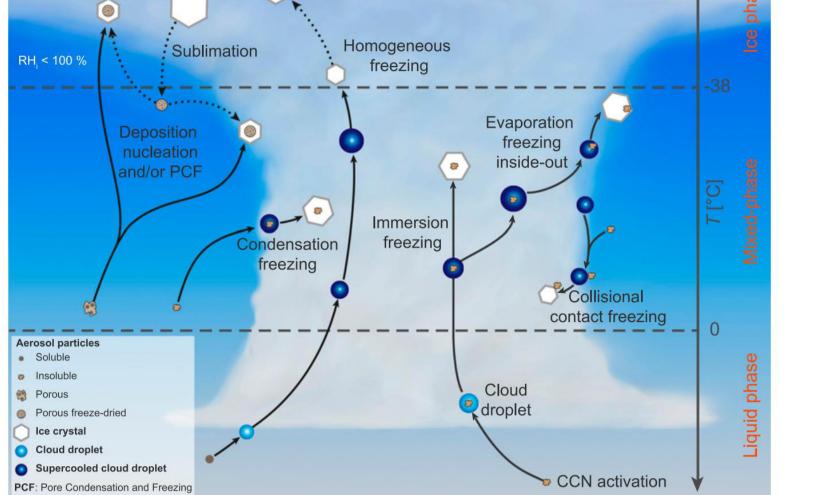
Testing Ice Nucleation Particles in an Artificial Cloud

Ulrich Worthmann^{1,2}, Philipp Baloh², Ingrid Reiweger¹, Hinrich Grothe²

¹Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna ² Institute of Material Chemistry, TU Wien, Vienna

What is Ice Nucleation?

Ice nucleation is the initial step of the transition into a new structure or phase and happens by self-organization. It has to be distinguished between:


Homogenoues Nucleation

- Stochastic process
- Starts with ice crystal germ

Heterogeneous Nucleation

- Solid particles catalyse the ice formation
- Energy barrier is reduced by the **Ice**

Temperature dependent

Research Goal

-> Simulate the process of ice nucleation and the proximate growth of snow crystals in the atmosphere

Cloud Chamber

- Upscale from labbench experiments of TU Wien & downscale from trials of Neuschnee GmbH
- For simulations the chamber was saturated via ultrasonic nebulizers and fans lacksquare
- The nucleation process was iniciated through pressurized air or INPs
- Based on previous research the following biological additives for possible INPs were used:
 - Destilled water
 - Tapwater
 - Cellulosic fibre
- Birch (*Betula*)
- Black Currant (*Ribes*)
- Snomax (*Pseudomonas syringae*)

 \rightarrow To enhance further crystal growth

Methods

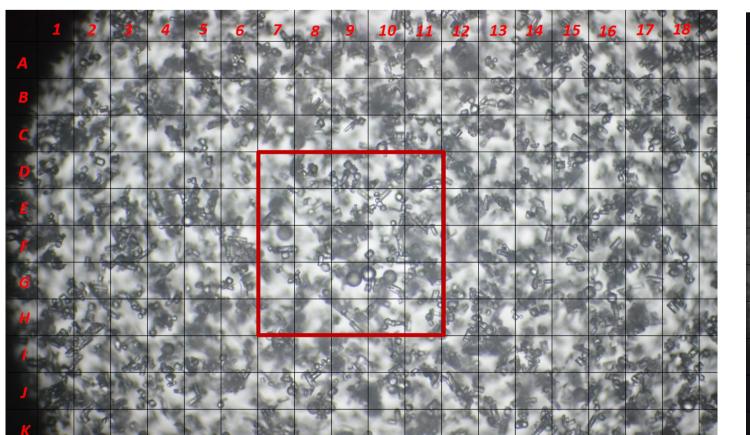
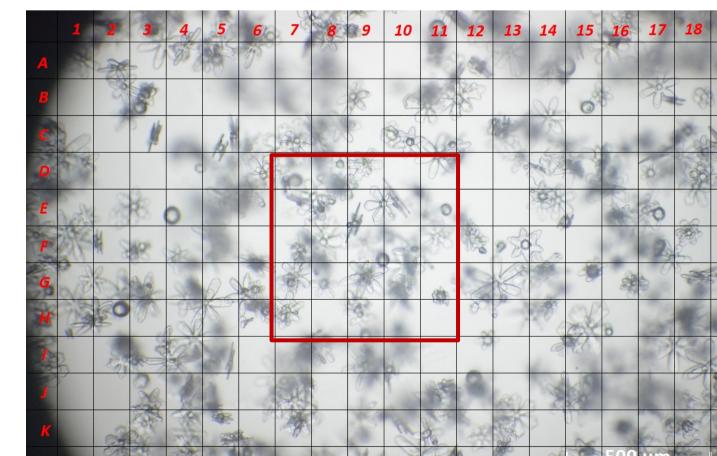

- In total 36 trials \rightarrow a minimum of 6 trials for each additive (3 with & 3 without compressed air) \bullet
- Each trial ~ 20 minutes \rightarrow Temperature & RH was measured \bullet

Figure 2 : Cloud chamber set up


- Photo-optical documentation in a 5 minutes intervall
- Classification after Libbrecht

Results

- Previous research concerning biological ice nucleation can be confirmed
- Support the hypothesis, that the amount of nebulised water has a positive impact on the growth rate
- The additives (Black Currant, Birch, and Snomax) provide satisfying results
- Without these INPs, nucleation could not be observed under the existing conditions
- Nucleation event can be started by impulses of compressed air, no used INP can dominate these impulses (adiabatic cooling/ pressure shockwave)
- By cutting out compressed air, the crystals decrease in quantity but increase in complexity and size

