Global Composition of Dust at Comet 67P/Churyumov-Gerasimenko as Measured by the COSIMA/Rosetta Mass Spectrometer

1DTM, Carnegie Institution of Washington, Washington, DC, USA, 2IAS, Université Paris-Sud/CNRS, Orsay, France, 3LISA, UMR CNRS 7583, Université Paris-Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, Créteil, France, 4LPC2E, CNRS/Université d’Orléans, Orléans, France, 5CSNSM, CNRS/IN2P3/Université Paris-Sud, Orsay, France, 6MPS, Göttingen, Germany, 7University of Turku, Department of Physics and Astronomy, Tauno Tynell Observatory, Päijät-Häme, Finland, 8Universität der Bundeswehr, Neubiberg, Germany, 9CIH, University of Bern, Bern, Switzerland, 10IPAG, UMR 5274, Université Grenoble Alpes, CNRS, Grenoble, France, 11FMI, Helsinki, Finland, 12ESA, Noordwijk, The Netherlands, 13RISE, Bioscience and Materials/Chemistry and Materials, Stockholm, Sweden, 14Institute of Statistics and Mathematical Methods in Economics, Vienna University of Technology, Vienna, Austria

* abardyn@carnegiescience.edu

1. The Rosetta Mission: Comet 67P

Comet 67P
- Dimensions: ~4 km x 3 km x 2 km
- Orbital period: 6.44 yr
- Perihelion: 1.24 AU

The Rosetta Mission
- Journey to the comet: 10 years
- Rosetta orbiter (11 instruments)
- Philae lander (10 instruments)

The COSIMA instrument
- Time-of-flight mass spectrometer [1]
- On board the Rosetta orbiter
- Aim: Analysis of the chemical composition of 67P’s dust
- Collect (1), Image (2) and Analyze (3)

COSIMA target
- 21 targets exposed
- >35,800 particles [2]
- Size: ~10 to 1000 µm
- ~250 particles analyzed

2. COSIMA analysis

- Similar mass spectra signatures [3]
- Always a mixture of carbonaceous matter and mineral phases (ion beam size: 30 x 50 µm²)

3. Global composition

67P’s dust compared to comets Halley and Wild 2
- For references see Figure 6 in [3]
- 67P’s dust is chondritic within a factor of 3, C excepted
- Consistent with the composition of Halley and Wild 2

- Mass ratio of organic to mineral matter in 67P’s dust
 - Based on the elements quantified in [3, 4] and H/C = 1.04 ± 0.16 [5]
 - Assumptions:
 (i) S/Fe = 0.5 (chondritic)
 (ii) C, H and N in organic
 (iii) O/Si = 4 in mineral (SiO₄) and the remaining O in the organic phase

4. Summary

- Dust particles are carbon-rich: ~45% organic matter in mass
- Macromolecular carbonaceous matter [6] is a major non-volatile component of 67P dust

References
Global composition of dust at comet 67P/Churyumov-Gerasimenko as measured by the COSIMA/Rosetta mass spectrometer

¹DTM, Carnegie Institution of Washington, Washington, DC, USA
²Institut d’Astrophysique Spatiale, Université Paris-Sud/CNRS, Orsay, France
³LISA, UMR CNRS 7583, Université Paris-Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, Créteil, France
⁴LPC2E, CNRS/Université d’Orléans, Orléans, France
⁵CSNSM, CNRS/IN2P3/Université Paris-Sud, Orsay, France
⁶Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany
⁷University of Turku, Department of Physics and Astronomy, Tuorla Observatory, Piikkö, Finland
⁸Universität der Bundeswehr, Neubiberg, Germany
⁹Center for Space and Habitability, University of Bern, Bern, Switzerland
¹⁰IPAG, UMR 5274, Université Grenoble Alpes, CNRS, Grenoble, France
¹¹Finnish Meteorological Institute, Helsinki, Finland
¹²European Space Agency, Noordwijk, The Netherlands
¹³RISE, Bioscience and Materials/Chemistry and Materials, Stockholm, Sweden
¹⁴Institute of Statistics and Mathematical Methods in Economics, Vienna University of Technology, Vienna, Austria.

COSIMA was a time-of-flight secondary ion mass spectrometer on board the Rosetta orbiter. From August 2014 to September 2016 the instrument performed in situ analysis of the dust particles ejected from comet 67P/Churyumov-Gerasimenko, before and after perihelion. COSIMA collected more than 35,000 particles at a low impact velocity (< 10 m/s) and analyzed about 250 of them with size ranging from ~50 to ~1000 µm.

We will report the global composition of the cometary dust as deduced from COSIMA measurements. The average elemental composition measured for 67P’s dust will be compared to previous results obtained from the Giotto and Vega missions for comet 1P/Halley and the Stardust mission for comet 81P/Wild 2, to the composition of Chondritic Porous Interplanetary Dust Particles (CP-IDPs) and to the CI chondrite composition.
AGU Fall Meeting 2018 (American Geophysical Union)
10-14 Dec 2018, Washington, DC, USA

https://fallmeeting.agu.org/2018/welcome/

https://fallmeeting.agu.org/2018/program-schedule/

AGUfm18NEWS_Planetary-Sciences_Weekly.pdf

P23G (CC) Hall A-C (Poster Hall)

Tuesday 1340h

The Origin, Evolution, and Fate of Comets: New Results from Rosetta, Other Missions, and Ground-Based Observations I Posters (joint with SH, SM)

Presiding: Bonnie Buratti, Jet Propulsion Laboratory; *Mathieu Choukroun*, Jet Propulsion Laboratory; *Matt Taylor*, European Space Agency;

Abstract

Global composition of dust at comet 67P/Churyumov-Gerasimenko as measured by the COSIMA/Rosetta mass spectrometer

1DTM, Carnegie Institution of Washington, Washington, DC, USA
2Institut d’Astrophysique Spatiale, Université Paris-Sud/CNRS, Orsay, France
3LISA, UMR CNRS 7583, Université Paris-Est Créteil, France
4LPC2E, CNRS/Université d’Orléans, Orléans, France
5CSNSM, CNRS/IN2P3/Université Paris-Sud, Orsay, France
6Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany
7University of Turku, Department of Physics and Astronomy, Tuorla Observatory, Piikkiö, Finland
8Universität der Bundeswehr, Neubiberg, Germany
9Center for Space and Habitability, University of Bern, Bern, Switzerland
10IPAG, UMR 5274, Université Grenoble Alpes, CNRS, Grenoble, France
11Finnish Meteorological Institute, Helsinki, Finland
12European Space Agency, Noordwijk, The Netherlands
13RISE, Bioscience and Materials/Chemistry and Materials, Stockholm, Sweden
14Institute of Statistics and Mathematical Methods in Economics, Vienna University of Technology, Vienna, Austria.

COSIMA was a time-of-flight secondary ion mass spectrometer on board the Rosetta orbiter. From August 2014 to September 2016 the instrument performed in situ analysis of the dust particles ejected from comet 67P/Churyumov-Gerasimenko, before and after perihelion. COSIMA collected more than 35,000 particles at a low impact velocity (< 10 m/s) and analyzed about 250 of them with size ranging from ~50 to ~1000 µm.

We will report the global composition of the cometary dust as deduced from COSIMA measurements. The average elemental composition measured for 67P’s dust will be compared to previous results obtained from the Giotto and Vega missions for comet 1P/Halley and the Stardust mission for comet 81P/Wild 2, to the composition of Chondritic Porous Interplanetary Dust Particles (CP-IDPs) and to the CI chondrite composition.