Mass spectrometry near comet 67P (Rosetta/COSIMA)

Kurt Varmuza^{1*}, Peter Filzmoser¹, Irene Hoffmann¹, Martin Hilchenbach², Jochen Kissel², Sihane Merouane², John Paquette², Oliver Stenzel², Hervé Cottin³, Nicolas Fray³, Robin Isnard^{3,4}, Christelle Briois⁴, Paola Modica⁴, Laurent Thirkell⁴, Cécile Engrand⁵, Donia Baklouti⁶, Yves Langevin⁶, Anaïs Bardyn⁷, Klaus Hornung⁸, Sandra Siljeström⁹, Jouni Rynö¹⁰, Johan Silén¹⁰, Rita Schulz¹¹, Franz Brandstätter¹², Ludovic Ferrière¹², Christian Koeberl^{12,13}

¹ TU Wien, Institute of Statistics and Mathematical Methods in Economics, Vienna, Austria; ² Max-Planck-Institute for Solar System Research, Göttingen, Germany; ³ Université Paris Est Créteil et Univ. Paris Diderot, LISA, UMR CNRS 7583, Créteil, France; ⁴ Université d'Orléans, Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), CNRS, Orléans, France;
 ⁵ Université Paris Sud, Centre de Sciences Nucléaires et de Sciences de la Matière, CNRS/IN2P3, Orsay, France; ⁶ Université Paris Sud, Institut d'Astrophysique Spatiale (IAS), CNRS, Orsay, France;
 ⁷ Carnegie Institution of Washington, Dept. Terrestrial Magnetism, Washington, DC, USA; ⁸ Université de Bundeswehr, LRT-7, Neubiberg, Germany; ⁹ RISE Research Institutes of Sweden, Bioscience and Materials, Stockholm, Sweden; ¹⁰ Finnish Meteorological Institute, Helsinki, Finland; ¹¹ European Space Agency (ESA), Scientific Support Office, Noordwijk, The Netherlands;
 ¹² Natural History Museum Vienna, Austria; ¹³ University of Vienna, Department of Lithospheric Research, Vienna, Austria

2 TOF-SIMS instrument COSIMA

- O Primary ions: 115 In, 3 ns shots (~ 1000 ions), 1500 shots per second, 8 kV; measurement spot on sample ~ 35 μm x 50 μm .
- Secondary ions (positive or negative): 3 kV acceleration, ion reflector, ion counter (1.95 ns time bins), up to ca 6500 Dalton.
 Mass resolution (full width at half maximum peak height):
- So Mass resolution (full width at half maximum peak height): 500 (m/z 12) – 1000 (m/z 73).
- O Typical per spectrum 225,000 primary ion shots; registered secondary ions (m/z <700.5) per shot: 0.2 1 (median 0.6) positive ions, or 0.4 1.4 (median 0.7) negative ions.
- O Targets for dust collection: 1 cm x 1 cm, Au black, Ag.
- O COSISCOPE microscope/camera: 1024 x 1024 pixel (14 μm) [7].
 O Mass of instrument on-board 20 kg; power consumption 20 W.
- Mass of instrument on-board 20 kg; power consumpti-

3 Multivariate data

SAMPLES (cometary particles and CC meteorites)

Cometary particle Donia Kerttu	79 spectra 69] 148 comet spectra
Meteorite Allende Lancé Murchison	355 119 132	606 meteorite spectra
	152	

Total n = 754 spectra (objects)

Selection: Multivariate one-class classification (by orthogonal and score distances, and by a KNN approach) with background spectra defining the single class. Combined with spectroscopic and experimental parameters [5, 11, 13]. Background subtracted.

VARIABLES

Mass spectral peak heights for m = 9 ion species: C⁺, CH⁺, CH₂⁺, CH₃⁺, ²⁴Mg⁺, ²⁷Al⁺, ³⁹K⁺, ⁴⁰Ca⁺, ⁵⁶Fe⁺ Variables normalized to sum 100 per spectrum (% ions).

SOFTWARE

R. A language and environment for statistical computing. Vienna, Austria: R Development Core Team, Foundation for Statistical Computing, www.r-project.org (2018).

Details, more references, PDFs: http://www.lcm.tuwien.ac.at/comecs/ Supported by the Austrian Science Fund (FWF), project P 26871 - N20

4A RESULTS: Mean spectra

4B RESULTS: Distributions of % ions

MNRAS 469 , Su

ppl 2, S712 (2017

4C RESULTS: Principal Component Analysis (PCA)

5 SUMMARY

- Including data evaluations not mentioned here [2, 4, 6, 10].
- Cometary particles appear diverse and different from CC meteorites.
 Composition of cometary particles is close to that of chondritic
- meteorites but enriched in Si and C and depleted in Mg [12].
 Cometary particles show higher carbon contents than the carbon-rich meteorites (CC) Allende, Lancé, Murchison.
- Cometary particles consist of ~55% silicates and
- ~45% carbonaceous material (mass) [1]. ■ Carbonaceous material: mostly macromolecular substances [3].
- Ions C₃H₀₋₄⁺, C₄⁺, etc. indicate unsaturated organic compounds in cometary particles [14].

 [5] Hilchenbach M, et al.: The Astrophys. J. Lett., 816: 132 (2016)
 [10] Sc.

 [6] Homung K, et al.: Space Sci. Rev. 133, 63 (2016)
 [11] Sti.

 [1] Joint J. Langevin V, et al.: Loruns 271, 74 (2016)
 [12] St.

 [8] Kisel J. et al.: Space Sci. Rev. 128, 223 (2007)
 [13] Vi.

