 199.1 17.83
2645.4 59.30 40.70 406.3 15.36 241.9 15.42 164.5 15.28
2633.6 59.42 40.58 388.7 14.76 244.2 15.61 144.4 13.51
2542.0 58.81 41.19 358.0 14.08 237.6 15.89 120.4 11.50
2420.8 58.60 41.40 330.8 13.66 228.9 16.14 101.9 10.16
2498.6 58.96 41.04 339.4 13.58 237.4 16.12 102.0 9.95
2511.0 59.31 40.69 335.6 13.36 238.2 16.00 97.3 9.53
2432.4 59.70 40.30 303.4 12.47 239.1 16.47 64.3 6.56
2618.7 56.40 43.60 229.1 8.75 221.3 14.98 7.8 0.68
2549.4 56.37 43.63 241.9 9.49 227.8 15.85 14.0 1.26
2546.8 56.37 43.63 225.6 8.86 220.9 15.39 4.7 0.42
2524.3 56.14 43.86 237.1 9.39 224.5 15.84 12.6 1.14

Table C.2: Results of a series of tests, given in terms of left and right pixel response
differences, for all events and with respect to ON and OFF events.
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C. Sensor Bias Settings Tests

# events # events ratio Difference between left and right sensor
ON OFF all events ON OFF

(kEv) (%) (%) (kEv) (%) (kEv) (%) (kEv) (%)
noise-test-1 410.423 14.15 85.85 25.31 0.62 14.719 25.35 12.188 3.46
noise-test-2 453.882 3.58 96.42 182.52 4.02 6.279 38.66 24.531 5.61
noise-test-3 434.999 3.47 96.53 175.27 4.03 5.823 38.54 23.35 5.56

Table C.3: Results of the noise-test, given in terms of left and right pixel response
differences, for all events and with respect to ON and OFF events.
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