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Introduction

This Habilitationsschrift provides an overview about my research on non-
local nonlinear evolution equations. The focus of my research is the analysis
of models in applied mathematics which involve anomalous diffusion. The
presentation is done in a cumulative style of my results which I published in
refereed scientific journals. In this introduction I will explain the overarching
theme of this line of my research.

The Habilitationsschrift is structured as follows: The Section ’Scientific
Overview’ is divided into subsections where I give a short introduction of the
results, whereas the original articles are included in the chapter of the same
number. For example, I explain in Section 1 results concerning viscous
conservation laws, whereas the articles in which these results have been
published are collected in Chapter 1. The front matter ends with its own
bibliography collecting only the most essential references. If a cited article
can be found in this Habilitationsschrift, the citation will be extended by an
additional ’HS’, for example [9, HS].
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Scientific Overview

I am interested in applied mathematics, especially in evolution equati-
ons appearing in the natural and social sciences. In my analysis I aim for
rigorous mathematical results which help to assess if a given model is suita-
ble to reproduce ascribed phenomena. As a Post-doc I started to investigate
various nonlocal nonlinear partial differential equations. In the models un-
der consideration the nonlocal effects arise either by direct modeling or in
an asymptotic analysis of multi-dimensional partial differential equations.

The main focus have been equations with nonlocal diffusion. The heat
equation

(1) ∂tu = ∆xu , t > 0 , x ∈ R ,

is a simple model for diffusion of a quantity in space over time. The Lap-
lacian ∆x generates via the initial-value problem a positivity preserving se-
migroup. Lévy operators L are those (nonlocal) linear operators with space
and time independent coefficients that generate again such a (positivity pre-
serving) semigroup. Therefore, Lévy operators appear naturally in evolution
equations modeling diffusion.

A first systematic study of the erratic movements of particles suspended
in a fluid at rest has been conducted by Robert Brown at the beginning of
the 19th century. A century later, Albert Einstein modeled such a movement
as a random walk of individual particles and derived that the evolution of
the probability density of such a particle ensemble is governed by the classi-
cal heat equation (1). Finally, the theory of stochastic processes allowed to
describe the movement of individual particles, which are nowadays known
as Brownian motion or Wiener process. Brownian motion is a diffusion pro-
cess whose mean squared displacement depends linearly on time. However,
examples of anomalous diffusion have been observed in natural and social
sciences where ensembles of particles spread slower (subdiffusion) or faster
(superdiffusion) than Brownian motion. Loosely speaking, evolution equati-
ons where the Laplacian (the infinitesimal generator of standard Brownian
motion) is replaced by Riesz-Feller operators (the infinitesimal generator of
strictly-stable Levy processes) are models for superdiffusion. Such evolu-
tion equations can be derived from microscopic models via continuous time
random walks.

A classical reaction-diffusion equation is a partial differential equa-
tion where the Laplacian models diffusion and a (nonlinear) function models
reaction of some quantities over time. Reaction-diffusion equations are im-
portant models in chemistry, biology, ecology, physics and material science,
and their analysis has a long history. In the last decades reaction-diffusion
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viii SCIENTIFIC OVERVIEW

processes with anomalous diffusion have been identified, e.g. in the dyna-
mics of fronts in magnetically confined plasmas, the spreading of epidemics
due to complex mobility patterns of individuals, examples of step-flow gro-
wth of a crystal surface. A modified continuous time random walk approach
allows to derive reaction-diffusion equations with anomalous diffusion from
microscopic models. For example, we consider reaction-diffusion equations

(2) ∂tu = Lu+ r(u) , t > 0 , x ∈ Rd ,
for some (nonlocal) Lévy operator L and nonlinear reaction function r(u).

In some models of fluid dynamics, the asymptotic analysis of boun-
dary layers leads naturally to evolution equations with nonlocal operators,
e.g. fractional derivatives. Although the original multi-dimensional equati-
ons are posed on a bounded domain, the resolution of finer scales yields evo-
lution equations on the real line/whole space. For example, in the analysis
of a shallow water flow in a channel, a nonlocal Korteweg-de Vries-Burgers
equation,

(3) ∂tu+ ∂xf(u) = εLu+ δ∂3
xu , t > 0 , x ∈ R ,

for some nonlinear flux function f , a nonlocal Lévy operator L and constants
ε > 0 and δ ∈ R has been derived.

Traveling wave solutions are solutions with a spatial profile that keeps
its rigid shape as it is translated in the spatial domain over the course of
time. These solutions are of interest in applications, e.g. modeling phase
transitions in material science or water waves in fluid dynamics. In the
following, we use the definition

Definition 1. A Traveling Wave Solution (TWS) of (2) resp. (3) is a
solution of the form u(x, t) = u(ξ) with ξ := x−st, for some wave speed s ∈ R
and a function u : R→ R connecting distinct endstates limξ→±∞ u(ξ) = u±.

In this Habilitationsschrift, I present one line of my research focusing
on the Traveling Wave Problem (TWP), i.e. the existence, uniqueness and
asymptotic stability of traveling wave solutions. The spatial domain of the
models under consideration is the real line R, although, in a multidimen-
sional spatial setting, the ansatz of a planar traveling wave solution yields
again a Traveling Wave Equation (TWE) on R.

The collaborations on numerical methods are not at the center of my
research, but in an ongoing research project I contribute to devise structure
preserving numerical schemes.
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Next, I provide some background on Lévy operators: The heat equation

(4) ∂tu = ∆xu , t > 0 , x ∈ Rd ,
is a simple model to describe the diffusion of a quantity in space over time.
Its fundamental solution is a Gaussian distribution

G(x, t) = 1√
4πt

d e−|x|
2/4π ,

which is interpreted as the evolution of the quantity being initially con-
centrated at the origin. The solution of the Cauchy problem for (4) with
initial condition u(·, 0) = u0 is given by u(x, t) = (G(·, t)∗u0)(x). Then, the
solution operator

St : u0 7→ u(x, t) = (G(·, t) ∗ u0)(x) ,

defines a semigroup (St)t≥0, i.e. S0 = Id and SsSt = Ss+t for s, t ≥ 0. The
Laplacian ∆x is said to generate a semigroup (St)t≥0.

In fact, the Laplacian generates a positivity preserving semigroup. Lévy
operators are those (nonlocal) linear operators with time and space inde-
pendent coefficients that again generate a positivity preserving semigroup.
Lévy operators are of the form

Lf(x) = 1
2∇ · (A∇f)(x) + γ · ∇f(x)

+

∫

Rd

(
f(x+ y)− f(x)− y · ∇f(x) c(y)

)
ν(dy)

(5)

for functions f(x) decaying sufficiently fast to 0 as |x| → ∞, a symmetric
positive semi-definite matrix A ∈ Rd×d and a vector γ ∈ Rd with constant
coefficients, as well as a measure ν on Rd satisfying

ν({0}) = 0 and

∫

Rd
min(1, |y|2) ν(dy) <∞ ,

and c(y) = 1B(y) with B := {x ∈ Rd | |x| ≤ 1 }. 1 A Lévy operator may
consist of a transport operator γ · ∇f , a local diffusion operator ∇ · (A∇f)
and a nonlocal (jump) operator. In classical models diffusion is most often
represented by the local operator ∇ · (A∇f + γf). Evolution equations
involving a nonlocal Lévy operator modeling diffusion have emerged as useful
models in the applied sciences.

Examples. In the following, we restrict to the d = 1 dimensional situation.
Convolution operators. The Lévy operators

(6) Lf(x) =

∫

R

(
f(x+ y)− f(x)

)
ν(dy)

are infinitesimal generators associated to a compound Poisson process with
finite Lévy measure ν with c ≡ 0 1. The special case of ν(dy) = φ(−y) dy
for some function φ ∈ L1(R) yields

(7) Lf(x) =
(
φ ∗ f −

∫

R
φ dy f

)
(x) .

1For fixed x, the function f(x + y) − f(x) − y · ∇f(x)c(y) is integrable with respect
to ν(dy), because it is bounded and f(x+ y)− f(x)− y · ∇f(x)c(y) = O(|y|2) as |y| → 0.
The indicator function c(y) = 1B(y) is only one possible choice to obtain an integrable
integrand. Whereas γ depends on c, the coefficients A and ν are independent of c.
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Riesz-Feller operators. The Riesz-Feller operators of order a and asymmetry

θ are defined as Fourier multiplier operators 2

(8) F [Da
θf ](k) = ψaθ (k) F [f ](k) , k ∈ R ,

with symbol ψaθ (k) = −|k|a exp [i sgn(k) θπ/2] such that (a, θ) ∈ Da,θ and

Da,θ := { (a, θ) ∈ R2 | 0 < a ≤ 2 , |θ| ≤ min{a, 2− a} } .
Nonlocal Riesz-Feller Da

θ operators are those with parameters

(a, θ) ∈ D•a,θ := { (a, θ) ∈ Da,θ | 0 < a < 2 , |θ| < 1 } .
If (a, θ) ∈ D•a,θ with a 6= 1, then for all f ∈ S(R) and x ∈ R

Da
θf(x) =

c+(θ)− c−(θ)

1− a f ′(x)

+ c+(θ)

∫ ∞

0

f(x+ y)− f(x)− f ′(x) y1(−1,1)(y)

y1+a
dy

+ c−(θ)

∫ ∞

0

f(x− y)− f(x) + f ′(x) y1(−1,1)(y)

y1+a
dy

(9)

with c±(θ) = Γ(1 + a) sin((a± θ)π/2)/π, see e.g. [14, HS].

Id

−Id

∂x

−∂x−Dα+u

Dα+u

∂xDα+u

∂2
x

∂3
x

1− α

1 + α
a

θ

2

1

0

−1
3210

Figure 1. The family of Fourier multipliers ψaθ (k) =
−|k|a exp

[
i sgn(k)θπ/2)

]
has two parameters a and θ. Some

examples for the associated Fourier multiplier operators
F [Tf ](k) = ψaθ (k) F [f ](k) are partial derivatives ∂kx (k ∈ N0)
and Caputo derivatives Dα+ with 0 < α < 1. The Riesz-
Feller operators Da

θ are those operators with parameters
(a, θ) ∈ Da,θ. The set Da,θ is also called Feller-Takayasu
diamond and depicted as a shaded region, see also [38].

2We use the conventions in probability theory, and define the Fourier transform F
and its inverse F−1 for g ∈ L1(Rd) and x, k ∈ Rd as F [g](k) :=

∫
Rd eik·x g(x) dx and

F−1[g](x) := (2π)−d/2
∫
Rd e−ik·x g(k) dk . In the following, F and F−1 will denote also

their respective extensions to L2(Rd).
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Special cases of Riesz-Feller operators are

• Fractional Laplacians −(−∆)a/2 on R with Fourier symbol −|k|a
for 0 < a ≤ 2. In particular, fractional Laplacians are the only
symmetric Riesz-Feller operators where −(−∆)a/2 = Da

0 and θ ≡ 0.
• Caputo derivatives −Dα+ with 0 < α < 1,

Dα+[f ](x) = 1
Γ(1−α)

∫ x

−∞
(x− y)−αf ′(y) dy ,

are Riesz-Feller operators −Dα+ = Dα
−α with a = α and θ = −α.

• Derivatives of Caputo derivatives ∂xDα+ with 0 < α < 1 are Riesz-

Feller operators ∂xDα+ = D1+α
1−α with a = 1 + α and θ = 1− α.

Nonlocal Lévy operators appear in different ways in a model and/or its
analysis:

• as a technical tool, see e.g. Riesz [43].
• via a model reduction. From an analytical point of view, the square

root of the Laplacian (−∆)1/2 can be realized as a Dirichlet-to-
Neumann operator for smooth bounded functions f : Rn → R: If
u is the solution of

(10)

{
∆u(x, y) = 0 for x ∈ Rn , y > 0 ,

u(x, 0) = f(x) for x ∈ Rn ,

then −∂yu(x, 0) = (−∆)1/2f(x). Thus, for a given Dirichlet datum
f , the solution u of the extension problem (10) carries the infor-

mation −(−∆)1/2f(x) as its Neumann datum on the boundary.
Caffarelli and Silvestre [25] obtained a similar characterization for

all fractional Laplacians −(−∆)α/2 of order 0 < α < 2. This con-
nection is useful in the study of nonlinear integro-differential equa-
tions involving the fractional Laplacian on Rn, since the associated
partial differential equations on an extended half-space are better
understood.
• direct modeling of particle systems subject to anomalous diffusion.

One approach to model diffusion processes is via continuous time
random walks (CTRW); particles are considered to jump where the
jump length and the waiting time between two successive jumps are
distributed according to a joint probability distribution [41, 42]. A
simplifying assumption is that the jump length and the waiting time
are independent random variables; in particular Einstein considered
deterministic waiting times between successive jumps in a regular
lattice to derive the heat equation. Considering a jump length dis-
tribution with diverging variance and a waiting time distribution
with finite mean one can derive a fractional diffusion equation for
a pure jump process which is Markovian, such as

(11) ∂tu = Da
θ [u] for x ∈ R , t > 0 ,

with a Riesz-Feller operator in space. 3

3In contrast, considering a jump length distribution with finite variance and a waiting
time distribution with diverging mean, one can derive a fractional diffusion equation for
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However, the process exhibits a diverging mean squared displa-
cement such that the model is not applicable for massive particles
with finite propagation velocity. Nonetheless it has found applica-
tions describing the diffusion in energy space encountered in single
molecule spectroscopy, the diffusion on a polymer chain in chemical
space, amongst others.

At the center of the continuous time random walks is the clas-
sical central limit theorem. It asserts for a sequence of independent
and identically distributed random numbers with finite variance
that the limit of its normalized partial sums will have a Gaussian
probability distribution. Relaxing the assumption on the variance,
Lévy α-stable probability distributions are the general class of ”at-
tractors” for properly normed sums of independent and identically-
distributed random variables.

A Lévy process is a stochastic process with independent and stationary
increments which is continuous in probability [20, 33, 44]. Therefore a Lévy
process is characterized by its transition probabilities p(t, x), which evolve
according to an evolution equation

(12) ∂tp = Lp
for some Lévy operator L, see (5). A Lévy operator is also called the infin-
itesimal generator of its Lévy process.

Whereas, the Laplacian is the infinitesimal generator of Brownian mo-
tion, Riesz-Feller operators Da

θ are infinitesimal generators of a-stable Lévy
processes. Reflecting the decomposition of the Lévy operator (5), every
Lévy process can be decomposed into the sum of a Brownian motion, a de-
terministic motion and a pure jump process. In particular, a-stable Lévy
process – also called Lévy flights – are examples of pure jump Lévy pro-
cesses. In Table 1 we give examples for the relation between a stochastic
process, its probability distribution, and its infinitesimal generator L such
that (12) governs the evolution of the probability distribution p.

generator stochastic process distribution

L = ∆x = D2
0 Brownian motion Gaussian

Riesz-Feller operator L = Da
θ a-stable Lévy process a-stable

Lévy operator L Lévy process infinitely divisible

Table 1. Examples for the relation between a stochastic
processes, its probability distribution, and its infinitesimal
generator. We recall that a Laplacian is a Riesz-Feller ope-
rator and Riesz-Feller operators are Lévy operators.

In conclusion, integro-differential equations with Riesz-Feller operator
modeling diffusion are a generic class of macroscopic equations modeling
many-particle systems for diffusing particles.

a subdiffusive process, such as Dβt [u] = ∂2
xu for t > 0, x ∈ R, with a Caputo derivative in

time of order 0 < β < 1.
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1. Viscous conservation laws

We consider scalar viscous conservation laws

(13) ∂tu+ ∂xf(u) = Da
θu for x ∈ R , t > 0 ,

with nonlocal diffusion of Riesz-Feller type where 1 < a < 2 and |θ| ≤ 2−a.

The subclass of scalar viscous conservation laws

(14) ∂tu+ ∂xf(u) = Da
0u for x ∈ R , t > 0 ,

with fractional Laplacian Da
0 = −(−∂2

x)a/2 (0 < a ≤ 2) are used to model
overdriven detonation in gas and anomalous diffusion in semiconductor gro-
wth [51]. The parameter a of a fractional Laplacian/Riesz derivative Da

0

corresponds to its order of derivatives. Roughly speaking, for 1 < a < 2,
the diffusion dominates the transport term. Thus, for the subcritical case
1 < a < 2, the Cauchy problem with essentially bounded initial datum
is globally well posed. In fact solutions are smooth for positive times, see
also Droniou et al. [30, 31]. Also, in the critical case a = 1, the well-
posedness of the Cauchy problem has been established [29, 40, 26]. In con-
trast, for the supercritical case 0 < a < 1 and Burgers flux, weak solutions of
the Cauchy problem may not be unique [19, 18]. In this case, discontinuities
can appear even for smooth initial datum [19], and there exists essentially
bounded initial data such that uniqueness of a weak solution to the Cauchy
problem fails [18]. For uniqueness, an entropy condition [17] is necessary to
select admissible solutions (just like for inviscid conservation laws). Finally,
Biler et al. [23] showed that no continuous traveling wave solutions can exist
for a ∈ (0, 1], however they provide no existence result for the case a ∈ (1, 2)
(which was proven recently by Chmaj [27]).

Sugimoto and Kakutani [47, 46] derived

(15) ∂tu+ ∂xf(u) = ∂xDα+u for x ∈ R , t > 0 ,

with Burgers flux function f(u) = u2 and extremal Riesz-Feller operator
Da
θ = Dα+ with 0 < α < 1 as a model for the far-field evolution of uni-

directional viscoelastic waves in polymers. The profile u(ξ) of a traveling
wave solution u(x, t) = u(ξ) with ξ := x − st is governed by a fractional
differential equation

(16) −s∂ξu+ ∂ξu
2 = ∂ξDα+[u] for ξ ∈ R .

They indicate that bounded continuous traveling wave solution may exist,
but give no analytical proof, instead they construct numerical solutions and
study the asymptotic behavior of u(ξ) as ξ → ±∞.

[9, HS]: F. Achleitner, S. Hittmeir, and C. Schmeiser. “On nonlinear con-
servation laws with a nonlocal diffusion term”. In: J. Differential Equations
250.4 (2011), pp. 2177–2196

Cauchy problem: global well-posedness for initial data in L∞(R). Droniou

et al. [30] studied the well-posedness for (14) with 1 < a < 2 in a mild formu-
lation using thatDa

0 generates a positivity preserving convolution semigroup.
The associated kernel is a smooth probability density function, satisfies a
scaling property and has integrable spatial derivatives (among other useful
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properties). This allows to prove the existence of a mild solution and its
smoothness for positive times. Finally, the mild solution turns out to be a
classical solution of (14).

We realized that the diffusion operator in (13) is a non-symmetric Riesz-
Feller operator of order between 1 and 2, whose semigroup shares important
properties with the fractional Laplacian – i.e. the symmetric Riesz-Feller
operator - of the same order. Therefore, we can use the same approach to
show that the Cauchy problem of (13) with essentially bounded initial data
is globally well-posed and solutions will be smooth for positive times [8, HS].

TWP: existence of TWS associated to Lax shock waves. We use a dyn-
amical systems approach to prove the existence of traveling wave solutions
of (15) with convex flux functions, as long as the shock triple (u−, u+; s)
satisfies the Rankine-Hugoniot condition and the Lax entropy condition
u− > u+. To this end, we integrate (16) on (−∞, ξ) and use the properties
of a TWS to deduce

(17) h(u) = f(u)− f(u−)− s(u− u−) = Dα+[u] for ξ ∈ R .

The approach relies on the causality of the operator

(18) Dα+[u](x) = 1
Γ(1−α)

∫ x

−∞

u′(y)

(x− y)α
dy ,

i.e. the value of Dα+[u](ξ) at a point ξ depends only on the values of the
profile u on the interval (−∞, ξ]. The traveling wave equation is translation
invariant. First we prove the existence of a unique solution udown : Iε → R
of (16) satisfying

(19) lim
ξ→−∞

udown(ξ) = u− and udown(ξε) = u− − ε .

on the interval Iε = (−∞, ξε] for ξε := log ε/λ and some sufficiently small
ε > 0. Then we establish that this solution udown : (−∞, Iε] → R can
be extended locally and remains monotone and bounded, such that the
argument for local existence can be iterated to imply the existence of a
solution udown ∈ C1

b (R) with limξ→−∞ udown(ξ) = u−. Finally, the proof is
completed by proving limξ→∞ u(ξ) = u+.

In fact, the TWE (17) is a fractional differential equation on the real
line. Therefore we provided the first proof for the existence of heteroclinic
orbits in fractional differential equations with Caputo derivative. Moreover,
this result proves the existence of a TWS for a reaction-diffusion equation
with monostable reaction function, see [1, HS].

TWP: Stability of TWS associated to Lax shock waves. The asymptotic
stability of TWS under zero-mass perturbation is proven by constructing a
Lyapunov functional which is equivalent to some Sobolev norm.

[8, HS]: F. Achleitner, S. Hittmeir, and C. Schmeiser. “On nonlinear
conservation laws regularized by a Riesz-Feller operator”. In: Hyperbolic
Problems: Theory, Numerics, Applications. Ed. by F. Ancona et al. Vol. 8.
AIMS on Applied Mathematics. AIMS, 2014, pp. 241–248

We prove the global well-posedness and instantaneous smoothing for the
Cauchy problem associated to (13) with essentially bounded initial data for



2. KORTEWEG-DE VRIES-BURGERS EQUATIONS xv

all Riesz-Feller operators Da
θ with 1 < a < 2 and |θ| ≤ 2 − a; and not just

Da
θ = ∂xDα+ as in [9, HS].

[15, HS]: F. Achleitner and Y. Ueda. “Asymptotic stability of traveling
wave solutions for nonlocal viscous conservation laws with explicit decay
rates”. In: Journal of Evolution Equations (Feb. 2018), pp. 1–24

In our main result [15, HS Theorem 2], we prove the asymptotic stability
with explicit algebraic-in-time decay rate for traveling wave solutions of (13)
with monotone decreasing profiles.

For classical viscous conservation laws, the weighted energy method al-
lows to prove that initial perturbations in a weighted Lebesgue space with
polynomial weights induce an algebraic-in-time decay of the L∞-norm of the
perturbation, see e.g. [34]. Due to the nonlocal diffusion operator, this met-
hod is difficult to apply to (13). Instead, we employ another technique which
focuses on the interpolation property in Sobolev space. In this way, optimal
decay estimates for the asymptotic stability of viscous rarefaction waves in
scalar viscous conservation laws (13) with Da

0 = ∂2
x have been derived by

Yoshihiro Ueda and collaborators.

2. Korteweg-de Vries-Burgers equations

Kluwick and collaborators were interested to identify a physical mea-
ningful model which supports the existence of non-classical shock waves, i.e.
shock waves that do not satisfy Lax’ entropy condition. Therefore, they
considered a shallow water flow in a channel and studied the internal struc-
ture of weakly nonlinear bores in laminar flow at the high Reynolds number
limit. Via matched asymptotic expansion, they obtain an equation for the
pressure in the form

(20) ∂tu+ ∂xf(u) = ε∂xDα+u+ δ∂3
xu for x ∈ R , t > 0 ,

with 0 < α < 1, ε > 0, and δ ∈ R. The flux function is convex for a single
layer flow and non-convex for a two-layer flow [48, 35, 37, 36].

For α = 1, equation (20) reduces formally to a classical Korteweg-de
Vries-Burgers (KdVB) equation

(21) ∂tu+ ∂xf(u) = ε∂2
xu+ δ∂3

xu, x ∈ R, t > 0,

for constants ε > 0 and δ ∈ R. A TWS u(t, x) = u(x− st) for (21) satisfies
the (integrated) TWE

(22) h(u) := f(u)− su−
(
f(u−)− su−

)
= εu′ + δu′′ for ξ ∈ R ,

which can be analyzed by phase plane analysis. The existence of TWS for
given endstates is fully understood, see Figure 2.

In case of Burgers flux function, a linearization of the TWE around
the endstate u+ reveals that the monotonicity of the profile depends on the
relation between the diffusion and dispersion parameters (i.e. for u− < ε2/4δ
the profile of a TWS has an oscillatory tail, see Figure 2A. In case of a cubic
flux function, TWS appear which do not satisfy Lax’ entropy condition, see
Figure 2B.
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TWS

u+ = u−

u− = ε2

4δ

u−

u+

(A) f(u) = u2/2

TWS

u+ = u−

u− = 2β = 2
√

2
3

ε√
δ

u+ = −β
u+ = −u−/2
u+ = −u− + β
TWS

u+ = −u−

u−

u+

(B) f(u) = u3

Figure 2. We consider KdVB equation (21) with (A) Bur-
gers’ flux function f(u) = u2/2, and (B) cubic flux function
f(u) = u3. For a given pair of endstates (u−, u+) ∈ R+ × R,
the (blue) shaded region and the (red) thick line indicate the
existence of a TWS associated to a Lax shock and a non-
classical shock wave, respectively.

[7, HS]: F. Achleitner, C. M. Cuesta, and S. Hittmeir. “Travelling waves
for a non-local Korteweg–de Vries–Burgers equation”. In: J. Differential
Equations 257.3 (2014), pp. 720–758

We studied equation (20) for the Burgers flux and established well-
posedness of Cauchy problem in Sobolev spaces. We proved the existence of
traveling wave solutions associated to classical Lax shock waves again via a
dynamical system approach like in our previous work [9, HS]. However, the
profile of TWS of the nonlocal KdV–Burgers equation may not be mono-
tone (if dispersive effects dominate), just like in the classical KdV–Burgers
equation. Moreover, the integrated TWE is a fractional differential equa-
tion of order 2 (compared to TWE (17) which is of order 0 < α < 1).
The TWP for the classical KdV–Burgers equation can be analyzed via a
phase-plane analysis, which is no longer useful due to the presence of the
nonlocal operator Dα+. To overcome these challenges, we need to modify
the existence proof in our previous work [9, HS]. The existence of a unique
solution udown : Iε → R of the TWE satisfying (19) follows again by a fixed
point argument. Whereas, an energy estimate shows that the (extended)
profile is bounded from below, allowing for the possibility that u takes va-
lues below u+. The extension of the profile u follows by rewriting the TWE
as a system of non-autonomous fractional differential equation on bounded
time intervals, the Lipschitz continuity of the nonlinearity, and the uniform
boundedness of the profile. Finally, the convergence limξ→∞ u(ξ) = u+ is
proven.