 [9] Merouane S. et al.: MNRAS 469, Suppl 2, 5459 (2017)
 [14] Vi.

uj Schulz R. et al.: Nature **518**, 216 (2015) 1] Silieh J. et al.: Geosci. Instrum. Method. Data Syst. **4**, 45 (2015) 2] Stenzel O. et al.: MNRA5 469, Suppl 2, 5492 (2017) 3] Varmuza K. et al.: Chemom. Intell. Lab. Syst. **138**, 64 (2014) 4] Varmuza K. et al.: J. Chemom. e3001 (2018)

Book of Abstracts

29th MassSpec Forum Vienna February 20th – 21st, 2018

ASAC

Austrian Society of Analytical Chemistry

University of Vienna

Vienna University of Technology (TU Wien) Institute of Chemical Technologies and Analytics TUtheSky (Building BA, 11th floor) Getreidemarkt 9 1060 Vienna Austria

Posters will be set up during te whole MassSpec Forum Vienna.

6	Kurt Varmuza	TU Wien, A	Mass spectrometry near comet 67P (Rosetta/COSIMA)
---	--------------	------------	--

Mass spectrometry near comet 67P (Rosetta/COSIMA)

<u>Kurt Varmuza¹</u>, Peter Filzmoser¹, Irene Hoffmann¹, Martin Hilchenbach², Jochen Kissel², Sihane Merouane², John Paquette², Oliver Stenzel², Hervé Cottin³, Nicolas Fray³, Robin Isnard^{3,4}, Christelle Briois⁴, Paola Modica⁴, Laurent Thirkell⁴, Cécile Engrand⁵, Donia Baklouti⁶, Yves Langevin⁶, Anaïs Bardyn⁷, Klaus Hornung⁸, Sandra Siljeström⁹, Jouni Rynö¹⁰, Johan Silén¹⁰, Rita Schulz¹¹, Franz Brandstätter¹², Ludovic Ferrière¹², Christian Koeberl¹²

¹TU Wien, Institute of Statistics and Mathematical Methods in Economics, Vienna, Austria ²Max-Planck-Institute for Solar System Research, Göttingen, Germany

³ Université Paris Est Créteil et Univ. Paris Diderot, LISA, UMR CNRS 7583, Créteil, France ⁴ Université d'Orléans, Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), CNRS, Orléans, France

⁵ Université Paris Sud, Centre de Sciences Nucléaires et de Sciences de la Matière, CNRS/IN2P3, Orsay, France

⁶ Université Paris Sud, Institut d'Astrophysique Spatiale (IAS), CNRS, Orsay, France
 ⁷ Carnegie Institution of Washington, Dept. Terrestrial Magnetism, Washington, DC, USA
 ⁸ Universität der Bundeswehr, LRT-7, Neubiberg, Germany

⁹ RISE Research Institutes of Sweden, Bioscience and Materials, Stockholm, Sweden ¹⁰ Finnish Meteorological Institute, Helsinki, Finland

¹¹ European Space Agency (ESA), Scientific Support Office, Noordwijk, The Netherlands ¹² Natural History Museum Vienna, Austria

Introduction

The time-of-flight secondary ion mass spectrometer (TOF-SIMS) *COSIMA* on board of the *Rosetta* spacecraft has collected and analyzed dust particles near the comet 67P/Churyumov–Gerasimenko. Meteorite grains have been analyzed as reference samples using a laboratory twin instrument of *COSIMA*. Current results are summarized.

Methods

The COSIMA instrument collected on metal targets (mostly Au, 1cm x 1cm) about 1400 particles (size up to 1 mm, ~35,000 fragments) during the >2 years next to the comet (typical distance to the comet 10 - 200 km, typical exposure time 1 - 7 days). On about 250 particles TOF-SIMS spectra have been measured, and about 33,000 full spectra have been sent to Earth, together with images (1024 x 1024 pixel) of the targets. Additionally, about 6,000 spectra have been measured on 10 meteorite samples from the collection in the Natural History Museum Vienna. Spectral data interpretation was mainly based on ratios of secondary ion counts, correlation of signals, and multivariate (chemometric) methods.

Results

- Cometary particles consist of ~55% silicates and ~45% carbonaceous material (mass) [1].
- Carbonaceous material consists mostly of macromolecular substances [2].
- Presence of ions C₃H_{0.4}⁺, C₄⁺ in the spectra indicate unsaturated organic compounds [3].
- Elemental composition of cometary particles is close to that of chondritic meteorites but enriched in Si and C [4].

References www.lcm.tuwien.ac.at/comecs/ (Project CoMeCS)

- [1] Bardyn A. et al.: Carbon-rich dust in comet 67P/Churyumov-Gerasimenko measured by COSIMA/ Rosetta. *MNRAS (Mon Not Roy Astron Soc)* 2017; **469** (Suppl_2): S712-S722.
- [2] Fray N. et al.: High-molecular-weight organic matter in the particles of comet 67P/Churyumov-Gerasimenko. *Nature* 2016; **528**: 72-74.
- [3] Varmuza K. et al.: Significance of variables for discrimination applied to the search of organic ions in mass spectra measured on cometary particles. *J. Chemometrics* 2018; in print.
- [4] Stenzel O. et al.: Similarities in element content between comet 67P/Churyumov-Gerasimenko coma dust and selected meteorite samples. *MNRAS (Mon Not Roy Astron Soc)* 2017; 469 (Suppl_2): S492-S505.

Supported by the Austrian Science Fund (FWF), project P 26871-N20.