1	2	3	4	5	6	2	8	9	10	11	12	13	14	15	16	17	18
9	52	000	我,	E CO	191		100	200	- W-	085		No.	6000		5000	- Contraction	500 C
AR	100	A.	1000	Electron and a second	80	100	200		0000		220	5°	000	A Car	1000 ×	000	
N.S.		1000		RA	が行		10 au		n3a	C. C. C.		100	3	50	0300	and the second	20 B
Ry.	all.		Pa	100	the state	0100	19 40 40 40 40 40 40 40 40 40 40 40 40 40		1	0	000		(96-8) (96-8)	000			100
2	R			PR	10			DP C	6	0.0	S.	1200	A TOP	200		College	
NA [®]	alic		0	23		1		6 26 E 20	138	A B	0.40			200	ang		0000
8	1 al	100	20		0				8	200	and a	Ren of	a contra	S.			Re L
at	200	1	1 An	No.	93	1	2 6	200	307	9×.	200	A Real		0.05	8.86		C C C
20		a to		200	30	0					5	0	the state	100 C	Fe		歌手
20	200	A Star	3	No.		100	500		22	47) 47)	(Ba	0		E.F.	1 de		10
	20	Sec.	10	1 de	10	Abr		200			als to		250	200	Berry	1 AN	A.S.F.
	A	A	1	S.	0	1	20	100	100	(inclusion)	0	No.	The second	52	-500	μm	N.S.

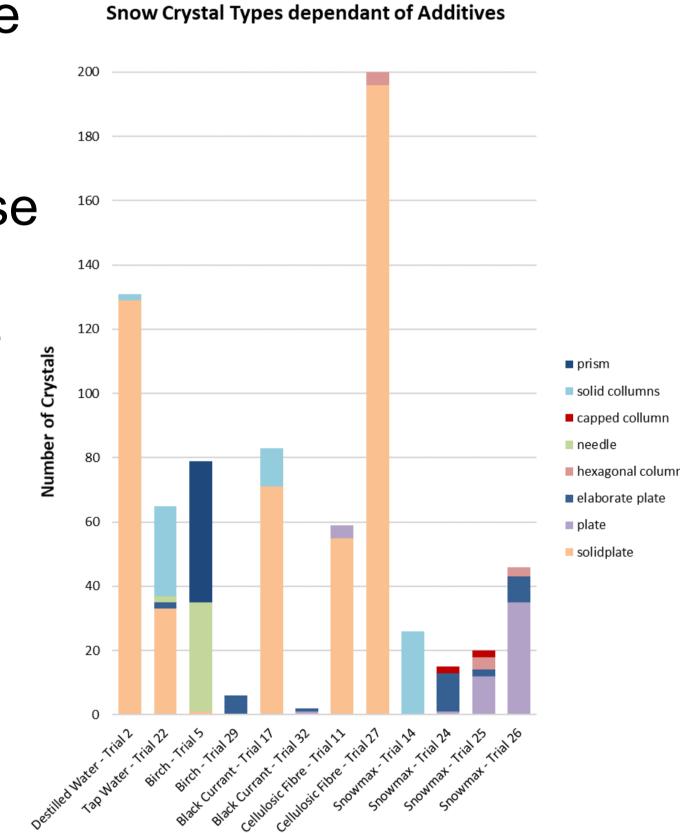


Figure 4; Crystalization Results: (i) resulting columns while using pressurized air, (ii) plate like crystals while using Birch, (iii) elaborate plate like crystals using Snomax

Additives per trial

Outlook

- The complex process of ice nucleation & growth needs further research
- Optimizing the set-up of the Cloud Chamber
- Different classification approach
- Other INPs
- Measuring liquid water content in the cloud

References

Fiala, B.; Felgitsch, L.; Grothe, H. (2017): Comparison of ice nuclei from fruit juices and their properties. Poster presented at the EGU 2017. Vienna.

Libbrecht, Kenneth G. (2005): The physics of snow crystals. In: *Rep. Prog. Phys.* 68 (4), S. 855–895. DOI: 10.1088/0034-4885/68/4/R03.

Maki, L. R.; Galyan, E. L.; Chang-Chien, M-M; Caldwell DR. (1974): Ice Nucleation Induced by Pseudomonas syringae. In: Applied *Microbiology* (28(3)), S. 456–459.

Pummer, B. (2013): Ice nucleation activity of pollen and fungal spores. Dissertation. Vienna University of Technology, Wien, Austria. Kanji, Zamin A.; Ladino, Luis A.; Wex, Heike; Boose, Yvonne; Burkert-Kohn, Monika; Cziczo, Daniel J.; Krämer, Martina (2017): Overview of Ice Nucleating Particles. In: Meteorological Monographs 58, 1.1-1.33. DOI: 10.1175/AMSMONOGRAPHS-D-16-0006.1. Murray, B. J.; O'Sullivan, D.; Atkinson, J. D.; Webb, M. E. (2012): Ice nucleation by particles

immersed in supercooled cloud droplets. In: Chemical Society reviews 41 (19), S. 6519-6554.

Augustin, S.; Wex, H.; Niedermeier, D.; Pummer, B.; Grothe, H.; Hartmann, S. et al. (2013): Immersion freezing of birch pollen washing water. In: Atmos. Chem. Phys. 13 (21), S. 10989–11003. DOI: 10.5194/acp-13-10989-2013.

Universität für Bodenkultur Wien University of Natural Resources and Applied Life Sciences, Vienna

F (7

Forschungsförderungsgesellschaft