In addition, we discuss the monotonicity of profiles for sufficiently small
dispersion and the asymptotic stability of monotone traveling wave solutions
for zero-mass perturbations.
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[28, HS]: C. M. Cuesta and F. Achleitner. “Addendum to “Travelling
waves for a non-local Korteweg–de Vries-Burgers equation” [J. Differential
Equations 257 (3) (2014) 720–758] [ MR3208089]”. In: J. Differential Equa-
tions 262.2 (2017), pp. 1155–1160

We add a theorem to [9, 7, HS]. There the proof of existence and uni-
queness of traveling wave solutions relies on the assumption that the expo-
nentially decaying functions are the only bounded solutions of the linearized
traveling wave equation. In [9, 7, HS], we prove it in suitable Sobolev spaces
with exponential weights. We show this by writing the linearized traveling
wave equation as a Wiener–Hopf equation and using results by Krein. In this
addendum, we prove the assumption in unweighted Sobolev spaces, hence,
we close the existence and uniqueness proof of traveling wave solutions.

[1, HS]: F. Achleitner. “Two Classes of Nonlocal Evolution Equations
Related by a Shared Traveling Wave Problem”. In: From Particle Systems
to Partial Differential Equations. Ed. by P. Gonçalves and A. J. Soares.
Springer International Publishing, 2017, pp. 47–72

We consider nonlocal reaction-diffusion equations, and nonlocal Korteweg-
de Vries-Burgers (KdVB) equations, i.e. scalar conservation laws with diffusive-
dispersive regularization. We review the existence of traveling wave solutions
for these two classes of evolution equations. For classical equations the tra-
veling wave problem (TWP) for a local KdVB equation (21) can be identified
with the TWP for a reaction-diffusion equation ∂tv = −h(v) + δ∂2

xv, since
a TWS v(t, x) = u(x − εt) for this reaction-diffusion equation solves again
TWE (22). In this article we study this relationship for these two classes of
evolution equations with nonlocal diffusion/dispersion. This connection is
especially useful, if the TWE is not studied directly, but the existence of a
TWS is proven using one of the evolution equations instead, e.g. as in [14,
HS]. Finally, we present three models from fluid dynamics and discuss the
TWP via its link to associated reaction-diffusion equations.

3. Reaction-diffusion equations

A scalar reaction-diffusion equation is a partial differential equation

(23) ∂tu = ∂2
xu+ f(u) for x ∈ R , t > 0 ,

where the spatial derivative models diffusion and a (nonlinear) function f
models reaction of some quantity u = u(x, t) over time. Reaction-diffusion
equations are important models in chemistry, biology, ecology, physics and
material science, and their analysis has a long history [21, 45, 49].

In the last decades reaction-diffusion equations with nonlocal diffusion
have emerged as useful models, e.g. for the dynamics of fronts in magneti-
cally confined plasmas, the spreading of epidemics due to complex mobility
patterns of individuals, or the step-flow growth of a crystal surface, see the
references in [14, 11, HS]. Starting with a modified continuous time random
walk (CTRW) for a single particle, one can derive a reaction-diffusion equa-
tion

(24) ∂tu = Da
θu+ f(u) for x ∈ R , t > 0 ,
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which governs the evolution of the particle ensemble density (where Da
θ is a

Riesz-Feller operator), see e.g. [39]. The (a-stable) Lévy process associated
to a Riesz-Feller operator is Markovian, hence, the effects of diffusion and
reaction are separable, and the Laplacian in (23) gets simply replaced by the
Riesz-Feller operator in (24). In contrast, subdiffusion is a non-Markovian
stochastic process and the resulting reaction-diffusion equations are much
more involved.

Next, we discuss equations with reaction functions of the following type:

• monostable reaction functions, i.e.,

∃u1 < u2 : f(u)

{
= 0 for u ∈ {u1, u2} ,
> 0 for u ∈ (u1, u2) ,

• bistable reaction functions f ∈ C1, i.e.,

∃u1 < u2 < u3 : f(u)





= 0 for u ∈ {u1, u2, u3} ,
< 0 for u ∈ (u1, u2) ,

> 0 for u ∈ (u2, u3) ,

and f ′(u1) < 0, f ′(u3) < 0.

In ecology, the Fisher-Kolmogorov-Petrovskii-Piscounov (FKPP) equa-
tion is a reaction-diffusion equation (23) with monostable reaction function
f(u) = u(1− u) describing the competition of species; in particular the tra-
veling wave solution of (23) connecting the steady states 0 and 1 shows that
the stable state 1 will invade the unstable state 0 at a constant speed. An
important difference between the FKPP equation with normal diffusion (23)
and anomalous diffusion (24) is that fronts connecting the stable state with
the unstable state will travel with constant speed in the former case and
with exponential speed in the latter case [24, 32].

[12]: F. Achleitner and C. Kuehn. “On bounded positive stationary soluti-
ons for a nonlocal Fisher-KPP equation”. In: Nonlinear Anal. 112 (2015),
pp. 15–29

A FKPP equation with nonlocal reaction term of the form

(25) ∂tu = ∆u+ µu(1− φ ∗ u) for x ∈ Rd , t > 0 ,

for µ > 0 and some non-negative integrable convolution kernel φ ∈ C1
b (Rd;R)

is used in ecology to model nonlocal saturation and nonlocal competition
effects. In one space dimension (d = 1) and for sufficiently ”‘small”’ nonlo-
cality, it was shown that there are only two bounded non-negative stationary
solutions [22]. We proved this result in general space dimensions (d ≥ 1)
using a different approach. Our approach combines bifurcation theory in
weighted Sobolev spaces with direct geometric analysis of the degenerate
steady state at zero.

Reaction-diffusion equations (23) with a bistable reaction term have
been derived as Nagumo’s equation to model propagation of signals, as one-
dimensional real Ginzburg-Landau equation to model long-wave amplitudes,
as well as Allen-Cahn’s equation to model phase transitions in solids. For
applications of reaction-diffusion equations (24) with Riesz-Feller diffusion
and bistable reaction term we refer to [50] and references therein.
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[14, HS]: F. Achleitner and C. Kuehn. “Traveling waves for a bistable
equation with nonlocal diffusion”. In: Adv. Differential Equations 20.9-10
(2015), pp. 887–936

To our knowledge, we established the first rigorous result on existence,
uniqueness (up to translations) and stability of traveling wave solutions for
reaction-diffusion equations with Riesz-Feller Da

θ operators of order 1 <
a < 2 and bistable reaction functions. Previous results were restricted to
fractional Laplacians and/or balanced potentials and focused on the (static)
properties of the profile, see our discussion in the introduction of [14, HS].
In essence, we modify the approach of Xinfu Chen for convolution models
which relies on a strict comparison principle and the construction of sub-
and supersolutions. To prove the existence of a TWS, one considers the
initial-value problem for (24) with prepared initial datum and proves that
the asymptotic limit of the solution is the profile of a TWS. This approach
is very robust and its extension to reaction-diffusion equations (2) with the
largest possible subclass of Levy operators L is a work in progress [13].

[11, HS]: F. Achleitner and C. Kuehn. “Analysis and numerics of traveling
waves for asymmetric fractional reaction-diffusion equations”. In: Commun.
Appl. Ind. Math. 6.2 (2015), e–532, 25

In this work we discuss our analytical result (proven in [14, HS]) on the
existence, uniqueness and stability of traveling waves for nonlocal reaction-
diffusion equations with Riesz-Feller operators. Then we survey numerical
schemes for symmetric anomalous diffusion and suggest a new scheme for
the anomalous case based upon discretization of the integral representation
of Riesz-Feller operators (9). This scheme is used with projection boundary
conditions to numerically compute the stable traveling wave solution.
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Additional material

Hypocoercive Equations. Another line of research is concerned with
hypocoercive equations such as kinetic Fokker-Planck equations and BGK
equations.

[5]: F. Achleitner, A. Arnold, and D. Stürzer. “Large-time behavior in non-
symmetric Fokker-Planck equations”. In: Riv. Math. Univ. Parma (N.S.)
6.1 (2015), pp. 1–68

We considered distinct classes of linear non-symmetric Fokker-Planck
equations having a unique steady state and established exponential con-
vergence of solutions towards the steady state with explicit (estimates of)
decay rates. First, ”hypocoercive” Fokker-Planck equations are degenerate
parabolic equations such that the entropy method to study large-time beha-
vior of solutions had to be modified. We reviewed a recent modified entropy
method (for non-symmetric Fokker-Planck equations with drift terms that
are linear in the position variable). Second, kinetic Fokker-Planck equati-
ons with non-quadratic potentials are another example of non-symmetric
Fokker-Planck equations. Their drift term is nonlinear in the position va-
riable. In case of potentials with bounded second-order derivatives, the
modified entropy method allows to prove exponential convergence of soluti-
ons to the steady state. In this application of the modified entropy method
symmetric positive definite matrices solving a matrix inequality are needed.
We determined all such matrices achieving the optimal decay rate in the
modified entropy method. In this way we proved the optimality of previous
results.

[2]: F. Achleitner, A. Arnold, and E. A. Carlen. “On linear hypocoercive
BGK models”. In: From Particle Systems to Partial Differential Equations
III. Springer, 2016, pp. 1–37

Together with Anton Arnold and Eric Carlen, I studied hypocoercivity
for a class of linear and linearized BGK models for discrete and continuous
phase spaces. We developed methods for constructing entropy functionals
that prove exponential rates of relaxation to equilibrium. Our strategies
are based on the entropy and spectral methods, adapting Lyapunov’s direct
method (even for ”infinite matrices” appearing for continuous phase spaces)
to construct appropriate entropy functionals. Finally, we also proved local
asymptotic stability of a nonlinear BGK model.

[3]: F. Achleitner, A. Arnold, and E. A. Carlen. “On multi-dimensional
hypocoercive BGK models”. In: Kinetic and Related Models (2018). accep-
ted, arXiv preprint arXiv:1711.07360

We study hypocoercivity for a class of linearized BGK models for con-
tinuous phase spaces. We develop methods for constructing entropy functi-
onals that enable us to prove exponential relaxation to equilibrium with
explicit and physically meaningful rates. In fact, we not only estimate the
exponential rate, but also the second time scale governing the time one must
wait before one begins to see the exponential relaxation in the L1 distance.
This waiting time phenomenon, with a long plateau before the exponential
decay ”kicks in” when starting from initial data that is well-concentrated
in phase space, is familiar from work of Aldous and Diaconis on Markov
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chains, but is new in our continuous phase space setting. Our strategies are
based on the entropy and spectral methods, and we introduce a new ”index
of hypocoercivity” that is relevant to models of our type involving jump pro-
cesses and not only diffusion. At the heart of our method is a decomposition
technique that allows us to adapt Lyapunov’s direct method to our continu-
ous phase space setting in order to construct our entropy functionals. These
are used to obtain precise information on linearized BGK models. Finally,
we also prove local asymptotic stability of a nonlinear BGK model.

[4]: F. Achleitner, A. Arnold, and B. Signorello. “On optimal decay esti-
mates for ODEs and PDEs with modal decomposition”. accepted, arXiv
preprint arXiv:1802.00767

We consider the Goldstein-Taylor model, which is a 2-velocity BGK mo-
del, and construct the ”optimal” Lyapunov functional to quantify the con-
vergence to the unique normalized steady state. The Lyapunov functional is
optimal in the sense that it yields decay estimates in L2-norm with the sharp
exponential decay rate and minimal multiplicative constant. The modal de-
composition of the Goldstein-Taylor model leads to the study of a family of
2-dimensional ODE systems. Therefore we discuss the characterization of
”optimal” Lyapunov functionals for linear ODE systems with positive stable
diagonalizable matrices. We give a complete answer for 2-dimensional ODE
systems, and a partial answer for higher dimensional ODE systems.





Perspectives

The focus of my research are nonlinear nonlocal partial integro-differential
equations in applied sciences. Building on my expertise, I will continue to
study nonlocal Fokker-Planck equations, nonlocal models in hydrodynamics
and nonlocal reaction-diffusion equations. In the future, I also want to con-
sider nonlocal models with memory effects, e.g. models with subdiffusion.
Moreover, I am interested in numerical simulations of these models by col-
laborating with experts in the field of numerics.

[10]: F. Achleitner, A. Jüngel, and M. Yamamoto. “Large-time asympto-
tics of a fractional drift-diffusion-Poisson system via the entropy method”.
submitted, arXiv preprint arXiv:1802.10272

The self-similar asymptotics for solutions to the drift-diffusion equation
with fractional dissipation, coupled to the Poisson equation, is analyzed in
the whole space. It is shown that in the subcritical and supercritical cases,
the solutions converge to the fractional heat kernel with algebraic rate. The
proof is based on the entropy method and leads to a decay rate in the L1(Rd)
norm. The technique is applied to other semilinear equations with fractional
dissipation.

[13]: F. Achleitner and C. Kuehn. “Traveling wave solutions for bistable
reaction-diffusion equations with nonlocal diffusion of Lévy type”. work in
progress

[16]: F. Achleitner and Y. Ueda. “L1-stability of nonlinear waves in scalar
viscous conservation laws with nonlocal diffusion of Lévy type”. work in
progress

[6]: F. Achleitner and C. M. Cuesta. “Non-classical shocks in a non-local
Korteweg-de Vries-Burgers equation with cubic flux function”. work in pro-
gress
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Viscous conservation laws

1



ON NONLINEAR CONSERVATION LAWS WITH A

NONLOCAL DIFFUSION TERM

FRANZ ACHLEITNER, SABINE HITTMEIR, AND CHRISTIAN SCHMEISER

Abstract. Scalar one-dimensional conservation laws with a nonlocal
diffusion term corresponding to a Riesz-Feller differential operator are
considered. Solvability results for the Cauchy problem in L∞ are adapted
from the case of a fractional derivative with homogeneous symbol. The
main interest of this work is the investigation of smooth shock profiles.
In case of a genuinely nonlinear smooth flux function we prove the ex-
istence of such travelling waves, which are monotone and satisfy the
standard entropy condition. Moreover, the dynamic nonlinear stability
of the travelling waves under small perturbations is proven, similarly
to the case of the standard diffusive regularization, by constructing a
Lyapunov functional.

1. Introduction

We consider one-dimensional conservation laws for a density u(t, x), t > 0,
x ∈ R, of the form

(1) ∂tu+ ∂xf(u) = ∂xDαu ,
where Dα is the non-local operator

(2) (Dαu)(x) =
1

Γ(1− α)

∫ x

−∞

u′(y)

(x− y)α
dy ,

with 0 < α < 1. The flux function f(u) is smooth and satisfies f(0) = 0.
We shall analyse the local and global solvability of the Cauchy problem

for (1), as well as the existence and stability of travelling wave solutions. In
particular, we shall show that smooth travelling wave solutions exist, which
are asymptotically stable. These waves are shock profiles satisfying the
standard entropy conditions like those derived from the standard parabolic
regularization with Dα replaced by ∂x.

Since Dαu can be written as the convolution of the derivative u′ with Γ(1−
α)−1θ(x)x−α (with the Heaviside function θ), Dα is a pseudo-differential
operator with symbol

ik
√

2π

Γ(1− α)
F
(
θ(x)

xα

)
(k) = ik (aα − ibα sgn(k)) |k|α−1 = (bα + iaα sgn(k)) |k|α ,

i.e. F(Dαu)(k) = (bα + iaα sgn(k)) |k|αû(k). Here F denotes the Fourier
transform

Fϕ(k) = ϕ̂(k) =
1√
2π

∫
e−ikxϕ(x)dx ,

2010 Mathematics Subject Classification. 47J35, 26A33, 35C07.
Key words and phrases. nonlocal evolution equation, fractional derivative, travelling

wave.

1

2 1. VISCOUS CONSERVATION LAWS

appeared as: F. Achleitner, S. Hittmeir, and C. Schmeiser. “On nonlinear
conservation laws with a nonlocal diffusion term”. In: J. Differential Equations
250.4 (2011), pp. 2177–2196



2 FRANZ ACHLEITNER, SABINE HITTMEIR, AND CHRISTIAN SCHMEISER

and

aα = sin
(απ

2

)
> 0 , bα = cos

(απ
2

)
> 0 ,

(see [2] for the details of the computation). Obviously, the operator on the
right hand side of (1) also is a pseudo-differential operator with symbol

(3) F(∂xDα) = − (aα − ibα sgn(k)) |k|α+1 .

Due to the negativity of its real part, it is dissipative.

Remark 1. For s ∈ R, we use the Sobolev space

Hs := {u : ‖u‖Hs <∞} , ‖u‖Hs := ‖(1 + |k|)sû‖L2(R) ,

and the corresponding homogeneous norm

‖u‖Ḣs := ‖|k|sû‖L2(R) .

The fact ‖Dαu‖Ḣs =
√
a2
α + b2α ‖u‖Ḣs+α justifies to interpret Dα as a dif-

ferentiation operator of order α. It is bounded as a map from Hs to Hs−α.
Denoting by Cmb , m ≥ 0, the set of functions, whose derivatives up to

order m are continuous and bounded on R, Dαu : C1
b → Cb is bounded.

This can be easily seen by splitting the domain of integration in (2) into
(−∞, x− δ] and [x− δ, x] for some positive δ > 0. Then integration by parts
in the first integral shows the boundedness of Dαu.

The operator ∂xD1/3 occurs in applications. It has been derived as the
physically correct viscosity term in two layer shallow water flows by perform-
ing formal asymptotic expansions associated to the triple-deck regularization
used in fluid mechanics (see, e.g., [15]). Moreover D1/3 appears in the work
of Fowler [10] in an equation for dune formation:

(4) ∂tu+ ∂xu
2 = ∂2

xu− ∂xD1/3u .

Here the fractional derivative appears with the negative sign, but this insta-
bility is regularized by the second order derivative. Alibaud et al. showed
the well-posedness of (4) in L2 as well as the violation of the maximum
principle, which is intuitive in the context of the application due to under-
lying erosions [1]. Travelling wave solutions of (4) have been analysed by
Alvarez-Samaniego and Azerad in [2].

Fractal conservation laws of the form

(5) ∂tu+ ∂xf(u) = Dα+1u ,

where Dα+1 is the pseudo-differential operator with symbol −|k|α+1 (mean-
ing Dα+1u = F−1(−|k|α+1û)) have been investigated in several works, see
e.g. Biler et al. [4] and Droniou et al. [8].

This work is organized as follows. In the remainder of this section we
present an existence result for the Cauchy problem in L∞. The crucial
property here is the nonnegativity of the semigroup generated by ∂xDα,
which is a consequence of its interpretation as a Riesz-Feller derivative [9, 11].
This allows to prove a maximum principle for solutions of (1) as in [8].

Section 2 is devoted to the analysis of travelling wave solutions connecting
different far-field values. Such wave profiles are typically smooth. Working
with the original representation (2) of Dα, we obtain a nonlinear Volterra
integral equation as the travelling wave version of (1). Assuming (even a
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bit less than) convexity of the flux function and that the solutions of the
associated linear Volterra integral equation form a one-dimensional subspace
of H2(R−), we can show the existence and uniqueness of monotone solutions
satisfying the entropy condition for classical shock waves of the inviscid
conservation law underlying (1). This essentially requires to extend the well
known results for the existence of viscous shock profiles, which solve (local)
ordinary differential equations.

Biler et al. [4] showed that no travelling wave solutions of (5) can exist
for α ∈ (−1, 0]. For the case α ∈ (0, 1) also no existence result is available.

To show the asymptotic stability of the travelling waves, we use the an-
tiderivative method typically applied in the case of the classical viscous
regularisation and derive a Lyapunov functional. This allows to deduce the
decay of initially small perturbations.

In the appendix we consider linear Volterra integral equations and prove
the assumption on the dimension of the solution space with respect to sub-
spaces of H2(R−).

The Cauchy Problem. In the following, we verify the applicability of the
work of Droniou et al. [8] on the Cauchy problem of (5) in L∞ to

(6) ∂tu+ ∂xf(u) = ∂xDαu, u(0, x) = u0(x).

Applying the Fourier transform to the linear evolution equation ∂tu =
∂xDαu, we see that the semigroup generated by the fractional derivative
is formally given by the convolution with the kernel

(7) K(t, x) = F−1e−Λ(k)t(x), where Λ(k) = (aα − ibαsgn(k))|k|α+1.

To analyse the well-posedness, we use the mild formulation of (6),

(8) u(t, x) = K(t, .) ∗ u0(x)−
∫ t

0
K(t− τ, .) ∗ ∂xf(u(τ, .))(x)dτ.

As a main ingredient in [8], Droniou et al. used the non-negativity of the
kernel associated to the semigroup generated by Dα+1. To make use of their
methods in the analysis of the Cauchy problem (6), we need to investigate
the properties of the kernel K associated to the operator ∂xDα.

Lemma 1. For 0 < α < 1, the kernel K given by (7) is non-negative:

K(t, x) ≥ 0, for all t > 0, x ∈ R.

Additionally, the kernel K satisfies the properties:

(i) For all t > 0 and x ∈ R, K(t, x) = 1
t1/(1+α)

K
(

1, x
t1/(1+α)

)
.

(ii) For all t > 0, ‖K(t, .)‖L1(R) = 1.

(iii) K(t, x) is C∞ on (0,∞) × R and for all m ≥ 0 there exists a Bm
such that

(9)

∀(t, x) ∈ (0,∞)× R, |∂mx K(t, x)| ≤ 1

t(1+m)/(1+α)

Bm

(1 + t−2/(1+α)|x|2)
.

(iv) There exists a C0 such that for all t > 0: ‖∂xK(t, .)‖L1(R) = C0

t1/(1+α)
.
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Proof. We already mentioned that the operator ∂xDα is a Riesz-Feller dif-
ferential operator, see also Gorenflo and Mainardi [11]. Due to Feller [9],
the symbol of ∂xDα is the characteristic exponent of a random variable
with Lévy stable distribution. Hence the kernel K is the scaled probability
density function of a Lévy stable distribution and is non-negative.

The additional properties of the kernel K are verified in the same manner
as in [8]: (i) follows from the change of variable η = t1/(1+α)k under the
integral sign. Since the kernel K is non-negative, we deduce ‖K(1, .)‖L1(R) =∫
K(1, x)dx = F(K(1, .))(0) = 1, which together with (i) implies (ii). To

show (iii), we write ∂mx K(1, x) = 1√
2π

∫
(ik)meikxe−Λ(k)dk. Since α > 0, we

can integrate by parts twice and obtain ∂mx K(1, x) = O(1/x2). Together
with the boundedness of ∂mx K(1, x), we get the estimate for t = 1 and
deduce the estimate for arbitrary t > 0 from (i). Finally, (iv) follows from
(i) and (iii). �

Hence the kernel associated to ∂xDα satisfies the same properties as the
one for Dα+1 required in the work of Droniou et al. [8]. Thus their analysis
carries over to our problem and we obtain the analogous result:

Theorem 1. If u0 ∈ L∞, then there exists a unique solution u ∈ L∞((0,∞)×
R) of (6) satisfying the mild formulation (8) almost everywhere. In partic-
ular

‖u(t, .)‖∞ ≤ ‖u0‖∞, for t > 0.

Moreover, the solution has the following properties:

(1) u ∈ C∞((0,∞)× R) and u ∈ C∞b ((t0,∞)× R) for all t0 > 0.
(2) u satisfies equation (1) in the classical sense.
(3) u(t) → u0, as t → 0, in L∞(R) weak-∗ and in Lploc(R) for all p ∈

[1,∞).

To motivate the well-posedness, we estimate the terms in (8) for t > 0,
with the help of the properties of the kernel K, as follows: |K(t, .)∗u0(x)| ≤
‖u0‖∞ and

∣∣∣∣
∫ t

0
∂xK(t− s, .) ∗ f(u(s, .))ds

∣∣∣∣ ≤ C‖f(u)‖L∞((0,t)×R)t
1− 1

1+α .

Due to the Lipschitz continuity of f , we get a contraction for small times t0
on L∞((0, t0)× R) and therefore the well-posedness.

To show the global existence as well as the maximum principle, Droniou
et al. [8] constructed an approximate solution by a splitting method and
used a compactness argument to pass to the limit.

We shall also mention that an alternative L2-based existence theory of (1)
can be obtained by standard approaches such as contraction arguments and
Lyapunov functionals. Here the main ingredient is the a priori decay of the
L2-norm. Testing (1) with u and assuming vanishing far-field values of u,
the flux term vanishes
∫

R
u∂xf(u)dx =

∫

R
uf ′(u)∂xudx =

∫

R
∂xG(u)dx = 0, G(u) =

∫ u

0
vf ′(v)dv,
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since G is smooth and G(0) = 0. We obtain the L2-estimate:

1

2

d

dt

∫

R
u2dx = −aα

∫

R
|k|1+α|û|2dk ≤ 0 .

Here we have used Plancherel’s theorem together with |û(k)|2 = |û(−k)|2,
implying ∫

R
sgnk|k|j |û(k, t)|2dk = 0 .

This relation shows that in an L2-framework the operator ∂xDα behaves
similarly to Dα+1. Due to the decay of the L2-norm of the solution to (1),
one would hope for well-posedness of the Cauchy problem with initial data in
L2 allowing us to deduce the global existence. Using a contraction argument
similar to the one by Dix [6] for the classical viscous Burgers equation, we
can show the well-posedness in L2 for the quadratic flux f(u) = u2 in the
case α > 1/2. This critical value was already mentioned by Biler, Funaki
and Woyczynski [4] for (5). For the general flux and α ∈ (0, 1) we have
to require higher regularity of the initial data: u0 ∈ H1. To deduce global
existence of solutions in H1, a Lyapunov functional can be derived under an
additional smallness assumption on ‖u0‖H1 . These results follow from the
proofs we carry out in Section 2.2. Since obviously the assumptions on the
initial data are much more restrictive as in the L∞-based existence result,
we do not go into more details here.

2. Travelling wave solutions

2.1. Existence of travelling wave solutions. We introduce the travelling
wave variable ξ = x − st with the wave speed s and look for solutions
u(x, t) = u(ξ) of (1), which are connecting the different far-field values u−
and u+. A straightforward calculation shows that if u depends on x and t
only through the travelling wave variable ξ, then so does Dαu, and we arrive
at

−su′ + f(u)′ = (Dαu)′ , u(−∞) = u− , u(∞) = u+ ,

where the prime denotes differentiation with respect to ξ. Integration gives
the travelling wave equation

(10) h(u) := −s(u− u−) + f(u)− f(u−) = Dαu = dα

∫ ∞

0

u′(ξ − y)

yα
dy ,

with dα = 1/Γ(1−α). If the derivative u′ decays to zero fast enough as ξ →
±∞, then we obtain, at least formally, the Rankine-Hugoniot conditions,
which correspond to shock solutions of the inviscid conservation law and
relate the far-field values and the wave speed via

(11) s =
f(u+)− f(u−)

u+ − u−
.

