Simulation Study of Al Channeling in 4H-SiC

Gerhard Hobler
Institute of Solid-State Electronics
TU Wien
Vienna, Austria
gerhard.hobler@tuwien.ac.at

Kai Nordlund
Department of Physics
University of Helsinki
Helsinki, Finland
kai.nordlund@helsinki.fi

Michael Current
Current Scientific
San Jose, USA
currentsci@aol.com

Werner Schustereder
Infineon Technologies Austria AG
Villach, Austria
werner.schustereder@infineon.com

Abstract—The modeling of channeled Al implantation into SiC in a Monte Carlo binary collision (BC) framework is revisited, using experimental data from 60 keV to 1.5 MeV in a dose range from 1.8×10^{12} to 4.1×10^{14} Al/cm2. From simulated channeling maps, [0001], [1123], and [1120] are determined as the three major channeling directions in 4H-SiC. 1D and 2D implant distributions are investigated. It is found that implantation in channeling directions provides more abrupt profiles of ions channeled along different crystallographic directions. Such data exist for 60 keV [3]. The range from using experimental data from 60 keV to 1.5 MeV in a dose of 20eV for C [7]. A correction factor f model with displacement energies of 30 eV for Si atoms and concentration is calculated using the modified Kinchin-Pease structure is taken into account by isolated Frenkel pairs whose density of SiC lattice structures have been implemented with an atomic

B. Molecular Dynamics

Monte Carlo popularity still seems to grow in the 1990s and early 00s of the current century [1]–[5]. With the currently increasing importance of SiC in power electronics and the improved ion implantation machine controls on wafer and beam orientation, wafer temperature and dosimetry, it seems appropriate to revisit the modeling of ion implantation in SiC and to explore the possibilities channeling provides for tailoring the distribution of the implanted ions.

II. SIMULATION TOOLS

A. Binary Collision Simulation

Monte Carlo binary collision (BC) simulations are performed with IMSIL [6]. For this study, the ideal 4H- and 6H-SiC lattice structures have been implemented with an atomic density of $N = 9.66 \times 10^{22}$ cm$^{-3}$. Damage to the crystal structure is taken into account by isolated Frenkel pairs whose concentration is calculated using the modified Kinchin-Pease model with displacement energies of 30 eV for Si atoms and 20 eV for C [7]. A correction factor f_{rec} to the concentrations is used to calibrate the model to experimental data. Lattice vibrations are implemented as Gaussian displacements from the lattice sites according to the Debye model with a Debye temperature of 1120 K [7]. For the interatomic potential the universal ZBL potential [8] is used with a cutoff impact parameter of 2.67 Å. Ion beam divergence is considered, if specified, by a Gaussian distribution of angles with a standard deviation of 0.5°.

Under channeling conditions, electronic stopping is reduced compared to motion in random direction. We use a model composed of a nonlocal and an impact parameter dependent part. The electronic energy loss in a collision is given by

$$\Delta E_{e} = S_{e} \left[x^{nl} N \Delta R + \frac{1 - x^{nl}}{2\pi a^{2}} \exp \left(-\frac{p}{a} \right) \right]$$

where p denotes the impact parameter and ΔR the length of the preceding free flight path. For the electronic stopping power S_{e} the Lindhard model [9] is used with a correction factor k_{corr}. a is expressed as $a = f_{\text{scr}} a_{\text{ZBL}} / 0.3$ with a_{ZBL} the screening length of the ZBL interatomic potential [8], k_{corr}, x^{nl}, and f_{scr} are parameters which have to be fitted to experimental data.

B. Molecular Dynamics

Molecular dynamics simulations are performed with MDRANGE [10]. MDRANGE does not follow the recoils once they are outside the interaction range of the ion, and does not consider interaction between target atoms. This makes range simulations of keV and MeV ions possible. As for the BC simulations, the universal ZBL potential [8] is used, here with a cutoff distance of 3 Å, and lattice vibrations are taken into account by the Debye model. All simulations are run without electronic stopping to enable comparison with BC, since electronic stopping is handled differently in BC and MD.

III. CALIBRATION AND TESTING

A. Calibration of the BC Model

The calibration of the Lindhard correction factor k_{corr} of the electronic stopping model requires dopant profiles for implant energies where electronic stopping dominates. We find $k_{\text{corr}} = 1$ to provide a good fit to experimental projected ranges for Al in SiC [4] over a large energy range, in agreement with the literature [5].

For the calibration of the parameters x^{nl} and f_{scr}, dopant profiles of ions channeled along different crystallographic directions are required. Such data exist for 60 keV [3]. The
To determine the damage recombination factor f_{recc}, implant profiles at increasing doses are required, where damage increasingly blocks the channels. Since we found no useful data for 4H-SiC, we used data for 1.5 MeV Al implanted in [0001] channeling direction of 6H-SiC to determine $f_{recc} = 2$, see Fig. 2. The SIMS data could only be fitted by assuming a misalignment and beam divergence of 0.5°.

B. Comparison of BC and MD Results

As a partial test of the BC model we compare a channeling profile in [0001] direction obtained without electronic stopping with results from MDRANGE (Fig. 3). Good agreement is found with slightly underestimated channeling by the BC simulations. Further tests have been performed for the $[11\bar{2}0]$ direction and various tilt angles, see Sect. IV-B.