If the flux function f(u) is convex between the far-field values u− and u+,
then the left hand side h(u) of (10) is negative between its zeroes u− and
u+. If u(ξ) is monotone, the right hand side in (10) has the same sign as u′.
Therefore if a monotone solution exists, it has to be nonincreasing, leading
to the standard entropy condition

u− > u+ ,
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derived by replacing Dαu by u′. Under this assumption, the existence of a
smooth monotone travelling wave will be proved. The precise assumptions
on the flux function will be formulated in terms of h(u): We require

h ∈ C∞([u+, u−]) , h(u+) = h(u−) = 0 , h < 0 in (u+, u−) ,

∃um ∈ (u+, u−) such that h′ < 0 in (u+, um) , h′ > 0 in (um, u−] .(12)

Note that this is a little less than asking for convexity of f , and it allows
for the slightly weakened form f ′(u+) ≤ s < f ′(u−) of the Lax entropy
condition.

The integral operator

Dαu(ξ) = dα

∫ ξ

−∞

u′(y)

(ξ − y)α
dy

in the travelling wave problem

(13) h(u) = Dαu , u(−∞) = u− , u(∞) = u+ ,

is of the Abel type. It is well known that it can be inverted by multiply-
ing (13) with (z− ξ)−(1−α) and integrating with respect to ξ from −∞ to z.
This leads to

(14) u(ξ)− u− = D−α(h(u))(ξ) := d1−α

∫ ξ

−∞

h(u(y))

(ξ − y)1−αdy .

Equations (13) and (14) are equivalent if u ∈ C1
b (R) and u′ ∈ L1(R−), hence

in particular if u ∈ C1
b (R) is monotone. We will use both formulations

to deduce the existence result. An important property of both integral
equations is their translation invariance, which will be used several times
below.

The equation (14) is a nonlinear Volterra integral equation with a lo-
cally integrable kernel, where a well developed theory exists for problems on
bounded intervals. Therefore we shall start our investigations by proving a
’local’ existence result around ξ = −∞. The subsequent monotonicity and
boundedness results will lead to global existence for ξ ∈ R.

The local existence result is based on linearisation at ξ = −∞ (or, equiv-
alently, at u = u−). This can be done for either (13) or (14) with the
same result. As could be expected for ordinary differential equations, the
linearisations

(15) h′(u−)v = Dαv , v = h′(u−)D−αv ,
have solutions of the form v(ξ) = beλξ, b ∈ R, where a straightforward

computation gives λ = h′(u−)1/α, see also [5]. We will need that these are the
only non-trivial solutions of (15) in the space H2(−∞, ξ0] for some ξ0 ≤ 0.
In particular, we assume that

(16) N
(
id− h′(u−)D−α

)
= span{exp(λξ)} with λ = h′(u−)1/α ,

which is reasonable due to our analysis in the appendix A. The main result
of this section is the following.

Theorem 2. Let (12) and (16) hold. Then there exists a decreasing solution
u ∈ C1

b (R) of the travelling wave problem (13). It is unique (up to a shift)
among all u ∈ u− +H2((−∞, 0)) ∩ C1

b (R).
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The following local existence result shows that the nonlinear problem has,
up to translations, only two nontrivial solutions, which can be approximated
by u− ± eλξ for large negative ξ. The choice 1 of the modulus of the coeffi-
cient of the exponential is irrelevant due to the translation invariance of the
solution.

Lemma 2. (Local existence) Let (16) hold. Then, for every small enough
ε > 0, the equation (13) has solutions uup, udown ∈ u− + H2(Iε), Iε =
(−∞, ξε], ξε = log ε/λ, satisfying

(17) uup(ξε) = u− + ε , udown(ξε) = u− − ε .
These are unique among all functions u satisfying ‖u−u−‖H2(Iε) ≤ δ, with δ
small enough, but independently from ε. They satisfy (with an ε-independent
constant C)

‖uup − u− − eλξ‖H2(Iε) ≤ Cε2 , ‖udown − u− + eλξ‖H2(Iε) ≤ Cε2 .

Proof. The proof will only be given for existence and uniqueness of udown,
which will be of greater interest below, but the proof for uup is analogous.

We start by writing (13) and the initial condition (17) in terms of the
perturbation ū(ξ) = udown(ξ)− u− + eλξ:

(18) (Dα − h′(u−))ū = F (ū, ξ) , ū(ξε) = 0 ,

where we denote

F (ū, ξ) = h(u− − eλξ + ū) + h′(u−)(eλξ − ū).

The idea is to write (18) as a fixed point problem considering the right hand
side as given. Since we shall use the Fourier transform for constructing a
particular solution, we need a smooth enough extension to ξ ∈ R, although
we are only interested in ξ < ξε. For f ∈ H2(Iε), let the extension E(f) ∈
H2(R) satisfy

E(f)
∣∣∣
Iε

= f , ‖E(f)‖H2(R) ≤ γ‖f‖H2(Iε) .

The bounded solution of the equation

(Dα − h′(u−))upart = E(f) ,

and of its derivatives with respect to ξ can be written as

u
(m)
part = F−1

[(
bα|k|α − h′(u−) + iaαsgn(k)|k|α

)−1FE(f)(m)
]
, m = 0, 1, 2 .

The coefficient can easily be seen to be bounded uniformly in k, leading to
the estimate

‖upart‖H2(Iε) ≤ ‖upart‖H2(R) ≤ C‖E(f)‖H2(R) ≤ Cγ‖f‖H2(Iε) .

By the assumption (16), U [f ](ξ) = upart(ξ)− upart(ξε)eλ(ξ−ξε) is the unique
solution of

(Dα − h′(u−))U = f in Iε , U(ξε) = 0 ,

satisfying by the Sobolev imbedding of H2(Iε) in Cb(Iε) the estimate

‖U [f ]‖H2(Iε) ≤ ‖upart‖H2(Iε) + ‖upart‖L∞(Iε) ‖eλ(ξ−ξε)‖H2(Iε)

≤ Cγ‖f‖H2(Iε) + C‖upart‖H2(Iε) ≤ K‖f‖H2(Iε)
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for some K > 0. This allows to write (18) as a fixed point problem:

ū = U [F (ū, ξ)] .

In order to estimate F (ū, ξ), we first rewrite it as follows:

F (ū, ξ) =
h′′(ũ)

2

(
eλξ − ū

)2
=
h′′(ũ)

2

(
ε2e2λ(ξ−ξε) − 2εeλ(ξ−ξε)ū+ ū2

)
.

We recall that f is smooth and hence ‖h′′(u)‖L∞ ≤ L1(‖u‖L∞) for some pos-
itive nondecreasing function L1. Using moreover the continuous imbedding
of H2(Iε) in Cb(Iε), it can easily be seen that

‖F (ū, ξ)‖H2(Iε)
≤ C‖h′′(ũ)‖L∞(Iε)

(
ε2 + ε‖ū‖H2(Iε) + ‖ū‖L∞(Iε)‖ū‖H2(Iε)

)

≤ L(‖ū‖H2(Iε))
(
ε2 + ε‖ū‖H2(Iε) + ‖ū‖2H2(Iε)

)
,

where L is a positive nondecreasing function. The fixed point map is now
bounded by

‖U [F (ū, ξ)]‖H2(Iε) ≤ KL(‖ū‖H2(Iε))
(
ε2 + ε‖ū‖H2(Iε) + ‖ū‖2H2(Iε)

)
.

We assume for simplicity that R = KL(1) > 1. It is easily seen that the
fixed point map is a contraction on the ball with radius (2R)−1, which is
independent of ε. Moreover the ball with radius ε22R is mapped into itself.
Hence we conclude that there exists a solution ū bounded in H2(Iε) by a
constant of O(ε2), which is unique in a ball with a radius of O(1). �

Lemma 3. (Local monotonicity) Let the assumptions of Lemma 2 hold.
Then, in Iε,

uup > u− , u′up > 0 , udown < u− , u′down < 0 .

Proof. Again we restrict our attention to udown and skip the analogous proof
for uup. As a consequence of Lemma 2 and of Sobolev imbedding

|udown(ξ)− u− + eλξ| ≤ Cε2 , ξ ≤ ξε .
Thus, there exists ξ∗ satisfying

udown(ξ∗) = u− − 2Cε2 , ξCε2 ≤ ξ∗ ≤ ξ3Cε2 .

Since udown(ξ) < u− for ξ ≥ ξ∗, we may restrict our attention in the following
to ξ ≤ ξ∗. Thus, we eliminated a subinterval of length d1 ≥ ξε− ξ3Cε2 . Now
we set ε1 = ε, ε2 = 2Cε2

1, and, by a shift in ξ, replace ξ∗ by ξε2 . This means
that the shifted solution becomes the unique udown from Lemma 2, where ε1

has been replaced by ε2. Of course, the argument can be iterated to produce
a sequence {εn}, determined by εn+1 = 2Cε2

n, and in each step a subinterval
of length dn ≥ ξεn − ξ3Cε2n

can be eliminated, where udown < u− holds. It

is easily seen that, for ε1 = ε small enough,
∑∞

n=1 dn = ∞ completing the
proof of udown < u− in Iε.

The proof of the second property of udown is completely analogous noting
that, again by Sobolev imbedding,

|u′down(ξ) + λeλξ| ≤ Cε2 for ξ ≤ ξε .
�

1. VISCOUS CONSERVATION LAWS 9

appeared as: F. Achleitner, S. Hittmeir, and C. Schmeiser. “On nonlinear
conservation laws with a nonlocal diffusion term”. In: J. Differential Equations
250.4 (2011), pp. 2177–2196



9

Remark 2. Together with uup − u−, udown − u− ∈ L2(Iε), the result of the
lemma implies

lim
ξ→−∞

uup(ξ) = lim
ξ→−∞

udown(ξ) = u− .

Together the two solutions constitute the ’unstable manifold’ of the point u−.

The Lemmata 2 and 3 show the existence of a solution u of (13), which
satisfies u ∈ C1

b and is monotone. Thus u is also a solution of equation (14).

Lemma 4. (Continuation principle) Let u ∈ C1
b ((−∞, ξ0]) be a (continua-

tion of a) solution of (14) as constructed in Lemma 2. Then there exists a
δ > 0, such that it can be extended uniquely to C1

b ((−∞, ξ0 + δ)).

Proof. Defining

f(ξ) = u− + d1−α

∫ ξ0

−∞

h(u(y))

(ξ − y)1−αdy ,

which can be considered as given and smooth by the assumptions, (14) can
be written as

u(ξ) = f(ξ) + d1−α

∫ ξ

ξ0

h(u(y))

(ξ − y)1−αdy .

Local existence of a smooth solution for ξ close to ξ0 is a standard result for
Volterra integral equations, see e.g. Linz [14]. �

It is now obvious that, as for ordinary differential equations, boundedness
will be enough for global existence.

Lemma 5. (Global uniqueness) Let u ∈ u− + H2((−∞, ξ0)) be a solution
of (14). Then, up to a shift in ξ, it is the continuation of uup or of udown,
or u ≡ u−.

Proof. For every δ > 0 there exists a ξ∗ ≤ ξ0, such that ‖u−u−‖H2((−∞,ξ∗)) <
δ, and therefore, by Sobolev imbedding, also |u(ξ∗) − u−| < δ. Choosing δ
small enough, there are only the options u(ξ∗) = u− (implying u ≡ u−) or
u(ξ∗) 6= u− whence, by local uniqueness, u is up to a shift either equal to
uup or to udown, depending on the sign of u(ξ∗)− u−. �

This result already implies the uniqueness of the travelling wave, if it
exists.

Lemma 6. (Global monotonicity) Let u ∈ C1
b (−∞, ξ0] be (a continuation

of) the solution udown of (14) as constructed in Lemma 2. Then u is non-
increasing.

Proof. We recall the properties of h given in (12). We shall use both for-
mulations (13) and (14). First we prove that the derivative of u remains
negative as long as u ≥ um. Assume to the contrary that

u(ξ∗) ≥ um , u′(ξ∗) = 0 , u′ < 0 in (−∞, ξ∗) .
Then we obtain from the derivative of (14), evaluated at ξ = ξ∗, the contra-
diction

0 = u′(ξ∗) = d1−α

∫ ξ∗

−∞

h′(u(y))u′(y)

(ξ∗ − y)1−α dy < 0 .
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Now we show that u cannot become increasing for u < um. Again, assume
the contrary

u(ξ∗) < um , u′ > 0 in (ξ∗, ξ∗ + δ) , u′ ≤ 0 in (−∞, ξ∗] ,
where we assume additionally that δ is small enough such that u(ξ∗ + δ) <
um. This implies
∫ ξ∗+δ

−∞

u′(y)

(ξ∗ + δ − y)α
dy =

∫ ξ∗

−∞

u′(y)

(ξ∗ + δ − y)α
dy +

∫ ξ∗+δ

ξ∗

u′(y)

(ξ∗ + δ − y)α
dy

>

∫ ξ∗

−∞

u′(y)

(ξ∗ − y)α
dy .

But on the other hand we know

0 > h(u(ξ∗ + δ))− h(u(ξ∗))

= dα

∫ ξ∗+δ

−∞

u′(y)

(ξ∗ + δ − y)α
dy − dα

∫ ξ∗

−∞

u′(y)

(ξ∗ − y)α
dy > 0 ,

leading again to a contradiction. Therefore u′ cannot get positive. �

Lemma 7. (Boundedness) Let u ∈ C1
b (−∞, ξ0] be (a continuation of) the

solution udown of (14) as constructed in Lemma 2. Then u+ < u < u−.

Proof. Suppose the solution would reach the value u+ in finite time, i.e.
there exists a ξ∗, such that u(ξ∗) = u+. Since u is nonincreasing and,
by Lemma 3, strictly decreasing at least close to ξ = −∞, we obtain the
contradiction

0 = h(u+) = dα

∫ ξ∗

−∞

u′(y)

(ξ∗ − y)α
dy < 0 .

�

The proof of Theorem 2 is completed by proving limξ→∞ u(ξ) = u+.
Assuming to the contrary limξ→∞ u(ξ) > u+, would imply limξ→∞ h(u(ξ)) <
0. Then, however, −D−αh(u) = u− − u would increase above all bounds,
which is impossible by Lemma 7.

2.2. Asymptotic stability of travelling waves for convex fluxes. We
change to the moving coordinate ξ = x− st in (1),

(19) ∂tu+ ∂ξ(f(u)− su) = ∂ξDαu ,
and look for solutions of (19), which are small perturbations of travelling
wave solutions and in particular share the same far-field values. Let u0(ξ)
be an initial datum and φ(ξ) a travelling wave solution as constructed in
the previous section, with the shift chosen such that

(20)

∫

R
(u0(ξ)− φ(ξ))dξ = 0 .

Due to the conservation property of the equation (19) we see that (formally)
∫

R
(u(t, ξ)− φ(ξ))dξ = 0 , for all t ≥ 0 .
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The flux function will be assumed to be convex between the far-field values
of the travelling wave, i.e.

f ′′(φ(ξ)) ≥ 0 , for all ξ ∈ R .
The perturbation U = u− φ satisfies the equation

(21) ∂tU + ∂ξ((f
′(φ)− s)U) +

1

2
∂ξ
(
f ′′(φ+ ϑU)U2

)
= ∂ξDαU ,

for some ϑ ∈ (0, 1). The aim is to show local stability of travelling waves,
i.e. the decay of U for small initial perturbations U0 = u0 − φ. Testing (21)
with U , we get

1

2

d

dt
‖U‖2L2 +

1

2

∫

R
f ′′(φ)φ′U2dξ − 1

2

∫

R
f ′′(φ+ ϑU)U2∂ξU dξ

= −aα‖U‖2Ḣ(1+α)/2 ,(22)

where several integrations by parts have been carried out. Recalling φ′ ≤ 0,
we see that the second term has the unfavourable sign. As one would do for
the conservation law with the classical viscous regularisation, we introduce
the primitive of the perturbation:

W (t, ξ) =

∫ ξ

−∞
U(t, η)dη , W0(ξ) =

∫ ξ

−∞
U0(η)dη .

Integration of (21) gives the equation for W ,

(23) ∂tW + (f ′(φ)− s)∂ξW +
1

2
f ′′(φ+ ϑU)(∂ξW )2 = ∂ξDαW ,

which we test with W to obtain
1

2

d

dt
‖W‖2L2 −

1

2

∫

R
f ′′(φ)φ′W 2dξ +

1

2

∫

R
f ′′(φ+ ϑU)(∂ξW )2W dξ

= −aα‖W‖2Ḣ(1+α)/2 .(24)

This equation has the crucial property that the quadratic terms have the
favour-able sign. From the cubic term (arising from the nonlinearity) we
pull out the L∞-norm of W (and of U if f ′′ is not constant), which we shall
control by Sobolev imbedding.

Well-posedness of the perturbation equation. Before deriving decay estimates,
we have to guarantee the well-posedness of the Cauchy problem for (23),
(25)

∂tW+(f ′(φ)−s)∂ξW+
1

2
f ′′(φ+ϑU)(∂ξW )2 = ∂ξDαW , W (0, x) = W0(x).

Therefore we use a contraction argument. Assuming f(u) = u2 and α > 1/2
allows to estimate the nonlinearity in the fashion of Dix [6] implying the
well-posedness in H1. For the general flux and α ∈ (0, 1) we have to require
more regularity of the initial data, W0 ∈ H2.

We recall the definition (7) of the kernel K associated to the linear evo-
lution equation and rewrite (25) in its mild formulation

W (t, x) = K(t, .) ∗W0(x)

−
∫ t

0
K(t− τ, .) ∗

(
(f ′(φ)− s)U(τ, .) +

f ′′(φ+ ϑU))

2
(U(τ, .))2

)
(x)dτ.(26)
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Before proceeding with the contraction arguments, we note that for any
W0 ∈ Hs we have K(t, .) ∗W0 → W0 as t → 0 in Hs. In particular, the
integral

‖K(t, .) ∗W0 −W0‖2Hs =

∫
(1 + |k|)2s|e−Λ(k)t − 1|2|Ŵ0(k)|2dk

is bounded by 4‖W0‖2Hs and we can apply the Dominated Convergence Theo-
rem to pass to the limit under the integral sign. Moreover ‖K(t, .)∗W0‖Hs ≤
‖W0‖Hs .

Proposition 1. Let f(u) = u2 and α > 1
2 . Then for any W0 ∈ H1 there

exists a T > 0 such that (25) has a unique solution W ∈ H1 for t ∈ [0, T ).

Proof. Denoting the right hand side of (26) with GW the mild formulation
gives a fixed point problem W = GW . We note that f ′′ = 2 and briefly
explain how to carry out the contraction argument. Let T > 0 and denote
‖W‖∗Hs = supt∈[0,t0] ‖W‖Hs . Applying Plancherel’s Theorem we can bound

the H1 norm of GW by

‖GW‖∗H1 ≤ ‖W0‖H1 +

∫ T

0

∥∥∥(1 + |k|)e−Λ(k)(t−τ)F((2φ− s)U + U2)(τ, k)
∥∥∥
L2
dτ

≤ ‖W0‖H1 + C

∫ T

0
sup
k∈R

∣∣∣(1 + |k|)e−Λ(k)(t−τ)
∣∣∣ ‖U(τ, .)‖L2dτ

+

∫ T

0

∥∥∥(1 + |k|)e−Λ(k)(t−τ)
∥∥∥
L2

sup
k∈R
|(U(τ, .)2)̂|dτ

Using Cauchy-Schwarz inequality it is easy to see that ‖(gh)̂‖∞ ≤ ‖g‖L2‖h‖L2 ,
hence supk∈R |(U(τ, .)2)̂| ≤ ‖U‖∗ 2

L2 . We then bound

sup
k∈R

∣∣∣(1 + |k|)e−Λ(k)(T−τ)
∣∣∣ ≤ 1 +

∥∥∥ye−aα|y|α+1
∥∥∥
∞

(T − τ)
1

1+α

≤ C
(

1 + (T − τ)−
1

1+α

)
,(27)

‖(1 + |k|)e−Λ(k)(T−τ)‖L2 ≤ C
(

(T − τ)
− 1

2(1+α) + (T − τ)
− 3

2(1+α)

)
,

where we have performed the substitution k 7→ k(t−τ)
1

α+1 in the integrand.
For α > 1/2, the terms on the right hand side are integrable from 0 to T and
the operator G is a contraction for small times T : There exists a constant
C0 > 0, such that

‖GW‖∗H1 ≤ C0

(
1 + (T + T 1− 1

1+α )‖W‖∗H1 + (T
1− 1

2(1+α) + T
1− 3

2(α+1) )‖W‖∗ 2
H1

)
,

Then for T small enough, G maps the ball B2C0(T ) = {W ∈ C([0, T ], H1) :
‖W‖∗H1 ≤ 2C0} into itself. With Banach’s fixed point argument we can
conclude the existence of a solution W ∈ B2C0(T ) of (26), which is therefore
the solution of (25) on [0, T ). The uniqueness result is only local in B2C0 .
Hence let us now assume W,V ∈ C([0, T ], H1) are two solutions of (26) and
let M = max{‖W‖∗H1 , ‖V ‖∗H1}. Then W − V solves a fixed point equation,
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where for a small enough T0 > 0 the fixed point operator is again a contrac-
tion on B2M (T0). Therefore W = V on [0, T0]. Repetition of this argument
provides uniqueness on the whole time interval of existence. �

Proposition 2. Let W0 ∈ H2. Then there exists a T > 0 such that the
Cauchy problem (25) has a unique solution W ∈ H2 for t ∈ [0, T ).

Proof. We again consider the fix point operator GW associated to the right
hand side of (26), where now f ′′ is not constant. This requires to pull out
the L∞-norm of U and therefore, by Sobolev-Imbedding, we shall control
W in H2. We estimate the nonlinearity as follows:

∥∥K(T − τ, .) ∗ f ′′(φ+ ϑU)U2(τ, .)
∥∥
H2

=
∥∥∥(1 + |k|)K̂ (1 + |k|)F(f ′′(φ+ ϑU)U2)

∥∥∥
L2

≤ C
(

1 + (T − τ)−
1

1+α

)
‖f ′′(φ+ ϑU)U2‖H1

≤ L(‖U‖H1)‖U‖2H1

(
1 + (T − τ)−

1
1+α

)
,

where we have used (27) and Sobolev Imbedding. L is a positive non-
decreasing function. The linear terms are estimated in a similar fashion as
above, such that for a C0 > 0

‖GW‖∗H2 ≤ C0

(
1 + (T + T 1− 1

1+α )
(
1 + L(‖W‖∗H2)‖W‖∗H2

)
‖W‖∗H2

)
.

The proof can be concluded in a similar way as before. �

Global existence will be the consequence of the existence of a Lyapunov
functional, which also allows to deduce the asymptotic stability of travelling
waves. The Lyapunov functional is also easier to derive in the case of the
Burgers flux. Mainly for pedagogical reasons we first derive the result in
this simplified situation and then proceed with the stability for the general
convex flux function.

Stability of travelling waves for the quadratic flux. Assuming f(u) = u2 and
α > 1/2, the Cauchy problem for (23) is well-posed in H1. Since f ′′ = 2,
the nonlinear term in (22) vanishes. Therefore to derive the global existence
as well as asymptotic stability it suffices to construct a Lyapunov-functional
controlling the H1-norm of W .

Theorem 3. Let f(u) = u2 and α > 1/2. Let φ be a travelling wave
solution as in Theorem 2, and let u0(ξ) be an initial datum for (19), such

that W0(ξ) =
∫ ξ
−∞(u0(η) − φ(η))dη satisfies W0 ∈ H1. If ‖W0‖H1 is small

enough, the Cauchy problem for equation (19) with initial datum u0 has a
unique global solution converging to the travelling wave in the sense that

lim
t→∞

∫ ∞

t
‖u(τ, ·)− φ‖L2dτ = 0 .

Remark 3. Note that the condition (20), which can be translated to W0(±∞) =
0, is incorporated in the condition W0 ∈ H1.
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Proof. Equations (22) and (24) imply the estimates

1

2

d

dt
‖U‖2L2 − C0‖U‖2L2 ≤ −aα‖U‖2Ḣ(1+α)/2 ,(28)

1

2

d

dt
‖W‖2L2 − ‖W‖L∞‖∂ξW‖2L2 ≤ −aα‖W‖2Ḣ(1+α)/2 ,(29)

with C0 = ‖φ′‖L∞ . We shall construct a Lyapunov functional by a linear
combination of these estimates. For γ > 0, we denote γ∗ = min{1, γ} and
γ∗ = max{1, γ}. Then

J(t) =
1

2

(
‖W‖2L2 + γ‖U‖2L2

)

is bounded from above and below by

(30)
γ∗
2
‖W‖2H1 ≤ J ≤

γ∗

2
‖W‖2H1 .

The combined estimate reads

dJ

dt
− (γC0 + ‖W‖L∞) ‖W‖2

Ḣ1 + aα

(
‖W‖2

Ḣ(1+α)/2 + γ‖W‖2
Ḣ(3+α)/2

)
≤ 0 .

The idea is to control the second term by the third, which seems plausible,
since the interpolation inequality

(31) ‖W‖2
Ḣ1 ≤ ‖W‖2Ḣ(1+α)/2 + ‖W‖2

Ḣ(3+α)/2 ,

holds as a consequence of k2 ≤ |k|1+α + |k|3+α, k ∈ R. The same inequality

with k replaced by k(aα/(2C0))1/(1+α) implies

γC0‖W‖2Ḣ1 ≤
aα
2

(
‖W‖2

Ḣ(1+α)/2 + γ‖W‖2
Ḣ(3+α)/2

)
,

with γ = (aα/(2C0))2/(1+α). For the term arising from the nonlinearity we
use the consequence ‖W‖2

Ḣ1 ≤ 1
γ∗

(‖W‖2
Ḣ(1+α)/2 + γ‖W‖2

Ḣ(3+α)/2) of (31),

which leads to

dJ

dt
+

(
aα
2
− 1

γ∗
‖W‖L∞

)(
‖W‖2

Ḣ(1+α)/2 + γ‖W‖2
Ḣ(3+α)/2

)
≤ 0 .

By Sobolev imbedding and (30) we have

‖W‖L∞ ≤ ‖W‖H1 ≤
√

2

γ∗
J .

We now let the initial data be small enough such that J(0) < (γ∗)3a2
α/8.

This immediately implies the existence of a λ > 0, such that

dJ

dt
≤ −λ

(
‖W‖2

Ḣ(1+α)/2 + γ‖W‖2
Ḣ(3+α)/2

)
≤ −λγ∗‖U‖2L2 , for all t > 0 .

Integration with respect to time concludes the proof. �
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Stability for a general convex flux function. In contrary to the quadratic
flux, now the nonlinearity in estimate (22) does not vanish:

(32)
1

2

d

dt
‖U‖2L2 −C0‖U‖2L2 − L(‖U‖L∞)‖U‖L∞‖U‖2H1 ≤ −aα‖U‖2Ḣ(1+α)/2 ,

with a positive nondecreasing function L and, similarly to above, C0 =
‖f ′′(φ)φ′‖L∞/2. The estimate for W reads

(33)
1

2

d

dt
‖W‖L2 − L(‖U‖L∞)‖W‖L∞‖∂ξW‖2L2 ≤ −aα‖W‖2Ḣ(1+α)/2 ,

We see that now we have to control U and W in H1 ⊂ L∞, and therefore
also need to derive an estimate for ∂ξU . As we have mentioned above, the
Cauchy problem for (23) is well-posed in H2. Hence the decay of W in H2 is
needed to repeat the local existence as well as to control the nonlinearities.
We differentiate (21) and test it with ∂ξU . After several integrations by
parts, we can estimate

1

2

d

dt
‖∂ξU‖2L2 − C1‖U‖2H1 − L(‖U‖L∞)

(
‖U‖L∞‖∂ξU‖2L2 + ‖∂ξU‖3L3

)

≤ −aα‖∂ξU‖2Ḣ(1+α)/2 ,(34)

where C1 depends on the travelling wave and its derivatives up to order
2. We now apply a generalisation of the celebrated Gagliardo-Nirenberg
inequalities (see e.g. [12]) to Sobolev spaces with fractional order, which
was proven by Amann [3] (Proposition 4.1):

‖∂ξU‖3L3 ≤ C‖∂ξU‖2
H
α+1
4
‖∂ξU‖L2 ≤ C‖U‖H1‖U‖2

H
5+α
4

(35)

We are now ready to prove a stability result similar to Theorem 3 for the
general convex flux function:

Theorem 4. Let (12) hold and let φ be a travelling wave solution as in The-

orem 2. Let u0 be an initial datum for (19) such that W0(ξ) =
∫ ξ
−∞(u0(η)−

φ(η))dη satisfies W0 ∈ H2. If ‖W0‖H2 is small enough, then the Cauchy
problem for equation (19) with initial datum u0 has a unique global solution
converging to the travelling wave in the sense that

lim
t→∞

∫ ∞

t
‖u(τ, ·)− φ‖H1dτ = 0 .

Proof. We proceed similarly to above and define

J(t) =
1

2
(‖W‖2L2 + γ1‖U‖2L2 + γ2‖∂ξU‖2L2) ,

with positive constants γ1, γ2 > 0. We denote γ∗ = min{1, γ1, γ2} and
γ∗ = max{1, γ1, γ2}. Then, as a functional of W , J is equivalent to the
square of the H2-norm. Combining (33), (32) and (34) together with (35)
gives the complete estimate

d

dt
J + aα

(
‖W‖2

Ḣ(1+α)/2 + γ1‖W‖2Ḣ(3+α)/2 + γ2‖W‖2Ḣ(5+α)/2

)

−γ1C0‖U‖2L2 − γ2C1‖U‖2H1 − L(‖W‖H2)‖W‖H2‖U‖2H(5+α)/4 ≤ 0 .
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Similarly to above we now choose γ1, γ2 > 0 such that

γ1C0‖U‖2L2 + γ2C1‖U‖2H1

≤ aα
2

(
‖W‖2

Ḣ(1+α)/2 + γ1‖W‖2Ḣ(3+α)/2 + γ2‖W‖2Ḣ(5+α)/2

)
,

and get the final estimate

d

dt
J +

(
aα
2
− 1

γ∗
L(‖W‖H2)‖W‖H2

)(
‖W‖2

Ḣ(1+α)/2 + γ1‖W‖2Ḣ(3+α)/2

)

+γ2

(
aα
2
− 1

γ∗
L(‖W‖H2)‖W‖H2

)
‖W‖2

Ḣ(5+α)/2 ≤ 0 .

Letting again the initial data be such that J(0) is small enough, we can
deduce that J is nonincreasing for all times and moreover

∫ ∞

0
‖U(t, ·)‖2H1dt <∞ .

�

Appendix A. Linear Integral Equation

In this appendix we analyse the assumption (16) in more detail. We will
show that all continuous and bounded solutions on R− of the linear equation
(36)

v(ξ) = C0

∫ ξ

−∞

v(y)

(ξ − y)1−αdy, v(−∞) = 0, C0 = h′(u−)/Γ(α),

are given by the one-parameter family {beλξ : b ∈ R} with λ = h′(u−)1/α. A
proof for the space Cb(R−) cannot be carried out directly, since the kernel is
only locally integrable. Therefore we first derive the uniqueness result in the
space of continuous functions with exponential decay as ξ → −∞. We also
present a less direct, but more general approach, which gives a similar result
for the underlying space L∞(R−). In addition we show that no continuous
solutions with polynomial decay can exist.

We start by analysing solutions of (36) in Cb(−∞, ξ0] for a ξ0 < 0. Since
it is easier to work with integral operators acting on a finite domain, we
perform the transformation

w(η) = u(ξ), where η = −1

ξ
∈ [0, η0], for an η0 > 0,

leading to the following equation for w

(37) w(η) = C0 η
1−α

∫ η

0

w(s)

(η − s)1−αs1+α
ds, w(0) = 0.

To prove that the only non-trivial solutions with exponential decay are

w(η) = be
−λ
η , we adapt the approach of Wolfersdorf for another integral

equation (see the Appendix in [17]):

Lemma 8. All solutions of (36) within the space

Cw(R−) = {f ∈ Cb(R−) : f(ξ) = eµξg(ξ) for a 0 < µ < λ, where g ∈ Cb(R−)}
are given by the one-parameter family {beλξ : b ∈ R} with λ = h′(u−)1/α.
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Proof. Let w(η) = e
−µ
η z(η) be a solution of (37), where 0 < µ < λ. For

z ∈ Cb[0, η0] we assume w.l.o.g. z(0) = 0 (otherwise we can shift some

decay of the exponential function onto z). We shall show that z = be
−λ−µ

η .
Therefore we introduce

φ(η) = z(η)− C1e
−λ−µ

η

∫ η0

0
z(s)ds, 1 = C1

∫ η0

0
e−

λ−µ
s ds

and note that φ(0) = 0. Its primitive Φ(ξ) =
∫ η

0 φ(s)ds satisfies Φ(0) =
Φ(η0) = 0. Due to Rolle’s Theorem there exists an η1 > 0 such that Φ′(η1) =
φ(η1) = 0. If φ ≡ 0, the proof is finished. Let now φ 6= 0. W.l.o.g. we assume
that η1 > 0 is the smallest value with φ(η1) = 0 and that φ(η) ≥ 0 in [0, η1]
with φ(η) > 0 in (η2, η1) for an η2 ∈ [0, η1). Then we obtain

z(η1) = C0 η
1−α
1

∫ η1

0

e
µ
(

1
η1
− 1
s

)
z(s)

(η1 − s)1−αs1+α
ds

> C0 η
1−α
1

∫ η1

0

e
λ
(

1
η1
− 1
s

)

(η1 − s)1−αs1+α
ds

︸ ︷︷ ︸
=1

C1 e
−λ−µ

η1

∫ η0

0
z(s)ds = z(η1),

leading again to a contradiction, and thus φ ≡ 0. �

We shall also mention a more general approach, which was introduced for
integral equations of Fredholm type. A similar result to Lemma 8 with the
underlying space being L∞(R−), can also be deduced from results on the
Wiener-Hopf equation, which has the standard form

(38) W (ξ)−
∫ ∞

0
K(ξ − y)W (y)dy = 0, ξ ≥ 0.

Wiener and Hopf related the Fredholm property of the associated operator
in (38) to conditions on its symbol [16]. Krein extended the Wiener-Hopf
method to equations with L1-integrable kernels [13]. We only state the part
of his result which we will use in the following:

Let K ∈ L1(R). If the symbol a(z) := 1 −
√

2πF(K)(z) is elliptic,
i.e. infz∈R |a(z)| > 0, and the winding number of the curve {aµ(z) : z ∈
(−∞,∞)} around the origin is a non-positive number r. Then equation (38)
has exactly |r| linearly independent solutions in any of the Lebesgue spaces
Lp(R+), 1 ≤ p ≤ ∞.

Since the kernel in (36) is only locally integrable we introduce as above
exponential weights, which will allow to apply this result.

For a generalization of the Wiener-Hopf method to other spaces than the
Lebesgue ones, we refer to the work of Duduchava [7], in which also the
Theorem of Krein is given more detailed.

Lemma 9. All solutions of (36) within the space

L∞w (R−) = {f ∈ L∞(R−) : f(ξ) = eµξg(ξ) for a 0 < µ < λ and g ∈ L∞(R−)}
are given by the one-parameter family {beλξ : b ∈ R} with λ = h′(u−)1/α.

Proof. Consider solutions v of (36) of the form v(ξ) = eµξw(ξ) for some 0 <
µ < λ and w ∈ L∞(R−). Setting W (ξ) = w(−ξ) and K(ξ) = e−µξθ(ξ)ξα−1,
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equation (36) becomes a Wiener Hopf equation in the form (38). The kernel
K is integrable, since µ > 0. Thus, to apply the result of Krein, it remains
to investigate the properties of the symbol

aµ(z) = 1− h′(u−)
√

2π

Γ(α)
F
(
θ(ξ)

ξ1−α

)
(z − iµ) = 1− h′(u−)(µ+ iz)−α

= 1− h′(u−)(µ2 + z2)−α/2(cos(αϕµ,z)− i sin(αϕµ,z)) ,

where ϕµ,z = arctan z
µ and

√
2π

Γ(α)F
( θ(ξ)
ξ1−α

)
(z) = (iz)−α for z ∈ C. To check

the ellipticity of the symbol, rewrite |aµ(z)|2 as follows

|aµ(z)|2 =
(
1− h′(u−)(µ2 + z2)−α/2

)2
+ 2h′(u−)(µ2 + z2)−α/2

(
1− cos(αϕµ,z)

)
,

which attains its minimum with respect to z at z = 0 and does not vanish
if 0 < µ < λ. Thus the symbol aµ is elliptic and forms a closed curve
{aµ(z) : z ∈ (−∞,∞)}, since aµ(±∞) = 1. Thus the winding number of
the closed curve is a well-defined integer, which remains to be computed.
We note that Re(aµ) is an even function and Re(aµ(0)) < 0 for 0 < µ < λ.
Moreover Im(aµ) is an odd function and Im(aµ(z)) = 0 only if z = 0 or
z = ±∞. Hence the parametrization of the closed curve runs once around
the origin in the counter clockwise sense. Thus the winding number is −1
and the result of Krein implies the statement. �

Finally, we show that no bounded solutions with polynomial decay can
exist.

Lemma 10. (i) If v ∈ Cb(R−) is a solution of (36), then v cannot change
the sign.
(ii) Equation (36) has no solution v ∈ Cb(R−) with polynomial decay as
ξ → −∞.

Proof. Again it easier to consider equation (37) instead. Solutions can-
not change sign due to the nonlocality: If a smooth solution w is positive
(negative) on (0, η∗) for some η∗ > 0, then the solution remains positive
(negative). In contrast, if w = 0 on [0, η∗), then w(η) is a solution of equa-
tion (37) where the integration starts at η∗ instead of s = 0. Therefore, we
avoid the singularity of the kernel at s = 0 and are left with the integrable
singularity at s = η. Given the initial value w(η∗) = 0, we conclude from
standard theory that there exists only the trivial solution.

We prove statement (ii) by contradiction. Suppose that there exists a
solution with polynomial decay w(η) = ηβz(η) for some β > 0 and z ∈
Cb(−∞, η0] which satisfies w.l.o.g. z(η) ≥ z∗ > 0. Then

z(η) ≥ z∗
h′(u−)

Γ(α)
η1−α−β

∫ η

0

1

(η − s)1−αs1+α−β ds =
h′(u−)

Γ(α)
z∗B(α, β−α) η−α,

where B denotes the Beta function. We see that for any β the right hand
side grows unbounded as η → 0, which contradicts our assumption z ∈
Cb(−∞, η0]. �
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ON NONLINEAR CONSERVATION LAWS REGULARIZED

BY A RIESZ-FELLER OPERATOR

FRANZ ACHLEITNER, SABINE HITTMEIR, AND CHRISTIAN SCHMEISER

Abstract. Scalar one-dimensional conservation laws with nonlocal dif-
fusion term are considered. The wellposedness result of the initial-value
problem with essentially bounded initial data for scalar one-dimensional
conservation laws with fractional Laplacian is extended to a family of
Riesz-Feller operators.

The main interest of this work is the investigation of smooth traveling
wave solutions. In case of a genuinely nonlinear smooth flux function
we prove the existence of such traveling waves, which are monotone
and satisfy the standard entropy condition. Moreover, the dynamic
nonlinear stability of the traveling waves under small perturbations is
proven, similarly to the case of the standard diffusive regularization, by
constructing a Lyapunov functional.

Apart from summarizing our results in the article Achleitner et al.
(2011), we provide the wellposedness of the initial-value problem for a
larger class of Riesz-Feller operators.

1. Introduction

We consider one-dimensional conservation laws with nonlocal diffusion
term

(1) ∂tu+ ∂xf(u) = ∂xDαu
for a scalar quantity u : R+ × R, (t, x) 7→ u(t, x), a smooth flux function
f : R→ R and a non-local operator

(2) (Dαu)(x) =
1

Γ(1− α)

∫ x

−∞

u′(y)

(x− y)α
dy ,

with 0 < α < 1.

1.1. Motivation. Conservation laws with nonlocal diffusion term of the
form (1) appear in viscoelasticity - modeling the far-field behavior of uni-
directional viscoelastic waves [1] - as well as in fluid mechanics - modeling the
internal structure of hydraulic jumps in near-critical single-layer flows [3].

Moreover the nonlocal operator D1/3 appears in Fowler’s equation

(3) ∂tu+ ∂xu
2 = ∂2

xu− ∂xD1/3u ,

which models the uni-directional evolution of sand dune profiles [4].
Equation (1) is closely related to

(4) ∂tu+ ∂xf(u) = Dα+1u

2010 Mathematics Subject Classification. 47J35, 26A33, 35C07.
Key words and phrases. nonlocal evolution equation, fractional derivative, traveling

wave.
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2 FRANZ ACHLEITNER, SABINE HITTMEIR, AND CHRISTIAN SCHMEISER

with a fractional Laplacian Dα+1 = (−∂2u
∂x2

)(α+1)/2, 0 < α < 1. This kind
of nonlinear conservation law with nonlocal regularization has been studied
e.g. in [5, 6].

Remark 1. The nonlocal operators ∂xDα, 0 < α < 1, and the fractional
Laplacian Dα+1, 0 < α < 1, are Fourier multiplier operators, i.e.

F(∂xDαu)(ξ) = −(sin(απ/2)− i cos(απ/2) sgn(ξ))|ξ|α+1Fu(ξ)

and

F(Dα+1u)(ξ) = −|ξ|α+1Fu(ξ) ,

whereat the Fourier transform F is defined as Fϕ(ξ) = ϕ̂(ξ) = 1√
2π

∫
e−ixξϕ(ξ)dξ.

1.2. Riesz-Feller operators. Riesz-Feller operators [7, 8, 9] are Fourier
multiplier operators

(FDa,θf)(ξ) = −ψa,θ(−ξ)(Ff)(ξ)

whose multiplier ψa,θ(ξ) = |ξ|ae(i sgn(ξ)θπ/2) is the logarithm of the character-
istic function of a general Lévy strictly stable probability density with index
of stability 0 < a ≤ 2 and asymmetry parameter |θ| ≤ min(a, 2 − a). The
nonlocal operators ∂xDα, 0 < α < 1, and the fractional Laplacian Dα+1,
0 < α < 1, are Riesz-Feller operators, see also Remark 1 and Figure 1.

Theorem 1.1. For 0 < a ≤ 2, |θ| ≤ min{a, 2 − a} and |θ| < 1, the Riesz-
Feller operator Da,θ generates a strongly continuous, convolution semigroup

T (t) : Lp(R)→ Lp(R) , u0 7→ T (t)u0 = K(t, ·) ∗ u0 ,

with 1 ≤ p < ∞ and a convolution kernel K(t, x) = F−1 exp(−tψ(−.))(x)
satisfying - for all x ∈ R, t > 0 and m ∈ N - the properties

• (non-negative) K(t, x) ≥ 0,
• (integrable) ‖K(t, .)‖L1(R) = 1,

• (scaling) K(t, x) = t−
1

1+αK(1, xt−
1

1+α ),
• (smooth) K(t, x) is C∞ smooth,
• (bounded) there exists Bm ∈ R+ such that∣∣∣∣

∂mK

∂xm

∣∣∣∣(t, x) ≤ t−
1+m
1+α

Bm

1 + t−
2

1+α |x|2
.

The initial-value problem

(5) ∂tu+ ∂xf(u) = Da,θu , u(0, x) = u0(x) ,

for Riesz-Feller operators Da,θ with index of stability 1 < a ≤ 2 and asym-
metry parameter a− 2 ≤ θ ≤ 2− a covers the special cases (1) and (4).

Theorem 1.2. Suppose 1 < a ≤ 2 and a− 2 ≤ θ ≤ 2− a. If u0 ∈ L∞, then
there exists a unique solution u ∈ L∞((0,∞)×R) of (5) satisfying the mild
formulation

(6) u(t, x) = K(t, .) ∗ u0(x)−
∫ t

0

[
∂K

∂x
(t− τ, .) ∗ f(u(τ, .))

]
(x) dτ

almost everywhere. In particular

‖u(t, .)‖∞ ≤ ‖u0‖∞, for t > 0 ,
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Figure 1. The family of Fourier multipliers ψa,θ(ξ) =

|ξ|ae(i sgn(ξ)θπ/2) has two parameters a and θ. Some associated Fourier
multiplier operators (FTf)(ξ) = −ψa,θ(−ξ)(Ff)(ξ) are displayed in
the parameter space (a, θ). The Riesz-Feller operators Da,θ are those
operators, that take their parameters in the blue set {(a, θ) ∈ R2 | 0 <
a ≤ 2 , |θ| ≤ min(a, 2− a)}, also known as Feller-Takayasu diamond.
The family of operators ∂xDα, 0 < α < 1, interpolates formally
between the first derivative ∂x and second derivative ∂2

x. Thus the
limiting cases of equation (1) are a hyperbolic conservation law (for
α = 0) and a viscous conservation law (for α = 1) [1].

and, in fact, u takes its values between the essential lower and upper bounds
of u0. Moreover, the solution has the following properties:

(i) u ∈ C∞((0,∞)× R) and u ∈ C∞b ((t0,∞)× R) for all t0 > 0.
(ii) u satisfies equation (5) in the classical sense.

(iii) u(t) → u0, as t → 0, in L∞(R) weak-∗ and in Lploc(R) for all
p ∈ [1,∞).

Sketch of proof. The analysis of the initial-value problem for (4) by Droniou,
Gallouët and Vovelle [6] depends on the properties in Theorem 1.1 of the
semigroup (and its convolution kernel K(t, x)) generated by the fractional
Laplacian Dα+1 for 0 < α < 1. However all Riesz-Feller operators Da,θ with
index of stability 1 < a ≤ 2 and asymmetry parameter a − 2 ≤ θ ≤ 2 − a
share these properties. Thus the analysis in [6] carries over to the initial-
value problem (5). �
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2. Traveling wave solutions

Definition 2.1. Suppose (u−, u+, s) ∈ R3. A traveling wave solution of (1)
is a solution of the form u(t, x) = ū(ξ) with ξ := x−st and some function ū :
R→ R that connects the distinct endstates limξ→±∞ ū(ξ) = u±.

Inserting a traveling wave ansatz in (1) and integrating with respect to ξ
yields the traveling wave equation
(7)

h(u) := f(u)− su−
(
f(u−)− su−

)
= Dαu =

1

Γ(1− α)

∫ x

−∞

u′(y)

(x− y)α
dy ,

which is translation invariant.
If a smooth profile ū approaches the endstates sufficiently fast, then the

formal limit ξ →∞ in (7) leads to the Rankine-Hugoniot condition f(u+)−
f(u−) = s(u+ − u−).

If f is a convex flux function, then the vector field h is non-positive for
values between u− and u+. Thus and due to the right-hand side of (7), a
monotone traveling wave solution has to be monotone decreasing and the
standard entropy condition u− > u+ has to hold.

The profile ū of a traveling wave solution is governed by (7), whence its
value at ξ ∈ R depends (only) on its values on the interval (−∞, ξ). There-
fore, first the existence of a profile on an interval (−∞, ξε] is established,
subsequently its monotonicity and boundedness are verified and finally its
global existence is deduced from an continuation argument.

The integral operator

Dαu(ξ) =
1

Γ(1− α)

∫ ξ

−∞

u′(y)

(ξ − y)α
dy

is of Abel type and can be inverted by multiplying it with (z − ξ)−(1−α)

and integrating with respect to ξ from −∞ to z. Thus the traveling wave
problem

(8) h(u) = Dαu , lim
ξ→−∞

ū(ξ) = u− , lim
ξ→+∞

ū(ξ) = u+ ,

and

(9) u(ξ)− u− = D−α(h(u))(ξ) :=
1

Γ(α)

∫ ξ

−∞

h(u(y))

(ξ − y)1−α dy

are equivalent if u ∈ C1
b (R) and u′ ∈ L1(R−), and in particular if u ∈ C1

b (R)
is monotone. Equation (9) is a nonlinear Volterra integral equation with a
locally integrable kernel, where a well developed theory exists for problems
on bounded intervals.

The linearizations of (8) and (9) at ξ = −∞ (or, equivalently, at u = u−)
are

(10) h′(u−)v = Dαv and v = h′(u−)D−αv ,

respectively. Both linearizations have solutions of the form v(ξ) = beλξ

with λ = h′(u−)1/α and arbitrary b ∈ R, see also [10]. We will need that
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these are the only non-trivial solutions of (10) in the space H2(−∞, ξ0] for
some ξ0 ≤ 0. In particular, we assume that

(11) N
(
id− h′(u−)D−α

)
= span{exp(λξ)} with λ = h′(u−)1/α ,

which is reasonable due to our analysis in [11, Appendix A].
In the existence result both formulations (8) and (9) will be used.

Theorem 2.2 ([11, Theorem 2]). Suppose f ∈ C∞(R) is a convex flux
function, the shock triple (u−, u+, s) satisfies the Rankine-Hugoniot condi-
tion f(u+)− f(u−) = s(u+−u−) as well as the entropy condition u− > u+,
and condition (11) holds. Then there exists a decreasing solution u ∈ C1

b (R)
of the traveling wave problem (8). It is unique (up to a shift) among all
u ∈ u− +H2((−∞, 0)) ∩ C1

b (R).

Remark 2 (Extensions). In [11] we prove the result assuming only

(12) h ∈ C∞([u+, u−]) , h(u+) = h(u−) = 0 , h < 0 in (u+, u−) ,

∃um ∈ (u+, u−) such that h′ < 0 in (u+, um) and h′ > 0 in (um, u−] .

This is a little less than asking for convexity of f and the Lax entropy
condition, since it covers the case f ′(u+) ≤ s < f ′(u−).

The case of an concave flux function f can be analyzed in a similar way.

Idea of proof. The nonlinear problem has, up to translations, only two non-
trivial solutions udown and uup, which can be approximated for large negative

ξ by u− − eλξ and large positive ξ by u− + eλξ, respectively. The choice 1
of the modulus of the coefficient of the exponential is irrelevant due to the
translation invariance of the traveling wave equations (7) and (9).

The traveling wave equation (7) involves a causal integral operator, i.e. to
evaluate Dαū(ξ) at a point ξ the profile ū on the interval (−∞, ξ] is needed.
Thus, for ε > 0 and ξε := log ε/λ, we investigate the existence of solution
udown : Iε → R of (7) on the interval Iε = (−∞, ξε]
(13) lim

ξ→−∞
udown(ξ) = u− and udown(ξε) = u− − ε .

Due to the analysis of the linearized equation (10) and assumption (11), the
solution is written as udown(ξ) = u− − exp(λξ) + v. Thus the perturbation
v satisfies a boundary value problem (BVP)
(
Dα− h′(u−)

)
v = h(u−− exp(λξ) + v) + h′(u−)

(
exp(λξ)− v

)
, v(ξε) = 0 .

This can be formulated as a fixed point problem for a given right-hand side
in H2(Iε) and an application of Banach’s fixed point theorem yields the
existence of udown which is unique among all functions u satisfying (13) and
‖u− u−‖H2(Iε) ≤ δ for some sufficiently small δ, which is independent of ε.
Moreover

(14) ‖udown − u− + eλξ‖H2(Iε) ≤ Cε2

for some ε-independent constant C. The boundedness and monotonicity of
udown,

udown(ξ) < u− and u′down(ξ) < 0 ∀ξ ∈ Iε ,
follows from (14), a Sobolev imbedding H2(R) ↪→ C1(R) and the properties
of u− − exp(λξ).
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Next, the continuation of the solution udown : (−∞, Iε] → R is proven.
The boundedness and monotonicity of udown imply that udown is also a
solution of (9). Due to the causality of the integral operator, (9) can be
written as a Volterra integral equation on a bounded interval [Iε, Iε + δ) for
some δ > 0

u(ξ) = f(ξ) +
1

Γ(α)

∫ ξ

ξε

h(u(y))

(ξ − y)1−α dy .

with a well-defined inhomogeneity f(ξ) = u− + 1
Γ(α)

∫ ξε
−∞

h(u(y))
(ξ−y)1−α dy. The

(local) existence of a smooth solution for sufficiently small δ is a standard
result in the theory of Volterra integral equations on bounded intervals, see
e.g. Linz [13].