IV. RESULTS

A. Channeling Maps

To obtain an overview of channeling directions, the projected range can be plotted as a function of incidence angles (tilt and rotate) in a polar plot. Such a “channeling map” is shown in Fig. 4a for 100 keV Al in (0001)-4H-SiC. Pronounced channeling is visible in the [0001] direction (center) and in six $\{11\bar{2}3\}$ directions (17° from [0001]). Other channeling directions are found at larger tilt angles and along the three $\{11\bar{2}0\}$ planes, although with less pronounced ranges.

A channeling map for 100 keV Al in $\{11\bar{2}0\}$-4H-SiC is shown in Fig. 4b. The $\{11\bar{2}0\}$ direction is the dominant axial channel, and (0001) is a channeling plane. From these maps it may be concluded that [0001], $[11\bar{2}3]$, and $[11\bar{2}0]$ are the major channels in 4H-SiC.

B. Channel Characteristics

To characterize the maximum range of the ions, range profiles have been calculated for a dose of 10^{13} cm$^{-2}$, and the depth where the concentration drops to 10^{15} cm$^{-2}$ has been determined. The results are shown in Fig. 5a. The largest range is obtained for channeling along $\{11\bar{2}0\}$, followed by $\{11\bar{2}3\}$, [0001], and the random direction.

For applications the effect of misalignment and beam divergence are important. The sensitivity to these nonideal properties is characterized by the critical angle. To obtain it, we have performed simulations with small increments of tilt.
C. Dopant Distributions under Ideal Conditions

2D dopant distributions after 1 MeV Al implants near the edge of an impenetrable mask are shown in Fig. 6a for random and the three channeling conditions. In all cases the mask edge and the ion beam direction are parallel to [11\overline{2}0]. As expected, the penetration depth increases from random to [0001] to [11\overline{2}3] to [11\overline{2}0]. In addition, the lateral penetration decreases in the same order, in particular at larger depths. Accordingly, the dopant distribution evolves towards a box-like shape.

from the nominal direction, and determined the critical angle as the angle yielding a projected range equal to the mean of its value at perfect alignment and its saturation value at large tilt angles. The results for the critical angles are shown in Fig. 5b. Here [0001] is followed by [11\overline{2}0] and [11\overline{2}3]. Usually, one would expect the reverse order compared to the maximum range. Notably, this is not the case for [11\overline{2}0] and [11\overline{2}3].

It is interesting to note that the critical angles depend on electronic stopping. The critical angles obtained without consideration of electronic stopping (dotted lines in Fig. 5b) are significantly lower than when electronic stopping is taken into account. For two cases ([0001] and [11\overline{2}3], 1 MeV) the critical angles have also been determined by MD (crosses). The agreement with BC is excellent.

D. Dopant Distributions under Nonideal Conditions

In Fig. 6 the effect of implantation damage is already included. In Fig. 7 the corresponding 1D dopant profiles are shown by the solid green lines. For comparison, the simulation results without damage are shown by the dotted blue lines. As can be seen, implantation damage reduces channeling at a dose of 10^{14} cm$^{-2}$, but only moderately. Also shown in Fig. 7 are the effects of high temperature (not considering the influence of temperature on damage) and beam divergence. All these nonidealities decrease channeling, but leave the essential features of the dopant distributions intact. This is also the case for the 2D distributions, see Fig. 8.

V. Conclusion

Our simulations show that intentional channeling offers the opportunity to produce near-box-like Al profiles in 4H-SiC. Damage formation up to a dose of 10^{14} cm$^{-2}$, elevated temperatures, and state-of-the art beam divergence are not prohibitive.-channeling along [11\overline{2}0] has a clear advantage over [0001] and [11\overline{2}3]. Obtaining additional SIMS profiles in order to confirm these predictions as well as for improving model calibration would be worthwhile.

A comparison of the dopant distributions for implant energies leading to the same maximum range of about 4 µm is shown in Fig. 6b. Here the decrease in lateral penetration from random to [11\overline{2}0] is even more pronounced.
Fig. 6. 2D dopant distributions at an impenetrable mask after implantation of 10^{14} cm$^{-2}$ Al in random direction, along [0001], [1123], and [1120]). (a) 1 MeV, (b) energy chosen as to obtain a maximum range of about 4 µm. The mask edge is parallel to (1T00). Two isolines per decade with the lowest level corresponding to 10^{15} cm$^{-3}$.

Fig. 7. 1D dopant distributions after implantation of 10^{14} cm$^{-2}$ Al in random direction and three channeling directions. Dotted blue lines: ideal conditions; solid green lines: considering implant damage; dashed red lines: in addition changing the temperature from 300 K to 773 K; dash-dotted yellow lines: in addition considering a beam divergence of 0.5°.

Fig. 8. 2D dopant distributions after high-temperature (773 K) implantation of 10^{14} cm$^{-2}$ Al at an impenetrable mask in random direction and three channeling directions. A beam divergence of 0.5° has been assumed. The mask edge is parallel to (1T00). Two isolines per decade with the lowest level corresponding to 10^{15} cm$^{-3}$.

REFERENCES