Then, the boundedness and monotonicity of these continued solutions is
proven, such that the argument for local existence can be iterated to imply
the existence of a solution

udown ∈ C1
b (R) with lim

ξ→∞
udown(ξ) = u− .

Finally, the proof of Theorem 2.2 is completed by proving limξ→∞ u(ξ) =
u+. Assuming to the contrary limξ→∞ u(ξ) > u+, would imply limξ→∞ h(u(ξ)) <
0. Then, however, −D−αh(u) = u− − u would increase above all bounds,
which is impossible by the boundedness of the solution. �

Remark 3 (Discussion of previous results). Sugimoto and Kakutani [1, 2]
studied the existence of traveling wave solutions of (1). They prove that
bounded continuous traveling wave solution may exist, but give no analytical
proof of existence, instead they construct numerical solutions and study the
asymptotic behavior analytically.

In case of Burgers’ equation with fractional Laplacian (4), Biler et al. [5]
showed that no continuous traveling wave solutions can exist for α ∈ (−1, 0],
however they provide no existence result for the case α ∈ (0, 1).

Alvarez-Samaniego and Azerad [12] proved the existence of traveling wave
solutions of (3) with perturbation methods.

Remark 4 (Comparison with previous results). The dynamical systems
approach to prove the existence of traveling wave solutions in [11, Theorem
2], parallels the one in case of viscous conservation laws. This approach is
possible due to the causality of the operator Dα in (7) and the monotonicity
of the profiles.

In contrast in case of a conservation law with fractional Laplacian (4)
the traveling wave equation for traveling wave solutions u(t, x) = ū(ξ) with
ū ∈ C2

b (R) can be written as

h(u) := f(u)− su−
(
f(u−)− su−

)
=

1

Γ(1− α)

∫ ∞

−∞

u′(y)

(x− y)α
dy .

Thus the value of a profile ū at ξ ∈ R depends on the entire profile ū, such
that a different approach is needed.

Whereas in case of Fowler’s equation (3) the profile of a traveling wave
solution is not necessarily monotone, such that the boundedness of a profile
is difficult to establish.
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2.1. Asymptotic stability of traveling wave solutions. To study the
asymptotic stability of traveling wave solutions φ of (1), equation (1) is cast
in a moving coordinate frame (t, x)→ (t, ξ = x− st),
(15) ∂tu+ ∂ξ(f(u)− su) = ∂ξDαu ,
such that a traveling wave solution becomes a stationary solution of (15).
Analogous to viscous conservation laws asymptotic stability of φ is only to
be expected for integrable zero-mass perturbations U0 := u0 − φ, i.e.

(16)

∫

R
U0(ξ) dξ = 0 .

The evolution of a perturbation U := u− φ is governed by

(17) ∂tU + ∂ξ(f(φ+ U)− f(φ)− sU) = ∂ξDαU .
However the L2-norms of the perturbation U and its derivative are not
enough to construct a Lyapunov functional. Therefore the primitive

W (t, ξ) =

∫ ξ

−∞
U(t, η) dη

of the perturbation U has to be considered.
The flux function will be assumed to be convex between the far-field values

u± of the traveling wave solution φ, i.e.

(18) f ′′(φ(ξ)) ≥ 0 for all ξ ∈ R .

Theorem 2.3 ([11, Theorem 4]). Suppose f ∈ C∞(R), the conditions (12)
and (18) hold and φ is a traveling wave solution of (1) as in Theorem 2.2.

Let u0 be such that W0(ξ) =
∫ ξ
−∞(u0(η) − φ(η)) dη satisfies W0 ∈ H2(R).

If ‖W0‖H2 is small enough, then the initial-value problem for equation (15)
with initial datum u0 has a unique global solution converging to the traveling
wave solution φ in the sense that

(19) lim
t→∞

∫ ∞

t
‖u(τ, .)− φ‖H1 dτ = 0 .

Proof. First, the local-in-time wellposedness of the initial-value problem

(20) ∂tW + (f(U + φ)− f(φ)− sU) = ∂ξDαW , W (0, x) = W0(x) ,

is established by an fixed point argument [11, Proposition 2].
Then a (Lyapunov) functional

J(t) =
1

2
(‖W‖2L2 + γ1‖U‖2L2 + γ2‖∂ξU‖2L2)

is defined with positive constants γ1, γ2 > 0. The functional J : H2(R)→ R,
W (t) 7→ J(t), is equivalent to ‖W (t)‖2H2 , since γ∗‖W (t)‖2H2 ≤ 2J(t) ≤
γ∗‖W (t)‖2H2 with γ∗ = min{1, γ1, γ2} and γ∗ = max{1, γ1, γ2}. Combining
the energy estimates of the perturbation U , its primitiveW and its derivative
∂ξU , and using a Gagliardo-Nirenberg inequality yields

d

dt
J + aα

(
‖W‖2

Ḣ(1+α)/2 + γ1‖W‖2Ḣ(3+α)/2 + γ2‖W‖2Ḣ(5+α)/2

)

− γ1C0‖U‖2L2 − γ2C1‖U‖2H1 − L(‖W‖H2)‖W‖H2‖U‖2H(5+α)/4 ≤ 0 ,
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where aα = sin(απ/2) > 0 and Ḣs denotes the homogeneous Sobolev space
of order s. Finally, the constants γ1, γ2 > 0 are chosen such that

γ1C0‖U‖2L2 + γ2C1‖U‖2H1

≤ aα
2

(
‖W‖2

Ḣ(1+α)/2 + γ1‖W‖2Ḣ(3+α)/2 + γ2‖W‖2Ḣ(5+α)/2

)
,

which implies the final estimate

d

dt
J +

(
aα
2
− 1

γ∗
L(‖W‖H2)‖W‖H2

)(
‖W‖2

Ḣ(1+α)/2 + γ1‖W‖2Ḣ(3+α)/2

)

+ γ2

(
aα
2
− 1

γ∗
L(‖W‖H2)‖W‖H2

)
‖W‖2

Ḣ(5+α)/2 ≤ 0 .

For initial data such that J(0) is sufficiently small, the functional J(t) - being
equivalent to ‖W (t)‖2H2 - is non-increasing for all times. This implies the
global-in-time existence of W (t) as a solution of (20) and moreover (19). �

Remark 5. In case of Burgers’ flux f(u) = u2 and α > 1/2, asymptotic
stability of a traveling wave solution φ is established in case of W0 ∈ H1(R),
see also [11, Theorem 3].

Due to a Sobolev imbedding H1(R) ↪→ Cb(R), the asymptotic stability
result limt→∞ ‖U(t)‖H1 = 0 implies also limt→∞ ‖U(t)‖L∞ = 0.
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ASYMPTOTIC STABILITY OF TRAVELING WAVE

SOLUTIONS FOR NONLOCAL VISCOUS CONSERVATION

LAWS WITH EXPLICIT DECAY RATES

FRANZ ACHLEITNER AND YOSHIHIRO UEDA

Abstract. We consider scalar conservation laws with nonlocal di�u-
sion of Riesz-Feller type such as the fractal Burgers equation. The exis-
tence of traveling wave solutions with monotone decreasing pro�le has
been established recently (in special cases). We show the local asymp-
totic stability of these traveling wave solutions in a Sobolev space setting
by constructing a Lyapunov functional. Most importantly, we derive the
algebraic-in-time decay of the norm of such perturbations with explicit
algebraic-in-time decay rates.

1. Introduction

We consider the evolution of a scalar quantity u : R × (0,∞) → U ⊂ R,
(x, t) 7→ u(x, t), which is governed by the Cauchy problem

∂tu+ ∂xf(u) = Dα
θ u for (x, t) ∈ R× (0,∞),(1)

u(0, x) = u0(x) for x ∈ R,

with an initial datum u0 : R→ U ⊂ R, a �ux function f : U ⊂ R→ R and a
Riesz-Feller operator Dα

θ for some 1 < α ≤ 2 and |θ| ≤ 2− α. Equation (1)
models nonlinear transport and nonlocal di�usion of a quantity u(x, t) in
space over time. The �ux function f is assumed to be smooth and convex as
well as to satisfy w.l.o.g. f(0) = 0. The Riesz-Feller operator can be de�ned
as a Fourier multiplier operator, see also [23]. Precisely, the Riesz-Feller
operator Dα

θ of order α and skewness θ is de�ned as

(2) F [Dα
θ v](k) = ψαθ (k)F [v](k) , k ∈ R ,

with symbol

(3) ψαθ (k) = −|k|α exp
(
i sgn(k) θ π2

)
= −|k|α

(
cos(θ π2 ) + i sgn(k) sin(θ π2 )

)

and parameters 0 < α ≤ 2 and |θ| ≤ min{α, 2 − α}, where F denotes the
Fourier transform.

Remark 1. (i) Riesz-Feller operators Dα
θ with θ = 0 are also known as

fractional Laplacians Dα
0 = −(−∂2xu)α/2 with 0 < α ≤ 2 and Fourier symbol

−|k|α. In particular, the Laplacian D2
0 = ∂2x is a special case with α = 2 and

θ = 0.

2010 Mathematics Subject Classi�cation. 47J35, 26A33, 35C07.
Key words and phrases. nonlocal evolution equations, Riesz-Feller operator, fractional

Laplacian, traveling wave solutions, asymptotic stability, decay rates.
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2 FRANZ ACHLEITNER AND YOSHIHIRO UEDA

(ii) For 0 < γ < 1, Riesz-Feller operators Dα
θ with α = γ and θ = −γ, can

be identi�ed with fractional Caputo derivatives of order 0 < γ < 1:

(4) −(Dγu)(x) = − 1

Γ(1− γ)

∫ x

−∞

u′(y)

(x− y)γ
dy for x ∈ R ,

which have Fourier symbol −(−ik)γ . The symbol (−ik)γ is multi-valued, ho-
wever (only) the choice (−ik)γ =

(
|k| exp(−i sgn(k) π2 )

)γ
= |k|γ exp(−i sgn(k) γ π2 )

yields a causal operator. For details, see [20]. Moreover, its derivative
∂x(Dγu) is a Riesz-Feller operator with α = 1 + γ and θ = 2− α.

Taking α = 2 and θ = 0 in (1), we formally obtain a classical viscous
conservation law:

(5) ∂tu+ ∂xf(u) = ∂2xu for (x, t) ∈ R× (0,∞).

The existence and asymptotic stability of traveling wave solutions of equa-
tion (5) has been studied thoroughly. A �rst example of equation (1) with
nonlocal di�usion is

(6) ∂tu+ ∂xf(u) = Dα
0 u for (x, t) ∈ R× (0,∞) ,

with a fractional Laplacian Dα
0 , 0 < α ≤ 2, which has been studied e.g.

in [6, 11]. For 1 < α ≤ 2, the Cauchy problem for (6) with f ∈ C∞(R)
and essentially bounded initial data has a global-in-time mild solution which
becomes smooth for positive times, see [11] and its extension to (1) in [2].

Other examples of equation (1) with nonlocal di�usion appear in viscoe-
lasticity [27] and �uid dynamics [21]. In particular,

(7) ∂tu+ ∂xf(u) = ∂xDγu for (x, t) ∈ R× (0,∞) ,

with 0 < γ < 1 is used as a model for the far-�eld behavior of uni-directional
viscoelastic waves [27], and derived as a model for the internal structure of
hydraulic jumps in near-critical single-layer �ows [21]. Moreover the nonlocal

operator D1/3 appears in Fowler's equation

(8) ∂tu+ ∂xu
2 = ∂2xu− ∂xD1/3u ,

which models the uni-directional evolution of sand dune pro�les [13]. In
the theory of water waves similar models ∂tu + ∂xu

2 = N [u] with di�erent
(nonlocal) Fourier multiplier operators N are studied, see the book [25] and
references therein.

To explain our main results, we introduce traveling wave solutions for
equation (1). Traveling wave solutions (TWS) are of the form u(x, t) = u(ξ)
for some pro�le u with ξ = x − st and (constant) wave speed s ∈ R. We
are interested in TWS with pro�les u connecting distinct endstates u± such
that

(9) lim
x→±∞

u(x) = u± .

Using this ansatz in equation (1) and assumption (9), we �nd that the wave
speed s has to satisfy the Rankine-Hugoniot condition

(10) s =
f(u+)− f(u−)

u+ − u−
.
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Here, an extension of Riesz-Feller operators to non-integrable functions is
needed, see Appendix A. Due to translational invariance of equation (1),
traveling wave solutions are only unique up to a shift.

For classical viscous conservation laws (5), the pro�le of a TWS satis�es
an ordinary di�erential equation u′ = f(u) − su − (f(u−) − su−). In fact,
TWS exist only for parameters (u−, u+; s) satisfying (10) and u+ < u−. In
case of equation (7), the existence and asymptotic stability (without decay
rates) of traveling wave solutions for parameters (u−, u+; s) satisfying (10)
and u+ < u− has been shown [1, 8]. Here, a pro�le satis�es a fractional
di�erential equation Dγu = f(u)−su−(f(u−)−su−). The proof of existence
relies on the causality of the Caputo derivative Dγ , i.e. to evaluate Dγu at
x the pro�le u on (−∞, x) is needed. In contrast, the pro�le for a TWS of
a nonlocal conservation law (6) for 1 < α < 2 has to satisfy

Dα
0 u(x) =

∫

R

u(x+ ξ)− u(x)− u′(x) ξ

ξ1+α
dξ = ∂x

(
f(u)− su− (f(u−)− su−) .

Thus Dα
0 u(x) depends on the whole pro�le u. For fractal Burgers equation,

i.e. equation (6) with 1 < α < 2 and Burgers �ux function f(u) = u2, the
existence of traveling wave solutions has been proven recently [7]. The idea is
to approximate the operators Dα

0 by convolution operators Kε[u] = Kε∗u−u
for suitable convolution kernels Kε ∈ L1(R). The existence of TWS for the
approximate equations is known and the TWS is established as the limit of
this family. It is conceivable to use this approach to prove the existence of
traveling wave solutions in the general case (1) for convex �ux functions f
with 1 < α < 2 and |θ| ≤ 2− α.

For fractal Burgers equation (6) results in the complementary cases α ∈
(0, 1) and/or u− ≤ u+ are also available: For example, for α ∈ (0, 1) and (9)
no traveling wave solutions of (6) with smooth pro�le exists [6]. Whereas
under the assumption u− < u+ the solution of (6) converges as t → ∞ to
a rarefaction wave of the underlying Burgers equation if α ∈ (1, 2) and to a
self-similar solution if α = 1; see [17] and [4], respectively.

The asymptotic stability of traveling wave solutions of classical viscous
conservation laws (5) has been studied thoroughly. At �rst, historically, Il'in
and Oleinik [16] proved the asymptotic stability of nonlinear waves for vis-
cous conservation laws (5) by making use of the maximum principle for linear
parabolic equations. For Burgers' equation, i.e. equation (5) with Burgers'
�ux function f(u) = u2, Nishihara [26] obtained the decay estimates toward
traveling wave solutions by making use of the explicit solution formula. And,
Kawashima and Matsumura [18] generalized Nishihara's time decay result to
a class of viscous conservation laws. They considered weighted L2 spaces and
used a weighted energy method. Furthermore, Kawashima, Nishibata and
Nishikawa [19] extended the L2 energy method to general Lp spaces. Their
techniques have been applied to a model system for compressible viscous gas
in [24] and a hyperbolic system with relaxation in [28].

Assuming the existence of a traveling wave solution of (1) with monotone
decreasing pro�le, we show that asymptotic stability of a traveling wave
solution in a Sobolev space setting follows from a standard Lyapunov functi-
onal argument: To investigate the stability of the traveling wave solution
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with pro�le u, we consider initial data u0 such that u0 − u is integrable and
determine the unique shift x0 which yields

∫∞
−∞ (u0(ξ)− u(ξ + x0)) dξ = 0.

Moreover, we restrict the domain of initial data u0 further such thatW0(ξ) =∫ ξ
−∞ (u0(η)− u(η)) dη exists (using a suitable shifted pro�le u) and satis�es

W0 ∈ H2. (For details, we refer to [28].) More precisely, we can derive the
following theorem.

Theorem 1. Suppose 1 < α ≤ 2 and θ ≤ min{α, 2−α}. Let the �ux function
f ∈ C2(R) be convex and let u(x, t) = u(x− st) be a traveling wave solution
of (1) with monotone decreasing pro�le u. Let u0 be an initial datum for (1)

such that W0(ξ) =
∫ ξ
−∞ (u0(η)− u(η)) dη satis�es W0 ∈ H2(R). Then there

exists a positive constant δ0 such that if ‖W0‖H2 ≤ δ0, then the Cauchy
problem (1) has a unique global solution converging to the traveling wave in
the sense that

‖(u− u)(t)‖L∞ −→ 0 for t→∞.
The proof of Theorem 1 for the general equation (1) is similar to the one

of [1, Theorem 4] for the special case (7) without decay rates.
Our main result is to prove the asymptotic stability with algebraic-in-

time decay rate for traveling wave solutions of (1) with monotone decreasing
pro�les.

Theorem 2. Suppose the same assumptions as in Theorem 1 hold and f ∈
C∞(R). For all W0 ∈ W 1,∞(R) ∩W 1,1(R), the Cauchy problem (1) has a
unique global solution. Moreover, there exists a positive constant δ1 such that
if ‖W0‖W 1,1 ≤ δ1 then the unique global solution u satis�es

(11) ‖(u− u)(t)‖L2 ≤ CE1(1 + t)−1/(2α)

for t ≥ 0, where E1 := ‖W0‖H1 + ‖W0‖W 1,1 and C is a constant which is
independent of time t.

Remark 2. We employ sharp interpolation inequalities in Sobolev spaces to
derive (11). In this way optimal decay estimates for the asymptotic stability
of viscous rarefaction waves in scalar viscous conservation laws (5) have been
derived in [14].

Remark 3. We want to explain the functional setting in Theorem 2: We
considered the function spaces H2(R) ∩W 2,1(R) ⊂ W 1,∞(R) ∩W 1,1(R) ⊂
H1(R) ∩W 1,1(R) in variants of Theorem 2. The choice H1(R) ∩W 1,1(R)
leads to the restriction α ∈ (3/2, 2) if we use an estimate of the nonlinearity
like Dix [9, 10] to establish the existence of solutions for the Cauchy problem.
Assuming higher regularity of the initial data removes the need for this re-
striction: Under the assumptions of Theorem 1 withW0 ∈ H2(R)∩W 2,1(R),
the solution constructed in Theorem 1 satis�es

‖(u− u)(t)‖H1 ≤ CẼ1(1 + t)−1/(2α)

for t ≥ 0, where Ẽ1 := ‖W0‖H2 + ‖W0‖W 2,1 and a constant C independent
of time t. Our choice W0 ∈ W 1,∞(R) ∩W 1,1(R) in Theorem 2 leads to the
technical assumption f ∈ C∞(R), since we use a result on the existence of
global-in-time solutions for the Cauchy problem with essentially bounded
initial data [11, 2]. The assumption f ∈ C2(R) in Theorem 1 could be
retained by aiming for less regularity in their approach.
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Unfortunately it is di�cult to apply the weighted energy method in [18]
to our problem (to derive the convergence rate). Instead of this method,
we employ another technique which focuses on the interpolation property in
Sobolev space. For example, this argument is utilized in [14].

The contents of this paper are as follows. In Section 2, we reformulate
our problem and consider the well-posedness of the new one. In Section 3,
we derive the asymptotic stability result by uniform energy estimates as
a-priori estimates of solutions in the Sobolev space H2. Furthermore, our
main result on the asymptotic stability with explicit algebraic decay rate in
Theorem 2 is proved in Section 4, by using the energy method with an L2�L1

interpolation argument. In Appendix A, we collect results on the singular
integral representation of Riesz-Feller operators.

Notation. Before closing this section, we give some notations used in this
paper. We de�ne the Fourier transform for v ∈ S in the Schwartz space S
as

v̂(k) = F [v](k) :=

∫

R
e−ikxv(x) dx for k ∈ R ,

and the inverse Fourier transform as

F−1[v](x) :=
1

2π

∫

R
eikxv(k) dk for x ∈ R .

The Fourier transform and its inverse are linear operators and F and F−1
will denote also their respective extensions to L2(R).

For 1 ≤ p ≤ ∞, we denote by Lp = Lp(R) the usual Lebesgue space over R
with norm ‖ · ‖Lp , and W s,p = W s,p(R) the usual Sobolev space over R with
norm ‖ · ‖W s,p . Using the short-hand notation Hs(R) := W s,2(R) with norm
‖ · ‖Hs . Moreover, we set ‖W (t)‖W 1,∞ = max{‖W (t)‖L∞ , ‖∂ξW (t)‖L∞}
and its analog in case of ‖W (t)‖W `,∞ for all ` ∈ N. Finally, for nonnegative
integer `, C`(I;X) (respectively C`b(I;X)) denotes the space of `-times con-
tinuously di�erentiable functions (respectively with bounded derivatives) on
the interval I with values in the Banach space X.

The constants in our estimates may change their value from line to line.

2. Reformulation for the problem

In the special case (7), the existence and asymptotic stability of traveling
wave solutions u(x, t) = u(x − st) with monotone decreasing pro�le u has
been proven without rates of decay [1, 8]. However, assuming in the gene-
ral case (1) the existence of a traveling wave solution u(x, t) = u(x − st)
with monotone decreasing pro�le u, then the proof of asymptotic stability
generalizes with obvious modi�cations:

To prove the asymptotic stability of a traveling wave solution u of (1),
one can follow the standard approach called the anti-derivative method in-
troduced in [18] for viscous conservation laws. It is convenient to cast (1) in
a moving coordinate frame (x, t) 7→ (ξ, t), such that

(12) ∂tu+ ∂ξ(f(u)− su) = Dα
θ u ,
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and u is a stationary solution of (12). The Cauchy problem for (12) with
initial datum u0 governs the evolution of u0. If its solution u is considered
as a perturbation of the traveling wave solution u, then this perturbation
U(ξ, t) := u(ξ, t)− u(ξ) satis�es the Cauchy problem

∂tU + ∂ξ(f(u+ U)− f(u))− s∂ξU = Dα
θ U,

U(ξ, 0) = U0(ξ),
(13)

where U0(ξ) := u0(ξ)−u(ξ). To obtain the desired result, we try to construct
the L2-energy estimate for U by employing the energy method. However,
because of the decreasing property of traveling wave solutions, it is hard to
construct the L2-energy estimate. To overcome this di�culty, we apply the
anti-derivative method.

Precisely, we introduce the new functionW (ξ, t) which satis�es ∂ξW = U .
Then we can formally rewrite (13) as

∂tW + f(u+ ∂ξW )− f(u)− s∂ξW = Dα
θW,

W (ξ, 0) = W0(ξ).
(14)

If a global-in-time solution of (14) with W0(ξ) =
∫ ξ
−∞ U0(η) dη is su�ciently

smooth, then its derivative ∂ξW satis�es Cauchy problem (13). Therefore,
we try to construct a global-in-time solution of (14), instead of (13). For
this purpose, we discuss the well-posedness of problem (14) in this section.

The well-posedness of the Cauchy problem for (14), will follow from a
contraction argument. Assuming f(u) = u2 and α > 3/2 allows to estimate
the nonlinearity in the fashion of Dix [9, 10] implying the well-posedness
in H1. For general �ux functions and α ∈ (1, 2], we have to require more
regularity of the initial data, e.g. W0 ∈ H2.

Proposition 1. Let f ∈ C2(R), 1 < α ≤ 2 and |θ| ≤ min{α, 2−α} = 2−α.
Suppose M is an arbitrary positive constant and suppose W0 ∈ H2(R) such
that ‖W0‖H2 ≤ M . Then there exists a positive constant T , which depends
on M , such that the Cauchy problem (14) has a unique mild solution W ∈
C([0, T ];H2) with ‖W (t)‖H2 ≤ 2M for t ∈ [0, T ].

To prove Proposition 1, we �rst present some properties of the fundamen-
tal solution of ∂tu = Dα

θ u.

Lemma 1 ([3, Lemma 2.1]). For 1 < α ≤ 2 and |θ| ≤ min{α, 2−α} = 2−α,
Gαθ (x, t) := F−1[etψαθ (·)](x) with ψαθ de�ned in (3) is the fundamental solution
of ∂tu = Dα

θ u. Moreover, Gαθ satis�es for all (x, t) ∈ R×(0,∞) the properties

(G1) Gαθ (x, t) ≥ 0,

(G2) Gαθ (x, t) = t−1/αGαθ (xt−1/α, 1),
(G3) ‖Gαθ (·, t)‖L1(R) = 1,
(G4) Gαθ (·, s) ∗Gαθ (·, t) = Gαθ (·, s+ t) for all s, t ∈ (0,∞),

(G5) ‖Gαθ (·, t)‖Lp(R) ≤ ‖Gαθ (·, 1)‖Lp(R)t−
1
α
(1− 1

p
)
for all 1 ≤ p <∞,

(G6) Gαθ ∈ C∞0 (R× (0,∞)),
(G7) For all t > 0, there exists a constant K such that ‖∂xG(·, t)‖L1(R) ≤

Kt−1/α.
Due to the properties of Gαθ , it is easy to show that Dα

θ generates a semi-
group.
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Lemma 2. For 1 < α ≤ 2, |θ| ≤ min{α, 2 − α} = 2 − α, the Riesz-Feller
operator Dα

θ generates a strongly continuous, convolution semigroup

St : Lp(R)→ Lp(R) , u0 7→ Stu0 = Gαθ (·, t) ∗ u0
with Gαθ de�ned in Lemma 1. Moreover, the semigroup satis�es the dispersion
property for u ∈ L1(R)

(15) ‖Stu‖Lp(R) ≤ Cp t−
1
α
(1− 1

p
)‖u‖L1(R)

for all 1 ≤ p <∞ and some Cp > 0.

Proof. Due to (G3) and Young's inequality for convolutions,

‖Stu‖Lp ≤ ‖Gαθ (·, t)‖L1‖u‖Lp = ‖u‖Lp
for all u ∈ Lp(Rn). Therefore St : Lp(R)→ Lp(R) are well-de�ned bounded
linear operators for all t ≥ 0. (St)t≥0 is a semigroup, since St+s = StSs for
all s, t ≥ 0 holds due to (G4) and S0 := Id. Strong continuity of (St)t≥0
follows from a standard result about convolutions [22, p.64] and (G2). The
dispersion property

∀1 ≤ p <∞ ∃Cp > 0 : ‖Stu‖Lp(R) ≤ Cp t−
1
α
(1− 1

p
)‖u‖L1(R) ∀u ∈ L1(R)

can be proved using (G5) and Young's inequality [22, p.98-99]. �
Lemma 3. Let 1 < α ≤ 2 and |θ| ≤ min{α, 2 − α}. The fundamental
solution Gαθ de�ned in Lemma 1 satis�es for all ` ∈ N0 and 0 ≤ r ≤ ` the
following estimates:

(16) ‖∂`x
(
Gαθ (t) ∗ φ

)
‖L2 ≤ Ct−(`−r)/α‖∂rxφ‖L2 , t > 0 ,

where C is a certain positive constant. If r = `, then inequality (16) with
C = 1 is optimal.

Proof. By using Plancherel's theorem, we compute that

‖∂`x
(
Gαθ (t) ∗ φ

)
‖L2 = ‖(ik)`etψ

α
θ (k)φ̂‖L2

≤ ‖(ik)`−retψ
α
θ (k)‖L∞‖(ik)rφ̂‖L2 ≤ Ct−(`−r)/α‖∂rxφ‖L2 ;

since ‖(ik)`−retψ
α
θ (k)‖L∞ = supk∈R |k|`−re−t|k|

α cos(θπ/2) ≤ Ct−(`−r)/α, due to
the positivity of cos(θπ/2) under the assumption in Lemma 3. If r = `, then
we obtain ‖∂`x

(
Gαθ (t)∗φ

)
‖L2 ≤ ‖Gαθ ‖L1‖∂`xφ‖L2 = ‖∂`xφ‖L2 , by using the fact

that Gαθ is a non-negative integrable function with mass one. �
Lemma 4. Suppose that the same assumption as in Lemma 3 holds, and
φ ∈ Hσ for σ ≥ 0. Then the fundamental solution satis�es Gαθ ∗ φ ∈
C([0,∞);Hσ).

Proof. For arbitrary constants t1, t2 ∈ [0,∞), we have

‖Gαθ (t1) ∗ φ−Gαθ (t2) ∗ φ‖2Hσ ≤
∫

R
(1 + |k|)2σ|et1ψαθ (k) − et2ψαθ (k)|2|φ̂(k)|2 dk,

where the integral is bounded by 4‖φ‖2Hσ . Thus, the Dominated Convergence
Theorem allows to pass to the limit under the integral sign, which completes
the proof. �
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Proof of Proposition 1. Using the fundamental solution Gαθ of the linear evo-
lution equation ∂tu = Dα

θ u, the mild formulation of (14) reads

(17) W (t) = Gαθ (t) ∗W0 −
∫ t

0
Gαθ (t− τ) ∗ F (u, ∂ξW ) dτ,

where F (u, ∂ξW ) := f(u + ∂ξW ) − f(u) − s∂ξW . To employ a �x point
argument, we consider the mapping G[W ] de�ned by

(18) G[W ](t) := Gαθ (t) ∗W0 −
∫ t

0
Gαθ (t− τ) ∗ F (u, ∂ξW ) dτ,

on the Banach spaceX := C([0, T ];H2) with norm ‖W‖X := supt∈[0,T ] ‖W (t)‖H2 .
Then we show that G is a contraction mapping on a closed convex subset SR
of X, where SR := {W ∈ X; ‖W‖X ≤ R} for some parameter R > 0 which
will be determined later.

Due to a Sobolev embedding, ‖W‖X ≤ R implies that ‖W (t)‖W 1,∞ ≤ R
for t ∈ [0, T ]. Thus, if ‖W‖X ≤ R and ` = 0, 1, then we compute that

‖∂`ξ(G[W ]− G[V ])(t)‖L2

≤
∫ t

0
‖∂`ξGαθ (t− τ) ∗ {F (u, ∂ξW )− F (u, ∂ξV )}‖L2 dτ

≤ C
∫ t

0
(t− τ)−`/α‖{F (u, ∂ξW )− F (u, ∂ξV )}(τ)‖L2 dτ

≤ C(C(R) + |s|)
∫ t

0
(t− τ)−`/α‖∂ξ(W − V )(τ)‖L2 dτ

≤ C`(R) t1−`/α ‖W − V ‖X
where we used Lemma 3 and the identity

F (u, ∂ξW )− F (u, ∂ξV ) = f(u+ ∂ξW )− f(u+ ∂ξV )− s∂ξ(W − V )

=

∫ 1

0

[
f ′(u+ σ∂ξW + (1− σ)∂ξV ))− s

]
∂ξ(W − V ) dσ.

Similarly, we can calculate that

‖∂2ξ (G[W ]− G[V ])(t)‖L2

≤
∫ t

0
‖∂ξGαθ (t− τ) ∗ ∂ξ{F (u, ∂ξW )− F (u, ∂ξV )}‖L2 dτ

≤ C
∫ t

0
(t− τ)−1/α‖∂ξ{F (u, ∂ξW )− F (u, ∂ξV )}(τ)‖L2 dτ

≤ C(C(R) + |s|)
∫ t

0
(t− τ)−1/α‖(W − V )(τ)‖H2 dτ

≤ C2(R) t1−1/α ‖W − V ‖X .
Combining the above estimates, we obtain

‖G[W ]− G[V ]‖X ≤ {C0(R)T 1/α + C1(R) + C2(R)}T 1−1/α‖W − V ‖X .
Therefore, letting T = min{1, (2C∗(R))−α/(α−1)}, we deduce

(19) ‖G[W ]− G[V ]‖X ≤
1

2
‖W − V ‖X ,
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where C∗(R) := C0(R) +C1(R) +C2(R). On the other hand, letting V ≡ 0
in (19), we get

‖G[W ]‖X ≤ ‖G[0]‖X +
1

2
‖W‖X ≤ ‖W0‖H2 +

1

2
‖W‖X ≤M +

1

2
R,

where we used (16) with ` = r. Therefore, choosing R = 2M , we obtain
‖G[W ]‖X ≤ 2M .

Finally we discuss the continuity of G[W ] in time t. It follows from the con-
tinuity at time 0 and the semigroup property (G4) of Gαθ . Due to Lemma 4,
for W0 ∈ Hσ(R) with σ ≥ 0, the convergence limt↘0G

α
θ (·, t) ∗W0 = W0 in

Hσ holds. Moreover, for t ∈ [0, T ] and s ≥ 0 the identity

G[W ](s+ t) = Gαθ (·, s+ t) ∗W0(x)−
∫ s+t

0
Gαθ (·, s+ t− τ) ∗ F (u, ∂ξW (τ)) dτ

= Gαθ (·, s) ∗
(
G[W ](t)−

∫ s+t

t
Gαθ (·, t− τ) ∗ F (u, ∂ξW (τ)) dτ

)

holds, where the last integral converges to zero for s→ 0. Thus, for t1, t2 ∈
[0, T ] with t1 < t2 (without loss of generality), we have

(20) G[W ](t1)− G[W ](t2) = G[W ](t1)− G[W ]((t2 − t1) + t1)

= G[W ](t1)−Gαθ (·, t2−t1)∗
(
G[W ](t1)−

∫ t2

t1

Gαθ (·, t1 − τ) ∗ F (u, ∂ξW (τ)) dτ

)
.

Therefore, by the fact that W0 ∈ H2, W ∈ X and Lemma 4, we �nd that
the right hand side of (20) tends to zero in H2 as t1 → t2. Hence, we deduce
the continuity of G[W ] in t and that G[W ] ∈ S2M for W ∈ S2M .

Consequently, we conclude that there exist T = T (M) such that G is
a contraction mapping of S2M . This means that the mapping G admits a
unique �xed point W in S2M , such that W = G[W ]. Hence the proof of
Proposition 1 is complete. �

3. Asymptotic stability of traveling waves

In this section, we consider the asymptotic stability of traveling wave
solutions with monotone decreasing pro�le in (1). To this end we derive
the existence of global-in-time solutions for evolution equation (14) and that
these perturbations decay. Precisely we prove the following theorem.

Theorem 3. Suppose that the same assumptions as in Theorem 1 hold.
Then the Cauchy problem (14) has a unique global solution W (ξ, t) satisfying
W ∈ C([0,∞);H2) ∩ C1([0,∞);H1) and
(21)

‖W (t)‖2H2 +C
2∑

`=0

∫ t

0
‖W (τ)‖2

Ḣα/2+` dτ −
∫ t

0

∫

R
f ′′(u)u′W 2 dξ dτ ≤ ‖W0‖2H2

for some positive constant C and for all t ≥ 0. Furthermore, the solution
W (ξ, t) converges to zero in the sense that

(22) ‖W (t)‖W 1,∞ −→ 0 for t→∞.
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We note that the third integral of the left hand side in (21) is non-negative,
since the �ux function f ∈ C2 is convex such that f ′′ ≥ 0 and the pro�le
u is monotone decreasing, i.e. u′ ≤ 0. For the solution W constructed
in Theorem 3, it is easy to check that ∂ξW satis�es Cauchy problem (13).
Consequently we obtain Theorem 1. Global existence will be the consequence
of the existence of a Lyapunov functional, which also allows to deduce the
asymptotic stability of traveling waves, see also [1, Theorem 4] for the special
case θ = 2− α.
Lemma 5. Suppose that the same assumptions as in Theorem 1 hold. LetW
be a solution to (14) satisfying W ∈ C([0, T ];H2) for some T > 0. Then
there exists some positive constant δ1 independent of T such that if sup0≤t≤T ‖W (t)‖H2 ≤
δ1, the a-priori estimate expressed in (21) holds for t ∈ [0, T ].

Proof. We rewrite the �rst equation of (14),

∂tW + (f(u+ ∂ξW )− f(u)− f ′(u)∂ξW ) + (f ′(u)− s)∂ξW = Dα
θW,

and test it with W ,

1

2
∂t(W

2) +
1

2
∂ξ{(f ′(u)− s)W 2} − 1

2
f ′′(u)u′W 2 −WDα

θW

= −
(
f(u+ ∂ξW )− f(u)− f ′(u)∂ξW

)
W.

Integrating with respect to ξ ∈ R, we obtain

1

2
∂t‖W‖2L2 −

1

2

∫

R
f ′′(u)u′W 2 dξ + cos

(
θ π2
)
‖W‖2

Ḣα/2

= −
∫

R

∫ 1

0

∫ σ

0
f ′′(u+ γ∂ξW )(∂ξW )2 dγ dσW dξ

≤ L(‖∂ξW‖L∞)‖W‖L∞‖∂ξW‖2L2

where L is a positive non-decreasing function. Due to a Sobolev embedding
and the assumption on W , we deduce ‖W (t)‖W 1,∞ ≤ ‖W (t)‖H2 ≤ δ1 for all
t ∈ [0, T ]. Thus the energy estimate becomes
(23)
1

2
∂t‖W‖2L2−

1

2

∫

R
f ′′(u)u′W 2 dξ+cos

(
θ π2
)
‖W‖2

Ḣα/2 ≤ 2Cδ1‖W‖L∞‖∂ξW‖2L2

for some positive constant Cδ1 depending on δ1. Note that we keep ‖W‖L∞

for further reference. Here we used that∫

R
WDα

θW dξ =

∫

R
ψαθ (k)|Ŵ (k)|2 dk = − cos

(
θ π2
)
‖W‖2

Ḣα/2

due to Plancherel's theorem and sgn(k)|Ŵ (k)|2 being an odd function. Si-
milarly, we multiply the �rst equation of (13) by U , obtaining

1

2
∂t(U

2) + ∂ξ

{
(f(u+ U)− f(u))U −

∫ U

0
(f(u+ η)− f(u)) dη − 1

2
sU2

}

+ u′
∫ U

0
(f ′(u+ η)− f ′(u)) dη − UDα

θ U = 0.
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Thus, integrating with respect to ξ ∈ R, we have
(24)

1

2
∂t‖U‖2L2 + cos

(
θ π2
)
‖U‖2

Ḣα/2 ≤ 1
2‖u′‖L∞L(‖U‖L∞) ‖U‖2L2 ≤ C̆δ1‖U‖2L2

with a positive constant C̆δ1 depending on δ1. Next, we di�erentiate (13),
obtaining ∂t∂ξU + ∂2ξ{f(u + U) − f(u)} − s∂2ξU = Dα

θ ∂ξU . Testing this
equation by ∂ξU yields

1

2
∂t(|∂ξU |2) +

1

2
∂ξ{(f ′(u+ U)− s)(∂ξU)2} − ∂ξUDα

θ ∂ξU

= −1

2
∂ξf
′(u+ U) (∂ξU)2 − ∂ξ

(
(f ′(u+ U)− f ′(u))u′

)
∂ξU.

Integrating with respect to ξ ∈ R, we get

1

2
∂t‖∂ξU‖2L2 + cos

(
θ π2
)
‖∂ξU‖2Ḣα/2

= −1

2

∫

R
∂ξf
′(u+ U) (∂ξU)2 dξ −

∫

R
∂ξ
(
(f ′(u+ U)− f ′(u))u′

)
∂ξU dξ,

and hence

(25)
1

2
∂t‖∂ξU‖2L2 + cos

(
θ π2
)
‖∂ξU‖2Ḣα/2 ≤ C̃δ1

(
‖U‖2H1 + ‖∂ξU‖3L3

)
,

where C̃δ1 is a positive constant depending on δ1.
By combining (23), (24) and (25), we construct the good energy estimate.

For this purpose, we prepare some useful interpolation inequalities. For
0 ≤ σ ≤ 2 and ε > 0, we obtain

(26) ‖v‖2
Ḣ1 ≤ εσ−2‖v‖2Ḣσ/2 + εσ‖v‖2

Ḣσ/2+1 .

The inequality (26) is proved as follows. For arbitrary constants ε > 0 and
k ∈ R, we put h = εk. Then, by the fact that h2 ≤ |h|σ+ |h|2+σ for all h ∈ R
and 0 ≤ σ ≤ 2, we obtain k2 ≤ εσ−2|k|σ + εσ|k|2+σ. Thus, by using this
inequality and Plancherel's theorem, we arrive at (26). On the other hand,
for σ > 1/4, we have

(27) ‖v‖3L3 ≤ C0‖v‖L2‖v‖2Hσ ≤ 2σC0‖v‖L2(‖v‖2L2 + ‖v‖2
Ḣσ),

where C0 is a certain positive constant. The �rst interpolation inequality
of (27) is a generalization of the celebrated Gagliardo-Nirenberg inequalities
(see e.g. [15]) to Sobolev spaces with fractional order, which was proven by
Amann [5, Proposition 4.1]. The second inequality holds as a consequence
of (1 + |k|2)σ ≤ 22σ(1 + |k|2σ) for all k ∈ R.

We multiply (24) by γ1 and combine the resultant inequality with (23),
obtaining

1

2
∂t(‖W‖2L2 + γ1‖U‖2L2)− 1

2

∫

R
f ′′(u)u′W 2 dξ

+ cos
(
θ π2
)
(‖W‖2

Ḣα/2 + γ1‖U‖2Ḣα/2)

≤γ1C̆δ1‖U‖2L2 + 2Cδ1‖W‖L∞‖∂ξW‖2L2 ,
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where γ1 is a positive constant to be determined later. By the fact that
∂ξW = U , we can apply (26) with v = W and σ = α to the above inequality,
and get

1

2
∂t(‖W‖2L2 + γ1‖U‖2L2)− 1

2

∫

R
f ′′(u)u′W 2 dξ

+ {cos
(
θ π2
)
− εα−21 γ1C̆δ1}‖W‖2Ḣα/2 + γ1{cos

(
θ π2
)
− εα1 C̆δ1}‖U‖2Ḣα/2

≤2Cδ1‖W‖L∞‖∂ξW‖2L2 .

Therefore, we choose ε1 satisfying 4εα1 C̆δ1 = cos(θπ/2), and γ1 = ε21 to get

1

2
∂t(‖W‖2L2 + γ1‖U‖2L2)− 1

2

∫

R
f ′′(u)u′W 2 dξ

+
3

4
cos
(
θ π2
)
(‖W‖2

Ḣα/2 + γ1‖U‖2Ḣα/2)

≤2Cδ1‖W‖L∞‖∂ξW‖2L2 .

(28)

Similarly we multiply (25) by γ2 and combine the resultant inequality with (28).
Furthermore, applying (26) to the resultant inequality, we have

1

2
∂t(‖W‖2L2 + γ1‖U‖2L2 + γ2‖∂ξU‖2L2)− 1

2

∫

R
f ′′(u)u′W 2 dξ

+ {3

4
cos
(
θ π2
)
− εα−22 γ2C̃δ1}‖W‖2Ḣα/2

+ {3

4
γ1 cos

(
θ π2
)
− (1 + ε−22 )εα2 γ2C̃δ1}‖U‖2Ḣα/2

+ γ2{cos
(
θ π2
)
− εα2 C̃δ1}‖∂ξU‖2Ḣα/2

≤2Cδ1‖W‖L∞‖∂ξW‖2L2 + γ2C̃δ1‖∂ξU‖3L3 .

Then, choosing ε2 such that 4εα2 C̃δ1 = cos(θπ/2), and γ2 = min{ε22, γ1(1 +

ε−22 )−1}, yields
1

2
∂t(‖W‖2L2 + γ1‖U‖2L2 + γ2‖∂ξU‖2L2)− 1

2

∫

R
f ′′(u)u′W 2 dξ

+
1

2
cos
(
θ π2
)
(‖W‖2

Ḣα/2 + γ1‖U‖2Ḣα/2 + γ2‖∂ξU‖2Ḣα/2)

≤2Cδ1‖W‖L∞‖∂ξW‖2L2 + γ2C̃δ1‖∂ξU‖3L3 .

(29)

We introduce the energy and dissipation norms as follows.

E(t)2 := sup
0≤τ≤t

(‖W (τ)‖2L2 + γ1‖U(τ)‖2L2 + γ2‖∂ξU(τ)‖2L2),

D(t)2 :=

∫ t

0
(‖W (τ)‖2

Ḣα/2 + γ1‖U(τ)‖2
Ḣα/2 + γ2‖∂ξU(τ)‖2

Ḣα/2) dτ.

Then, integrating (29) with respect to t, we have

‖W‖2L2 + γ1‖U‖2L2 + γ2‖∂ξU‖2L2 + cos
(
θ π2
)
D(t)2−

∫ t

0

∫

R
f ′′(u)u′W 2 dξ dτ

≤ E2
0 +

∫ t

0

(
4Cδ1‖W‖L∞‖U‖2L2 + 2γ2C̃δ1‖∂ξU‖3L3

)
dτ,
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where we de�ne E2
0 := ‖W0‖2L2+γ1‖U0‖2L2+γ2‖∂ξU0‖2L2 . Thus, by employing

(26), and (27) with v = ∂ξU and σ = α/2, we arrive at

E(t)2 + cos
(
θ π2
)
D(t)2 −

∫ t

0

∫

R
f ′′(u)u′W 2 dξ dτ ≤ E2

0 + CE(t)D(t)2

for some positive constant C. Finally, using the fact that E(t) ≤ δ21C, we
arrive at the desired a-priori estimate. �

Proof of Theorem 3. The existence of global-in-time solutions to the initial
value problem (14) can be obtained by the continuation argument based on
a local existence result in Proposition 1 combined with the a-priori estimate
in Lemma 5. Because the argument is standard, we may omit the details
here. In the rest of this proof, we prove only the asymptotic stability result
(22).

To this end, we prepare the following interpolation inequality. For 0 ≤
σ ≤ 2, we have

‖v‖Ḣσ ≤ 2(‖v‖Ḣσ/2 + ‖v‖Ḣσ/2+1),

by using the fact that k2σ ≤ 2(|k|σ + |k|2+σ). By virtue of this interpolation
inequality, (26), and the �rst equation of (13), we have

‖∂tU‖L2 ≤ ‖Dα
θ U‖L2 + ‖{f ′(u+ U)− f ′(u)}u′‖L2 + ‖{f ′(u+ U)− s}∂ξU‖L2

≤ ‖U‖Ḣα + C‖U‖H1 ≤ C
2∑

`=0

‖W‖Ḣα/2+` .

Thus, by the above estimate, we compute that

∣∣∣∂t‖U‖2L2

∣∣∣ ≤ ‖U‖2L2 + ‖∂tU‖2L2 ≤ C
2∑

`=0

‖W‖2
Ḣα/2+` .

This estimate and (26) with (21) tell us that ‖U(·)‖2L2 ∈ W 1,1(0,∞), and
hence ‖U(t)‖L2 → 0 as t → ∞. Finally, employing the Sobolev inequality

that ‖v‖L∞ ≤
√

2‖v‖1/2
L2 ‖∂ξv‖1/2L2 , we arrive at the desired result. �

4. Convergence rate toward traveling waves

We consider the convergence rate of the solution toward the corresponding
traveling waves. Kawashima, Nishibata and Nishikawa [19] proposed an Lp

energy method to study the asymptotic stability and the associated conver-
gence rates of planar viscous rarefaction waves of multi-dimensional viscous
conservation laws. When the authors obtain the convergence estimate, they
derived the L1 estimate by using the energy method associated with the sign
function. This approach is useful. It is however di�cult to apply this method
because of a Riesz-Feller operator. To overcome this di�culty, we employ
not only the energy method but also the representation of the mild solution.
Precisely, our purpose in this section is to derive the following theorem.
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Theorem 4. Suppose that the same assumptions as in Theorem 1 and f ∈
C∞(R) hold. Then the Cauchy problem (14) with W0 ∈W 1,1(R)∩W 1,∞(R)
has a unique global solution W (ξ, t) satisfying

W ∈ C([0,∞);W 1,1(R) ∩H1(R)) ∩ L∞(0,∞;W 1,∞(R))

with estimates (37) and (38). Moreover, there exists a positive constant δ1
such that if ‖W0‖W 1,1 ≤ δ1 then

(30) ‖W (t)‖H1 ≤ CE1 (1 + t)−1/(2α)

for t ≥ 0, where E1 := ‖W0‖H1 + ‖W0‖W 1,1 and C is a certain positive
constant independent of t.

The proof of the existence of global-in-time solutions is based on results for
the Cauchy problem (1) with fractional Laplacian [11] and its extension to the
Cauchy problem (1) with Riesz-Feller operators [2]. There the assumption
f ∈ C∞(R) is made to simplify the presentation. The method is applicable
also in case of f ∈ Ck(R), k ≥ 2, but yields a lower regularity for the unique
solution u.

Lemma 6. Suppose that f ∈ C∞(R) and W0 ∈ W 1,1(R) ∩W 1,∞(R). Then
Cauchy problem (14) has a unique mild solution W ∈ C([0, T ];W 1,1(R) ∩
H1(R)) ∩ L∞(0, T ;W 1,∞(R)) for any T > 0 with

‖W (t)‖L1 ≤ ‖W0‖L1 + L( sup
τ∈[0,t]

‖∂ξW (τ)‖L∞)‖∂ξW0‖L1 t ,(31)

‖∂ξW (t)‖L1 ≤ ‖∂ξW0‖L1 ,(32)

‖W (t)‖L∞ ≤ ‖∂ξW0‖L1 ,(33)

‖∂ξW (t)‖L∞ ≤ ‖∂ξW0‖L∞ + 2‖u‖L∞ ,(34)

for 0 ≤ t ≤ T , where L is a positive non-decreasing function. Moreover, for
any positive time t0 > 0, W ∈ C∞b (R× (t0,∞)) and it is a classical solution
of the �rst equation of (14).

Proof. We use again U = ∂ξW and analyze the Cauchy problem (13) with
initial datum U0 := ∂ξW0 ∈ L1(R)∩L∞(R) �rst. We recall U = u−u where u
and u solve equation (12), and u is a monotone decreasing function satisfying
limξ→±∞ u(ξ) = u±. Thus, u0 := U0 + u is essentially bounded. Due to [11,
Theorem 1] and its extension to equations with Riesz-Feller operators in [2],
the Cauchy problem for (12) with initial datum u0 ∈ L∞(R) has a (unique)
solution which satis�es ‖u(t)‖L∞(R) ≤ ‖u0‖L∞(R) for all t ≥ 0; in fact, the
solution u takes values between the essential lower and upper bounds of u0.
Therefore, U(t) = u(t)− u ∈ L∞(Rξ) for all t ≥ 0 and estimate (34) follows.

Due to [11, Remark 1.2] and its extension to equations with Riesz-Feller
operators, equation (12) supports an L1 contraction principle: If u0, v0 ∈
L∞(R) satisfy u0 − v0 ∈ L1(R), then the associated solutions u and v of the
Cauchy problem for (12) satisfy ‖u(t)− v(t)‖L1(R) ≤ ‖u0 − v0‖L1(R) for all

t ≥ 0. Therefore, U(t) = u(t) − u ∈ L1(Rξ) with ‖U(t)‖L1 ≤ ‖u0 − u‖L1 =
‖U0‖L1 for all t ≥ 0, which implies estimate (32). Moreover, its primitive
W (t) ∈ L∞(Rξ) for all t ≥ 0, since

‖W (t)‖L∞ =

∥∥∥∥
∫ ξ

−∞
∂yW (y, t) dy

∥∥∥∥
L∞
≤
∫ ∞

−∞
|∂yW (y, t)|dy = ‖∂ξW (t)‖L1 .
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Then, we are left to prove that W (t) ∈ L1(Rξ) for all t ≥ 0 and the stated
continuity in time. Considering the mild formulation (17), we obtain the
estimate

‖W (t)‖L1 ≤ ‖Gαθ (t) ∗W0‖L1 +

∫ t

0
‖Gαθ (t− τ) ∗ {f(u+ U)− f(u)− sU}‖L1 dτ

≤ ‖W0‖L1 +

∫ t

0
‖f(u+ U)− f(u)− sU‖L1 dτ

≤ ‖W0‖L1 +

∫ t

0

(
L̃(‖U(τ)‖L∞) ‖U(τ)‖L1

)
dτ

≤ ‖W0‖L1 + L̃(‖∂ξW0‖L∞ + 2‖u‖L∞) ‖U0‖L1 t ,(35)

for t ≥ 0 by using the local Lipschitz continuity of f and the previous estima-

tes on U = ∂ξW ; again, L̃ is a positive non-decreasing function. Moreover,
for any positive time t0 > 0, U ∈ C∞b (R×(t0,∞)) and U = ∂ξW satis�es the
�rst equation of (13) in the classical sense, see [11, 1]. Due to integrability
of U , also W is a global-in-time solution of (14), and W ∈ C∞b (R× (t0,∞))
is a classical solution of the �rst equation of (14) for all t ≥ t0 > 0.

To prove that W ∈ C([0, T ];W 1,1(R) ∩ H1(R)), we will use the mild
formulation

(36) W (t) = Gαθ (t) ∗W0 −
∫ t

0
Gαθ (t− τ) ∗ F (u, ∂ξW ) dτ,

where F (u, ∂ξW ) := f(u+ ∂ξW )− f(u)− s∂ξW . The �rst summand on the
right hand side satis�es Gαθ (·) ∗W0 ∈ C([0, T ];W 1,1(R)∩H1(R)), due to the
assumptions on W0 and the strong continuity of the semigroup in Lemma 2.
To prove continuity of the second summand,

G2[W ](t) :=

∫ t

0
Gαθ (t− τ) ∗ F (u, ∂ξW ) dτ ,

we use the estimates (31)�(34) and the strong continuity of the semigroup
in Lemma 2. In particular, we assume w.l.o.g. 0 < t1 < t2 and rewrite

G2[W ](t1)− G2[W ](t2)

=

∫ t1

0
(Gαθ (t1 − τ)−Gαθ (t2 − τ)) ∗ F (u, ∂ξW ) dτ

+

∫ t2

t1

Gαθ (t2 − τ) ∗ F (u, ∂ξW ) dτ

=

∫ t1

0

[
Gαθ (t1 − τ) ∗ F (u, ∂ξW )−Gαθ (t2 − t1) ∗

(
Gαθ (t1 − τ) ∗ F (u, ∂ξW )

)]
dτ

+

∫ t2

t1

Gαθ (t2 − τ) ∗ F (u, ∂ξW ) dτ

using the semigroup property (G4). The �rst summand converges to zero
as t2 → t1 in the W 1,p-norms, p = 1, 2, due to the Dominated Conver-
gence Theorem, the strong continuity of the semigroup in Lemma 2 and

that
∫ t1
0

(
Gαθ (t1 − τ) ∗ F (u, ∂ξW )

)
dτ ∈W 1,1(R) ∩H1(R). Similarly, the se-

cond summand converges to zero as t2 → t1 in the W 1,p-norms, p = 1, 2,
since Gαθ (t2 − ·) ∗ F (u, ∂ξW ) ∈ L1((t2, t1);W

1,1(R) ∩W 1,∞(R)). Thus, the
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right hand side of (36) is continuous in time with respect to the W 1,p-
norms, p = 1, 2, hence W ∈ C([0, T ];W 1,1(R) ∩ H1(R)). Finally, W ∈
L∞(0, T ;W 1,∞(R)) follows from the estimates (33)-(34). �

Next we prove the following a-priori estimate obtained by Lemma 6.

Lemma 7. Suppose that the same assumptions as in Theorem 4 hold. Let
W (ξ, t) be a solution to (14) satisfying W ∈ C([0, T ];W 1,1(R) ∩ H1(R)) ∩
L∞(0, T ;W 1,∞(R)) for any T > 0. Then there exists some positive constants
δ1 independent of T such that if ‖W0‖W 1,1 ≤ δ1, the a-priori estimates

‖W (t)‖2H1 + C

∫ t

0
(‖W (τ)‖2

Ḣα/2 + ‖W (τ)‖2
Ḣα/2+1) dτ

−
∫ t

0

∫

R
f ′′(u)u′W 2 dξ dτ

≤‖W0‖2H1 ,

(37)

(38) ‖W (t)‖W 1,1 ≤ C(‖W0‖W 1,1 + ‖W0‖2H1) ,

hold for t ∈ [0, T ], where C is a constant independent of time t.

Proof. Following the proof of Lemma 5, we deduce again estimate (28), i.e.

1

2
∂t(‖W‖2L2 + γ1‖U‖2L2)− 1

2

∫

R
f ′′(u)u′W 2 dξ

+
3

4
cos
(
θ π2
)
(‖W‖2

Ḣα/2 + γ1‖U‖2Ḣα/2)

≤L(‖∂ξW‖L∞) ‖W‖L∞‖∂ξW‖2L2

for some positive non-decreasing function L. Integrating this inequality with
respect to time and using (26), the estimates (33)�(34) as well as the small-
ness of ‖W0‖W 1,1 , we arrive at (37).

Thus it remains to prove (38). Due to Lemma 6, for all t0 > 0, W ∈
C∞b (R × (t0,∞)) and it is a classical solution of the �rst equation of (14).
Therefore we can adapt the L1 energy method introduced by Kawashima,
Nishibata and Nishikawa [19]. For a non-negative function ρ : R → R
satisfying ρ ∈ C∞0 (R) and

∫
R ρ(x) dx = 1, the convolution operator ρδ∗ with

ρδ(x) = δ−1ρ(x/δ) is a Friedrichs' molli�er. We introduce the functions

sδ(x) := (ρδ ∗ sgn)(x) and Sδ(x) :=

∫ x

0
sδ(ξ) dξ ,

in which the signature function sgn(x) is de�ned by

sgn(x) :=





−1 for x < 0 ,

0 for x = 0 ,

1 for x > 0 .

Note that the convergence of sδ(x) → sgn(x) as δ → 0 is in the sense of a
weak ? convergence in L∞(R), respectively, a strong convergence in Lqloc(R),
1 ≤ q <∞. The function sδ(x) satis�es s′δ(x) = 2ρδ(x) ≥ 0 and sδ(0) = 0 by
choosing ρ to be an even function. Moreover Sδ(x)→ |x| converges strongly
in L1(R) as δ → 0.
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To estimate ‖W (t)‖W 1,1 , we recall that ‖U(t)‖L1 ≤ ‖U0‖L1 for all t ∈
[0, T ], due to estimate (32) in Lemma 6. Next we show that

(39) ‖W (t)‖L1 ≤ C‖W0‖W 1,1 + C‖W0‖2H1

for t ∈ [0, T ]. We will use estimate (31) for small times t ≤ 1, and derive (39)
for large times t ≥ 1: We multiply the �rst equation of (14) by sδ(W ) =
(ρδ ∗ sgn)(W ) and obtain

(40) ∂tSδ(W ) + sδ(W ){h(u+ U)− h(u)} = sδ(W )Dα
θW ,

where h(v) := f(v) − sv is a convex function. We integrate equation (40)
over R× [t0, t] and derive

∫ t

t0

∫

R
∂tSδ(W ) dx dτ +

∫ t

t0

∫

R
sδ(W ){h(u+ U)− h(u)} dx dt

=

∫ t

t0

∫

R
sδ(W )Dα

θW dx dt.

(41)

The �rst integral satis�es, due to Fubini's theorem and the strong conver-
gence of Sδ in L

1,
∫ t

t0

∫

R
∂tSδ(W ) dx dτ =

∫

R
{Sδ(W (x, t))− Sδ(W (x, t0))} dx

→‖W (t)‖L1 − ‖W (t0)‖L1

(42)

as δ → 0. Next, we prove that the integral on the right-hand side of (41) is
non-positive,

(43)

∫ t

t0

∫

R
sδ(W )Dα

θ [W ] dx dτ ≤ 0.

Indeed, Sδ ∈ C2(R) is a convex function with S′δ = sδ and S′′δ = s′δ =
2ρδ ≥ 0. Moreover, under our assumptions, W (·, t) ∈ H1(R) for t ≥ 0
and W ∈ C∞b (R × (t0,∞)) for t0 > 0. Thus, limξ→±∞W (ξ, t) = 0 and
Sδ(W ) ∈ C2

b with

sδ(W )Dα
θ [W ] = S′δ(W )Dα

θ [W ] ≤ Dα
θ [Sδ(W )] ,

due to Lemma 8. Consequently,∫

R
sδ(W )Dα

θ [W ] dx ≤
∫

R
Dα
θ [Sδ(W )] dx = 0 ,

due to Proposition 3. We estimate the second term on the left-hand side
of (41) as follows. Using the fact that |sδ(W )| ≤ 1 and h(u + U) − h(u) =
h′(u)U +O(|U |2), we have

∫

R
sδ(W ){h(u+ U)− h(u)}dξ =

∫

R
sδ(W )h′(u)U dξ +R

with |R| ≤ L(‖U‖L∞) ‖U‖2L2/2. Furthermore, we compute from the fact
U = ∂ξW that

∫

R
sδ(W )h′(u)U dξ = −

∫

R
Sδ(W )h′′(u)u′ dξ ≥ 0,

since the function Sδ is non-negative with Sδ(0) = 0, h ∈ C2(R) is a convex
function, and u is a monotone decreasing traveling wave pro�le. Therefore,
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employing the previous estimates and taking the limit δ → 0 in equation (41)
yields

(44) ‖W (t)‖L1 ≤ ‖W (t0)‖L1 + L(‖∂ξW0‖L∞ + 2‖u‖L∞)

∫ t

t0

‖U(τ)‖2L2 dτ

≤ ‖W (t0)‖L1 + C‖W0‖2H1

for t ≥ t0 > 0 and some positive constant C; here we used (37) and (26).
The estimate (44) is valid for an arbitrary positive constant t0. Thus we can
estimate from (44) and (35) that

‖W (t)‖L1 ≤ ‖W (1)‖L1 + C‖W0‖2H1 ≤ ‖W0‖L1 + C‖U0‖L1 + C‖W0‖2H1

for t ≥ 1. Eventually, combining this estimate and (35) again, we arrive at
the desired estimate (39). �

Proof of Theorem 4. The existence of the global solution follows from Lemma 6
and the a-priori estimates in Lemma 7. We derive just the decay estimate
(30). To this end, we �rst introduce the following Nash inequality:

(45) ‖v‖2(1+2σ)
L2 ≤ Cσ‖v‖4σL1‖v‖2Ḣσ

for σ > 0 and v ∈ L1(R)∩Hσ(R), where Cσ is a positive constant which de-
pends on σ. Following the proof of Lemma 5, we deduce again estimate (28).
Multiplying this inequality with (1 + τ)β for β ∈ R and integrating over
τ ∈ [0, t], we obtain

Eβ(t)2 −
∫ t

0
(1 + τ)β

∫

R
f ′′(u)u′W 2 dξ dτ +

3

2
cos
(
θ π2
) ∫ t

0
Dβ(τ)2 dτ

≤ ‖W0‖2L2 + γ1‖U0‖2L2 + β

∫ t

0
Eβ−1(τ)2 dτ

+ L(‖∂ξW0‖L∞ + 2‖u‖L∞)

∫ t

0
(1 + τ)β‖W‖L∞‖∂ξW‖2L2 dτ

where Eβ(t)2 := (1 + t)β(‖W (t)‖2L2 + γ1‖U(t)‖2L2), and

Dβ(t)2 := (1 + t)β(‖W (t)‖2
Ḣα/2 + γ1‖U(t)‖2

Ḣα/2).

We compute via Nash's inequality (45) with σ = α/2 and Young's inequality
that

(1 + t)β−1‖v‖2L2 ≤ C(1 + t)β−1‖v‖
2

1+α

Ḣα/2
‖v‖

2α
1+α

L1

= C{(1 + t)β‖v‖2
Ḣα/2}

1
1+α {(1 + t)β−

1+α
α ‖v‖2L1}

α
1+α

≤ ε(1 + t)β‖v‖2
Ḣα/2 + Cε(1 + t)β−

1+α
α ‖v‖2L1 ,

for all ε > 0 and some positive constant Cε. Thus we get Eβ−1(t)2 ≤ εDβ(t)2+

Cε(1 + t)β−
1+α
α (‖W‖2L1 + γ1‖U‖2L1). Therefore, employing this estimate and

1. VISCOUS CONSERVATION LAWS 47

appeared as: F. Achleitner and Y. Ueda. “Asymptotic stability of trave-
ling wave solutions for nonlocal viscous conservation laws with explicit decay
rates”. In: Journal of Evolution Equations (Feb. 2018), pp. 1–24



19

(38), we obtain

Eβ(t)2 −
∫ t

0
(1 + τ)β

∫

R
f ′′(u)u′W 2 dξ dτ +

{
3
2 cos

(
θ π2
)
− εβ

}∫ t

0
Dβ(τ)2 dτ

≤‖W0‖2L2 + γ1‖U0‖2L2 + βCε

∫ t

0
(1 + τ)β−

1+α
α (‖W‖2L1 + γ1‖U‖2L1) dτ

+ L(‖∂ξW0‖L∞ + 2‖u‖L∞)

∫ t

0
(1 + τ)β‖W‖L∞‖∂ξW‖2L2 dτ

≤C‖W0‖2H1 + βCε(‖W0‖2H1 + ‖W0‖W 1,1)2
∫ t

0
(1 + τ)β−

1+α
α dτ

+ L(‖∂ξW0‖L∞ + 2‖u‖L∞)

∫ t

0
(1 + τ)β‖W‖L∞‖∂ξW‖2L2 dτ.

For this inequality, we take β and ε which satisfy

β − 1 + α

α
> 1,

3

2
cos
(
θ π2
)
− εβ > 0,

obtaining

Eβ(t)2 −
∫ t

0
(1 + τ)β

∫

R
f ′′(u)u′W 2 dξ dτ + c

∫ t

0
Dβ(τ)2 dτ

≤C(‖W0‖2H1 + ‖W0‖W 1,1)2 (1 + t)β−
1
α

+ L(‖∂ξW0‖L∞ + 2‖u‖L∞)

∫ t

0
(1 + τ)β‖W‖L∞‖U‖2L2 dτ ,

for some positive constant c. Finally, using (26), the estimates (33)�(34) and
the smallness of ‖W0‖W 1,1 , we arrive at

Eβ(t)2 −
∫ t

0
(1 + τ)β

∫

R
f ′′(u)u′W 2 dξ dτ + c

∫ t

0
Dβ(τ)2 dτ

≤C(‖W0‖2H1 + ‖W0‖W 1,1)2(1 + t)β−1/α ≤ CE2
1 (1 + t)β−1/α

and the desired estimate (30). �

Appendix A. Riesz-Feller operators

To study the existence of traveling wave solutions with smooth pro�les,
we need the singular integral representation of Riesz-Feller operators Dα

θ .

Proposition 2 ([3, Proposition 2.3]). If 1 < α < 2 and |θ| ≤ min{α, 2−α},
then for all v ∈ S(R) and x ∈ R

Dα
θ v(x) =c1

∫ ∞

0

v(x+ ξ)− v(x)− v′(x) ξ

ξ1+α
dξ

+ c2

∫ ∞

0

v(x− ξ)− v(x) + v′(x) ξ

ξ1+α
dξ ,

(46)

for some constants c1, c2 ≥ 0 with c1 + c2 > 0.

The singular integral representation (46) for Riesz-Feller operators Dα
θ is

well-de�ned for C2
b functions such that Dα

θC
2
b (R) ⊂ Cb(R).
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Proposition 3. The integral representation (46) of Dα
θ with 1 < α < 2 and

|θ| ≤ min{α, 2− α} is well-de�ned for functions v ∈ C2
b (R) with

(47)

sup
x∈R
|Dα

θ v(x)| ≤ 1
2(c1 + c2)‖v′′‖Cb(R)

M2−α

2− α + 2(c1 + c2)‖v′‖Cb(R)
M1−α

α− 1
<∞

for some positive constant M and the positive constants c1 and c2 in Propo-
sition 2.

Moreover, if v ∈ C2
b (R) is a function such that the limits limx→±∞ v(x)

exist, then
∫
RD

α
θ v(x) dx = 0.

Proof. The �rst statement follows by direct estimates on the extension of
Riesz-Feller operators in (46), see [3, Proposition 2.4]. To prove the second
statement, we consider the two summands in (46) separately, starting with∫∞
0

v(x+ξ)−v(x)−v′(x)ξ
ξ1+α

dξ for any v ∈ C2
b (R). Like before, we rewrite the

integral
∫ ∞

0

v(x+ ξ)− v(x)− v′(x)ξ

ξ1+α
dξ =

∫ ∞

0

1

ξ1+α

[ ∫ 1

0
v′(x+ θξ) ξ dθ − v′(x)ξ

]
dξ

=

∫ ∞

0

1

ξα

∫ 1

0

[
v′(x+ θξ)− v′(x)

]
dθ dξ

=

∫ ∞

0

1

ξα
∂x

∫ 1

0

[
v(x+ θξ)− v(x)

]
dθ dξ

= ∂x

∫ ∞

0

1

ξα

∫ 1

0

[
v(x+ θξ)− v(x)

]
dθ dξ ,

where exchanging integration and taking derivatives is possible, since in each
step the integrands are absolutely integrable uniformly with respect to x.
Moreover,

∫

R

∫ ∞

0

v(x+ ξ)− v(x)− v′(x)ξ

ξ1+α
dξ dx

=

∫

R
∂x

∫ ∞

0

1

ξα

∫ 1

0

[
v(x+ θξ)− v(x)

]
dθ dξ dx

and the primitive satis�es

lim
x→±∞

∫ ∞

0

1

ξα

∫ 1

0

[
v(x+ θξ)− v(x)

]
dθ dξ

=

∫ ∞

0

1

ξα

∫ 1

0
lim

x→±∞
[
v(x+ θξ)− v(x)

]
dθ dξ = 0 ,

where exchanging integration and taking limits is possible, since in each step
the integrands are absolutely integrable and limx→±∞

[
v(x+θξ)−v(x)

]
= 0

due to the assumptions on v. �

Using the singular integral representation of Dα
θ and [12, Lemma 1], we

deduce the following result:

Lemma 8. Let 1 < α < 2, u ∈ C2
b (R) and η ∈ C2(R) be a convex function.

Then η′(u)(Dα
θ u) ≤ Dα

θ η(u).
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Proof. Since η is convex, we have η′(a)(b− a) ≤ η(b)− η(a). Hence,

η′(u(x))(u(x+ z)− u(x)) ≤ η(u(x+ z))− η(u(x))

and η′(u(x))(u(x+z)−u(x)−u′(x)·z) ≤ η(u(x+z))−η(u(x))−(η(u))′(x)·z.
The conclusion follows from these inequalities and Equation (46). �
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CHAPTER 2

Korteweg-de Vries-Burgers equations

53



TRAVELLING WAVES FOR A NON-LOCAL

KORTEWEG-DE VRIES-BURGERS EQUATION

FRANZ ACHLEITNER, CARLOTA MARIA CUESTA, AND SABINE HITTMEIR

Abstract. We study travelling wave solutions of a Korteweg-de Vries-
Burgers equation with a non-local diffusion term. This model equation
arises in the analysis of a shallow water flow by performing formal as-
ymptotic expansions associated to the triple-deck regularisation (which
is an extension of classical boundary layer theory). The resulting non-
local operator is of fractional type with order between 1 and 2. Travelling
wave solutions are typically analysed in relation to shock formation in
the full shallow water problem. We show rigorously the existence of
these waves. In absence of the dispersive term, the existence of travel-
ling waves and their monotonicity was established previously by two of
the authors. In contrast, travelling waves of the non-local KdV-Burgers
equation are not in general monotone, as is the case for the correspon-
ding classical (or local) KdV-Burgers equation. This requires a more
complicated existence proof compared to the previous work. Moreover,
the travelling wave problem for the classical KdV-Burgers equation is
usually analysed via a phase-plane analysis, which is not applicable here
due to the presence of the non-local diffusion operator. Instead, we
apply fractional calculus results available in the literature and a Lyapu-
nov functional. In addition we discuss the monotonicity of the waves in
terms of a control parameter and prove their dynamic stability in case
they are monotone.

1. Introduction

In this paper we study existence and stability of travelling waves of the
following one-dimensional evolution equation:

(1.1) ∂tu+ ∂xu
2 = ∂xDαu+ τ∂3

xu , x ∈ R , t ≥ 0

with τ > 0 and Dα denotes the non-local operator
(1.2)

Dαu(x) = dα

∫ x

−∞

u′(y)

(x− y)α
dy , with 0 < α < 1 , dα =

1

Γ(1− α)
> 0 ,

where Γ denotes the Gamma function.
Equation (1.1) with α = 1/3 and either a quadratic flux, as above, or a

cubic one, has been derived from one (quadratic flux) and two (cubic flux)
layer shallow water flows, respectively, by performing formal asymptotic
expansions associated to the triple-deck (boundary layer) theory used in fluid
mechanics (see, e.g. [12] and [19]). In [19] numerical simulations indicate
the existence of travelling waves that resemble the inner structure in a very

2010 Mathematics Subject Classification. 47J35, 26A33, 35C07.
Key words and phrases. non-local evolution equation, fractional derivative, travelling

waves.
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particular limit of small amplitude shock waves for the original shallow water
problem. In this manuscript we aim to study rigorously the existence and
stability of these type of solutions for the quadratic flux.

In [1] travelling waves for (1.1) with τ = 0 were analysed. In this case
travelling waves are monotone, as it is the case for the classical (or local)
Burgers equation. The existence prove relies on this fact. However, travel-
ling waves are in general non-monotone if τ is larger that certain value τ0 > 0
in the (local) KdV-Burgers equation, see e.g. [3] (this can be inferred by
linearisation of the critical points of the resulting travelling wave equation,
an ODE in the local case). Numerical computations performed in [19] and
in[12] suggest that we may expect a similar oscillatory behaviour of the tra-
velling waves of (1.1). This has an immediate implication that the present
existence proof (with τ > 0) differs significantly from the existence proof in
[1] as we shall see below. On the other hand, and in contrast to the classical
KdV-Burgers equation, the presence of the non-local operator in (1.1) does
not allow to approach the problem using phase-plane analysis of the tra-
velling wave equation, since this becomes a (non-linear) integro-differential
equation.

Let us first recall some basic properties of the fractional differential opera-
tor Dαu. Since it can be written as the convolution of u′ with θ(x)x−α/Γ(1−
α) (where θ is the Heaviside function), Dα is a pseudo-differential operator
with symbol

(1.3)
ik
√

2π

Γ(1− α)
F
(
θ(x)

xα

)
(k) = (bα + iaα sgn(k)) |k|α ,

i.e. F(Dαu)(k) = (bα + iaα sgn(k)) |k|αû(k) where F denotes the Fourier
transform

Fϕ(k) = ϕ̂(k) =
1√
2π

∫
e−ikxϕ(x)dx ,

and the coefficients aα and bα are given by

(1.4) aα = sin
(απ

2

)
> 0 , bα = cos

(απ
2

)
> 0 ,

(we refer to [2] for the details of the computation to obtain (1.3)). The
operator on the right-hand side of (1.1) then is a pseudo-differential operator
with symbol

(1.5) F(∂xDα) = − (aα − ibα sgn(k)) |k|α+1 ,

which is dissipative in the sense that the real part of (1.5) is negative.
For s ∈ R we shall adopt the following notation for the Sobolev of square

integrable functions,

Hs := {u : ‖u‖Hs <∞} , ‖u‖Hs := ‖(1 + |k|2)s/2û‖L2(R) ,

and the corresponding homogeneous norm

‖u‖Ḣs := ‖|k|sû‖L2(R) .

Using that (a2
α+ b2α) = 1 it is easy to see that ‖Dαu‖Ḣs = ‖u‖Ḣs+α , and this

suggests that one can interpret Dα as a differentiation operator of order α.
We also observe that Dα is a bounded linear operator from Hs to Hs−α.
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We shall also let denote Cmb with m ≥ 0, the set of functions, whose
derivatives up to order m are continuous and bounded. Then one can also
infer that Dαu is a bounded linear operator from C1

b (R) to Cb(R). As
explained in [1], this can be easily seen by splitting the domain of integration
in (1.2) into (−∞, x − δ] and [x − δ, x] for some positive δ > 0. Then
integration by parts in the first integral shows the boundedness of Dαu.

It is also known that Dα can be inverted by multiplying it with (z −
ξ)−(1−α) and integrating with respect to ξ from −∞ to z. Applying this to
(1.2) we obtain:

(1.6) IαDα(u(x)) = u(x)− lim
x→−∞

u(x) ,

with the integral operator

(1.7) Iαu(x) = d1−α

∫ x

−∞

u(y)

(x− y)1−αdy u ∈ C1
b (R) .

We shall use this inversion of Dα in Section 2.
In some instances we shall also need to split the integral operator (1.2)

as follows
(1.8)

(Dαu)(x) = dα

∫ x0

−∞

u′(y)

(x− y)α
dy + dα

∫ x

x0

u′(y)

(x− y)α
dy , for some x0 < x ,

and treat the first term as a known function, whereas the second one can be
viewed as a left-sided Caputo derivative, see e.g. [11], and that we denote
by Dαx0 , indicating that the integration is from a finite value x0, i.e. u ∈
C1
b ([x0,∞)) and α ∈ (0, 1]

(1.9) Dαx0u(x) = I1−α
x0 u′(x) =

1

Γ(1− α)

∫ x

x0

u′(y)

(x− y)α
dy .

Notice that the first term in the right-hand side of (1.8), which is a function
of x, is not equal to (Dαu)(x0), which is a number for fixed x0.

2. Existence of Travelling Wave Solutions

We introduce the travelling wave variable ξ = x − ct with wave speed c
and look for solutions u(x, t) = φ(ξ) of (1.1) which connect two different
far-field real values φ− and φ+. A straightforward calculation shows that
if φ depends on x and t only through the travelling wave variable, then so
does Dαφ, and so the travelling wave problem becomes

(2.1) −cφ′ + (φ2)′ = (Dαφ)′ + τφ′′′ ,

subject to

(2.2) lim
ξ→−∞

φ(ξ) = φ− , lim
ξ→∞

φ(ξ) = φ+ .

Here ′ denotes differentiation with respect to ξ. We can then integrate (2.1)
with respect to ξ and use (2.2) to arrive at the following travelling wave
equation:

(2.3) h(φ) = Dαφ+ τφ′′ , where h(φ) := −c(φ− φ−) + φ2 − φ2
− .
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If φ′ decays to zero fast enough as ξ → ±∞, then we obtain the Rankine-
Hugoniot condition

(2.4) c = φ+ + φ−

that we assume throughout. Since h(φ) is convex, the left hand side of (2.3)
is negative between its only zeroes φ = φ− and φ = φ+. In what follows we
shall show the existence of solutions of (2.3) provided the entropy condition

(2.5) φ− > φ+ ,

is satisfied. We shall not make further assumptions on the far-field values
(regarding the sign, for example), but just note (2.4) and (2.5) imply that

(2.6) h′(φ−) = φ− − φ+ > 0 and h′(φ+) = φ+ − φ− < 0 .

We observe that (2.5) is a necessary condition for existence of the travelling
wave if α = 1. Their existence for τ = 0 and α ∈ (0, 1), where this condition
is crucial, is shown in [1].

As in [1], we shall start our analysis by proving a ’local’ existence result

on (−∞, ξ̃] with ξ̃ < 0 and |ξ| sufficiently large. Global existence will then
follow by a continuation argument and global boundedness of solutions. The
lack of monotonicity for τ > 0 requires additional investigations in order to
show that a travelling wave solution tends to φ+ as ξ →∞. In order prove
this we use that the functional H(φ)−H(φ−), where

(2.7) H(φ) =

∫ φ

0
h(y)dy = −cφ

2

2
+
φ3

3
+Aφ , with A = cφ− − φ2

− ,

is increasing with respect to ξ. This step allows to show that if a travelling
wave tends to a constant value as ξ tends to ∞ then that constant must be
φ+. Then we show that indeed the solutions of (2.3) satisfying φ(−∞) = φ−
tend to a constant as ξ tends to ∞.

The local existence result is based on linearisation about ξ = −∞ (or,
equivalently, φ = φ−). As it could be expected for ordinary differential
equations, the linearisation about φ ≡ φ−,

(2.8) h′(φ−)v = Dαv + τv′′ ,

has solutions of the form v(ξ) = beλξ, b ∈ R, where λ > 0 is a root of

(2.9) P (z) = τz2 + zα − h′(φ−) .

We observe that there is a unique positive real root of (2.9). Indeed, this
follows from the fact that P (z)→∞ as z →∞ and

P (0) = −h′(φ−) < 0 , P ′(z) = 2τz + αzα−1 ≥ 0 for z ≥ 0 .

In Lemma B.1 of Appendix B we show, using Rouche’s theorem, that (2.9)
has exactly three roots, one positive real one and two complex conjugates
with negative real part.

We assume for the moment that the only solutions of (2.8) that decay
to 0 as ξ → −∞ are of the form beλξ for some constant b and λ being the
real root of (2.9). We have not fully succeeded in proving this, however in
Appendix A we do it in suitable weighted spaces (see Theorem A.2).

Henceforth, we assume that

(2.10) N
(
τ∂2

ξ +Dα − h′(φ−)Id
)

= span{eλξ} in H4(R)
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where Id denotes the identity operator.
The main result of this section is the following:

Theorem 2.1. Let (2.5) and (2.10) hold. Then, there exists a solution
φ ∈ C3

b (R) of (2.1)-(2.2) that is unique (up to a shift in ξ) among all φ ∈
φ− +H4((−∞, 0)) ∩ C3

b (R).

We prove Theorem 2.1 in several steps that we write as lemmas. The first
one below is a ’local’ existence result that says that the nonlinear problem
has, up to translations, only two nontrivial solutions, which can be approx-
imated by φ− ± eλξ for large negative ξ (observe that the shift in ξ gives a
positive constant multiplying the exponential and that we have taken equal
to 1 without loss of generality).

Lemma 2.1. [Local existence] Let the assumptions of Theorem 2.1 hold.
Then, for every small enough ε > 0, (2.3) has solutions φup, φdown ∈ φ− +
H4(Iε), where Iε = (−∞, ξε] and ξε = log ε/λ, such that

(2.11) φup(ξε) = φ− + ε , φdown(ξε) = φ− − ε .
Moreover, these are unique among all functions φ satisfying ‖φ−φ−‖H4(Iε) ≤
δ, with δ small enough, but independent of ε. They satisfy, with an ε-
independent constant C,

‖φup − φ− − eλξ‖H4(Iε) ≤ Cε2 , ‖φdown − φ− + eλξ‖H4(Iε) ≤ Cε2 .

Proof. We follow the proof of [1]. We only prove existence and uniqueness
for φdown, the proof of for φup is analogous and we do not do it here.

We start by writing (2.3) and the initial condition (2.11) in terms of the
perturbation Φ(ξ) = φdown(ξ)− φ− + eλξ:
(2.12)

(τ∂2
ξ +Dα− h′(φ−)Id)Φ = h(φ−− eλξ + Φ) + h′(φ−)(eλξ −Φ) , Φ(ξε) = 0 .

We then define a fixed-point map by considering the right-hand side of (2.12)
as given.

In order to use Fourier methods, we need a smooth enough extension of
functions to ξ ∈ R. Then, in general, for a f ∈ H4(Iε) we let E(f) ∈ H4(R)
denote a smooth extension of f that satisfies

E(f)
∣∣∣
Iε

= f , ‖E(f)‖H4(R) ≤ γ‖f‖H4(Iε) .

And denote by Φ a bounded solution of

(τ∂2
ξ +Dα − h′(φ−)Id)Φ = E(f) in R ,

then Φ and its derivatives with respect to ξ can be written as
(2.13)
dmΦ

dξm
= F−1

[(
−τk2 + bα|k|α − h′(φ−) + iaαsgn(k)|k|α

)−1F
(
dmE(f)

dξm

)]

for m = 0, 1, 2, 3, 4. The Fourier symbol in (2.13) is uniformly bounded in k
and this implies that there exist constants C1, C2 > 0 such that

‖Φ|Iε‖H4(Iε) ≤ ‖Φ‖H4(R) ≤ C1‖E(f)‖H4(R) ≤ C2‖f‖H4(Iε) .

By the assumption (2.10), the unique solution of

(τ∂2
ξ +Dα − h′(φ−)Id)U = f in Iε , U(ξε) = 0 ,
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is U [f ](ξ) = Φ(ξ) − Φ(ξε)e
λ(ξ−ξε). This allows to write (2.12) as the fixed-

point problem

φ̄(ξ) = U
[
h(φ− − eλξ + φ̄(ξ)) + h′(φ−)(eλξ − φ̄(ξ))

]
.

The continuous embedding of H4(Iε) in C3
b (Iε) gives

∥∥∥h(φ− − eλξ + φ̄) + h′(φ−)(eλξ − φ̄)
∥∥∥
H4(Iε)

≤ L
(
ε2 + ε‖φ̄‖H4(Iε) + ‖φ̄‖2H4(Iε)

)
,

where L is a positive non-decreasing function. It is now easily seen that the
fixed point map is a contraction in small enough balls (independent of ε)
and that maps a ball with radius of O(ε2) into itself (see [1] for such similar
details). �
Lemma 2.2. [Continuation principle] Let φ ∈ C3

b ((−∞, ξ0]) be a solution
of (2.3) as constructed in Lemma 2.1. Then there exists a δ > 0, such that
φ can be extended uniquely to C3

b ((−∞, ξ0 + δ)).

Proof. The idea is to write the integro-differential equation as a system of
Caputo-differential equations. We use the definition of the Caputo derivative
and the inversion formula for it(1.9). Since φ ∈ C1([ξ0,∞)) and α ∈ (0, 1]
then this allows to write down derivatives of entire order by using that
Dαξ0Iαξ0 ≡ Id (cf. [11]). Indeed, we can write

φ′(ξ) = Dαξ0D
1−α
ξ0

φ(ξ) = D1−α
ξ0
Dαξ0 φ(ξ) ,

hence, also
φ′′(x) = D1−α

ξ0
Dαξ0D

1−α
ξ0
Dαξ0 φ(ξ) .

We can now express (2.3) as a system:

Dαξ0 φ = ψ , D1−α
ξ0

ψ = θ , Dαξ0 θ = χ ,(2.14)

τD1−α
ξ0

χ = h(φ)− ψ −
∫ ξ0

−∞

φ′(y)

(ξ − y)α
dy .(2.15)

The system is locally Lipschitz continuous in C3
b (ξ0, ξ0 + δ). Local exis-

tence then follows by using a Picard-Lindelöf type of argument, taking as
initial conditions the values of φ, Dαξ0φ, φ′ and Dαξ0φ′ at ξ = ξ0. The well-
posedness of linear integro-differential systems of this form is given by Jafari
and Daftardar-Gejji [9], so we do not give further details. �

It is now clear that boundedness of the solutions will guarantee global
existence by applying repeatedly Lemma 2.2 as long as φ′ remains integrable.
First we show that a solution of (2.3) as constructed in lemmas 2.1 and 2.2
is uniformly bounded.

Lemma 2.3 (Uniform boundedness). Let φ ∈ C3
b ((−∞, ξ0]) be a solution

of (2.3) as constructed in Lemma 2.1. Then the solution is bounded for
ξ ∈ (−∞, ξ0) by

(2.16) φ̄ < φ(ξ) < φ− , where φ̄ =
3φ+ − φ−

2
< φ+

is the second root of
H(φ)−H(φ−)

φ− φ−
= 0 .
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Proof. We first derive an energy type of estimate for (2.3). This is done,
as in the local case, by multiplying the equation by φ′ and integrating with
respect to ξ:

(2.17) H (φ(ξ))−H (φ−) =
τ

2

(
φ′(ξ)

)2
+

∫ ξ

−∞
φ′(y)Dαφ(y)dy .

The first term on the right-hand side of (2.17) is clearly non-negative.
Let us show that the second term is also non-negative.
We first observe that

(2.18)

∫ ξ

−∞
φ′(y)Dαφ(y)dy =

1

2

∫ ξ

−∞
φ′(y)

∫ ξ

−∞

φ′(x)

|x− y|α dx dy

this is shown by noticing that
∫ ξ

−∞
φ′(y)

∫ ξ

y

φ′(x)

(x− y)α
dx dy =

∫ ξ

−∞
φ′(x)

∫ x

−∞

φ′(y)

(x− y)α
dy dx .

Then, we can consider an extension φ′E ∈ L2(R) of φ′ to R so that φ′E(y) = 0
for y > ξ. Then, by applying Theorem 9.8[15] to (2.18) with this extension
we obtain that

(2.19)

∫ ξ

−∞
φ′(y)Dαφ(y)dy =

1

2

∫

R
φ′E(x)

∫

R

φ′E(y)

|x− y|α dy dx ≥ 0 .

Let us now prove the upper bound. Suppose that there exists a ξ̄ <∞ such

that φ(ξ̄) = φ−, then from (2.17) one gets that
∫ ξ̄
−∞ φ

′(y)Dαφ(y)dy = 0,

and (2.19) implies that φ′(ξ) = 0 for all ξ ∈ (−∞, ξ̄] (see [15]). Assume now
that limξ→∞ φ(ξ) = φ−, then

∫∞
−∞ φ

′(y)Dαφ(y)dy = 0. But, we can write

(2.18) with ξ =∞ and without using an extension of φ′;
∫ ξ

−∞
φ′(y)Dαφ(y)dy =

1

2

∫

R
φ′(x)

∫

R

φ′(y)

|x− y|α dy dx = 0 ,

thus also φ′(ξ) = 0 for all ξ ∈ R. Then a non constant solution is always
below φ−.

In order to get the lower bound, we use that the right hand side of (2.17)
is non-negative, thus

H (φ)−H (φ−) = − c
2

(φ2 − (φ−)2) +
1

3
(φ3 − (φ−)3) +A(φ− φ−) ≥ 0 .

Since we have just shown that φ − φ− < 0 in (−∞, ξ0], we obtain the
condition

H(φ)−H(φ−)

φ− φ−
= − c

2
(φ+ φ−) +

1

3
(φ2 + φφ− + (φ−)2) +A < 0

and this implies (2.16). �
Lemma 2.4. (Global uniqueness) Let φ ∈ φ−+H4((−∞, ξ0)) be a solution
of (2.3). Then, up to a shift in ξ, φ is the continuation of either φup or
φdown, otherwise φ ≡ φ−.

Proof. For every δ > 0 there exists a ξ∗ ≤ ξ0, such that ‖φ−φ−‖H4((−∞,ξ∗)) <
δ and, therefore, by Sobolev embedding, also |φ(ξ∗)− φ−| < δ. Choosing δ
small enough, there are only two possibilities, either φ(ξ∗) = φ− (implying
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that φ ≡ φ−) or φ(ξ∗) 6= φ−. Whence, by local uniqueness, φ is, up to a
shift, either equal to φup or φdown, depending on the sign of φ(ξ∗)−φ−. �

It remains to analyse the far-field behaviour.

Lemma 2.5. Let φ ∈ φ− +H4((−∞, ξ0)) be a continuation of φdown as in
Lemma 2.4. Suppose that

(2.20) lim
ξ→∞

φ = φ0 ∈ R ,

then φ0 = φ+.

Proof. We argue by contradiction. Assume that (2.20) holds with φ0 6= φ+,
then h(φ(ξ))→ h(φ0) 6= 0. Suppose first that for ξ > ξ0, h(φ(ξ)) > C+ > 0,
then applying the integral operator (1.7) to h(φ) we get

d−1
1−αIαh(φ(ξ)) >

∫ ξ0

−∞

h(φ(y))

(ξ − y)1−αdy + C+

∫ ξ

ξ0

dy

(ξ − y)1−α

=

∫ ξ0

−∞

h(φ(y))

(ξ − y)1−αdy +
C+

α
(ξ − ξ0)α →∞ as ξ →∞ .

This and (2.3) imply that Iαφ′′ →∞ as ξ →∞. Similarly, if for all ξ > ξ0

we have h(φ(ξ)) < C− < 0, we obtain

d−1
1−αIαh(φ) <

∫ ξ0

−∞

h(φ(y))

(ξ − y)1−αdy + C−

∫ ξ

ξ0

dy

(ξ − y)1−α

=

∫ ξ0

−∞

h(φ(y))

(ξ − y)1−αdy + C−(ξ − ξ0)α → −∞ as ξ →∞

as before, this implies that Iαφ′′ → −∞ as ξ → ∞. In both cases and
using (2.3) we obtain that |Iαφ′′| is unbounded as well. Let us see that this
contradicts (2.20).

Since φ ∈ C3
b (R) by Lemma 2.2 and (2.20) holds, we can take for any

ε > 0 and ξ large enough, ξ∗ = ξ − δ for a fixed δ > 0 such that |φ′′(ξ)| < ε
for all ξ > ξ∗. Then

(2.21)

∣∣∣∣
∫ ξ

ξ∗

φ′′(y)

(ξ − y)1−αdy

∣∣∣∣ < ε(ξ − ξ∗)α = εδα .

Now if we write
(2.22)

d−1
1−αIαφ′′ =

∫ ξ

−∞

φ′′(y)

(ξ − y)1−αdy =

∫ ξ∗

−∞

φ′′(y)

(ξ − y)1−αdy +

∫ ξ

ξ∗

φ′′(y)

(ξ − y)1−αdy ,

(2.21) implies that the second term of (2.22) converges. We integrate by
parts the first term:

∫ ξ∗

−∞

φ′′(y)

(ξ − y)1−αdy =
φ′(ξ∗)

(ξ − ξ∗)1−α − lim
y→−∞

φ′(y)

(ξ − y)1−α

+ (1− α)

∫ ξ∗

−∞

φ′(y)

(ξ − y)2−αdy

=
φ′(ξ∗)
δ1−α + (1− α)

∫ ξ∗

−∞

φ′(y)

(ξ − y)2−αdy .
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The absolute value of the second term on the right hand side is also bounded
by C/δ1−α. Since δ was a fixed number, this contradicts the unboundedness
of Iαφ′′. �

Next we show that a solution as constructed in Lemma 2.1 approaches a
constant value as ξ →∞. Once this is proved we can conclude the proof of
Theorem 2.1 since this then implies that limξ→∞ φ = φ+ by Lemma 2.5.

Lemma 2.6. Let φ be a solution of (2.3) as in Lemma 2.4. Then there
exist a constant φ0 ∈ R such that limξ→∞ φ(ξ) = φ0.

Proof. The solution φ can be extended to any interval of the form (−∞, ξ0]
by repeating the continuation result of Lemma 2.2 as necessary, since (2.16)
is satisfied. Now, knowing that the smooth wave profile exists, we split the
non-local differential operator and rewrite the travelling wave equation in
the following form

(2.23) τφ′′ +Dαξ0φ+ φ = q(φ, ξ)

for ξ ≥ ξ0, where

q(φ, ξ) = −dα
∫ ξ0

−∞

φ′(y)

(ξ − y)α
dy + h(φ(ξ)) + φ(ξ) .

We can know write down the solution to (2.23) implicitly. In order to do that
one applies Laplace transform methods as in e.g. [8] to obtain a ’variations
of constants’ representation of the solution with initial conditions at ξ = ξ0.
One gets

φ(ξ) = φ(ξ0) v(ξ)− φ′(ξ0) v′(ξ)−
∫ ξ

ξ0

q(φ(ξ − s), ξ − s)v′(s)ds

where the function v and its derivatives are uniformly bounded and satisfy
(we give more details in Appendix C, see (C.12)-(C.14)):

lim
ξ→∞

(ξ − ξ0)αv(ξ) =
dα
τ
, lim

ξ→∞
(ξ − ξ0)α+1v′(ξ) =

dα−1

τ
.

Now using that φ is uniformly bounded in R, we conclude that q(φ, ξ) is also
uniformly bounded and it is easy to see the integrability of the term with
the inhomogeneity q as well as the decay of φ towards a constant. �

We end the section with the proof of the main theorem:

Proof of Theorem 2.1. The proof follows by applying the previous lemmas.
First, Lemma 2.1 (local existence), then Lemma 2.2 (continuation principle)
and then lemmas 2.3 and 2.4 imply the global existence and uniqueness up
to translation in ξ of solutions of (2.3) satisfying φ(−∞) = φ−. Finally,
Lemma 2.6 implies that such solution satisfies limξ→∞ |φ(ξ)| <∞ and from
Lemma 2.5 we conclude that in fact limξ→∞ φ(ξ) = φ+. �

3. Analysis of the monotonicity of travelling waves

In this section we discuss the role of the parameter τ in the monotonicity
of the travelling waves. To start with, we remark that one can show ’local’
monotonicity for all τ > 0 in the interval Iε for ε small enough:
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Lemma 3.1 (Local monotonicity). Let the assumptions of Lemma 2.1 hold.
Then, for ε small enough,

φup > φ− , φ′up > 0 , φdown < φ− , φ′down < 0 , in Iε .

Proof. The proof follows as in [1]. �
Now, if τ = 0 we know from [1] that travelling waves are monotone

decreasing. Moreover, if τ 6= 0 and α = 1, thus in the classical KdV-
Burgers case, it is easy to see that the waves are monotone if τ is smaller
than some critical value (see [3]). In fact, travelling waves are heteroclinic
connections of the corresponding ODE system. The critical points represent
the far-field values φ− and φ+, linearisation about these points shows that
the one associated to φ− is a saddle point and the one associated to φ+ is
an attractor. It is important to notice that the attractor has the eigenvalues

λ± =
−1±

√
1 + 4τh′(φ+)

2τ

and that h′(φ+) < 0 (see (2.6)). It then becomes clear that heteroclinic
connections give monotone travelling waves when τ ≤ −1/(4h′(φ+)).

We expect a similar behaviour for (2.3), although the decay of φ towards
φ+ is not exponential, as we have seen in the proof of Lemma 2.6.

Let us now prove that if τ is small enough then the solution of (2.2)-(2.3)
that is a extension of φdown is close to the solution with τ = 0 (as constructed
in [1]) on a large interval, thus implying monotonicity for small values of τ
on such intervals. Before we give the result let us introduce the appropriate
notation. Let us denote by φτ a travelling wave solution for a given τ and
φ0 a travelling wave of the problem with τ = 0. Then:

Theorem 3.1 (Monotonicity). If τ is small enough, then there exist an

interval Iτ = (−∞, ξτ ] with ξτ = O(τ−
1

2−α ) as τ → 0, and a value ξ =
ξ0
τ < ξτ such that φτ (ξ0

τ ) = φ0(ξ0
τ ), moreover, |φτ (ξ) − φ0(ξ)| ≤ τC and

|φ′τ (ξ) − φ′0(ξ)| ≤ τ1/(2−α)C for all ξ ∈ Iτ . Thus for τ small enough φτ is
also monotone decreasing in Iτ .

We prove this theorem in several lemmas. First we fix the shift in ξ:

Lemma 3.2. For a given small τ there exists a ξ0
τ < log τ/(h′(φ−))1/α

small and a travelling wave solution φτ such that, if φ0 is the travelling wave
solution of the problem with τ = 0 such that φ0(log τ/(h′(φ−))1/α) = φ−−τ ,
then φτ is monotone decreasing in (−∞, ξ0

τ ] and
(3.1)
φτ (ξ0

τ ) = φ0(ξ0
τ ) , |φ′τ (ξ)−φ′0(ξ)| , |φ′′τ (ξ)−φ′′0(ξ)| ≤ τC for ξ ∈ (−∞, ξ0

τ ]

with some order one constant C > 0.

Proof. We want to compare travelling wave solutions for a small τ > 0 with
solutions of the problem with τ = 0. The later ones are monotone and are
constructed ’locally’ near −∞ as in Lemma 2.1 in [1]. In particular, for a

given small enough ε then φ0(ξ0
ε ) = φ− − ε where ξ0

ε = log ε/(h′(φ−))1/α.
On the other hand, if λτ denotes the real root of (2.9) then φτ (log ε)/λτ ) =
φ−−ε. The asymptotic behaviour of λτ as τ → 0 (see (B.3) in Appendix B)
and (2.6) imply that if τ is small enough then ξ0

ε < log ε/λτ , hence, by local
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monotonicity, φ− − ε < φτ (ξ0
ε ) < φ− i.e. φτ (ξ0

ε ) − φ0(ξ0
ε ) < ε. Again by

monotonicity, we can find a value ξε < ξ0
ε , by shifting φτ in ξ if necessary,

such that φτ (ξε) = φ0(ξε). Finally, by the construction of these waves, they
are close to φ− by an exponential difference in H3(−∞, ξ0

τ ), it holds that
|φ′τ (ξ)−φ′0(ξ)|, |φ′′τ (ξ)−φ′′0(ξ)| ≤ εC with an order 1 constant C > 0. Finally,
we can do this same construction by taking ε = τ . �

Let ψτ := φτ − φ0, then ψτ satisfies the following equation

(3.2) τψ′′τ +Dαξ0τψτ = R(φ0, φτ , ξ)− τφ′′0(ξ)

where

(3.3) R(φ0, φτ , ξ) = [−c+ (φτ (ξ) + φ0(ξ))]ψτ (ξ)− dα
∫ ξ0τ

−∞

ψ′τ (y)

(ξ − y)α
dy ,

(for simplicity, we do not write the dependency of R in ψτ which implicit in
the dependency on φτ and φ0) here we have used the expression of h in (2.3)
to write h(φτ )− h(φ0) = [−c+ (φτ + φ0)]ψτ . That can be solved subject to
the initial conditions (see (3.1))

(3.4) ψ(ξ0
τ ) = 0 , ψ′(ξ0

τ ) = φ′τ (ξ0
τ )− φ′0(ξ0

τ ) .

Using Laplace transform we can write the solution to (3.2)-(3.4) taking φτ
and φ0 as given. In order to do that more conveniently we can first shift the
independent variable so that η = ξ− ξ0

τ and let ψ̄τ (η) = ψτ (η+ ξ0
τ ), so (3.2)

and (3.3) read

τψ̄′′τ +Dα0 ψ̄τ + ψ̄τ = Q(φ0, φτ , η) , ′ =
d

dη
(3.5)

Q(φ0, φτ , η) = R(φ0, φτ , η + ξ0
τ )− τφ′′0(η + ξ0

τ ) + ψ̄τ (η)(3.6)

where we add an subtract the term ψ̄τ for technical reasons outlined below.
Then, (3.5)-(3.6) must be solved with initial conditions (see (3.4))

(3.7) ψ̄τ (0+) = 0 , ψ̄′τ (0+) = ψ′(ξ0
τ ) .

Employing the computation performed in Appendix C, but here with
a = 1, the solution of (3.5)-(3.7) is given implicitly by

(3.8) ψ̄(η) = −τψ̄′(0+)v′(η)−
∫ η

0
v′(y)Q(φ0, φτ , η − y) dy

where v(η) reads (see (C.12) and (C.13))

(3.9) v(η) =
sin(απ)

π

∫ ∞

0
e−ηrKτ,α(r) dr + 2Re

(
es1η

τs1 + sα−1
1

2τs1 + αsα−1
1

)
,

and s1 is the solution of

(3.10) τz2 + zα + 1 = 0

with positive imaginary part, and β = arg(s1) ∈ (π/2, π) (see Lemma B.1
and Appendix C), and where

(3.11) Kτ,α(r) = rα−1K̃τ,α(r)
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with K̃τ,α(r) = 1/
(
(τr2 + 1)2 + 2(τr2 + 1)rα cos(απ) + r2α

)
. Then it is easy

to see that

(3.12) v′(η) =
sin(απ)

π

∫ ∞

0
e−ηrrαK̃τ,α(r) dr + 2Re

(
es1η

τs2
1 + sα1

2τs1 + αsα−1
1

)
.

The reason to introduce the term ψ̄τ is that this implies that the resulting
algebraic function when applying the Laplace transform to the left-hand side
of (3.5) has poles away from the negative real axis. Without this term, 0
would be a pole of such function, but is also a branch point, thus making
the computation of the inverse Laplace transform a little cumbersome.

We also need to get pointwise estimates on |ψ̄τ (η)|. We shall do this
directly from the expression obtained differentiating (3.8):
(3.13)

ψ̄′τ (η) = −τψ̄′τ (0+)v′′(η)− v′(η)Q(φ0, φτ , 0)−
∫ η

0
v′(y)

dQ
dη

(φ0, φτ , η− y) dy .

The following estimates hold:

Lemma 3.3. If r < 1/τ
1

2−α , for some τ small enough, then there exists a
C > 0 independent of τ such that

∣∣∣∣K̃τ,α(r)− 1

1 + 2rα cos(απ) + r2α

∣∣∣∣ ≤ C τ .

If on the contrary r ≥ 1/τ
1

2−α , for some τ small enough, there exists a C > 0
independent of τ such that

|K̃τ,α(r)| ≤ Cτ 2
2−α .

Proof. We leave the proof to the reader. One can convince him or herself by
inspecting the functions involved and a formal dominant balance analysis
that can be made rigorous by performing the calculus. �

Regarding the second term on the right-hand side of (3.9) we have the
following preliminary estimates that give exponential decay (observe that
cos(β) < 0:

Lemma 3.4. If τ is small enough then, there exists a 0 < C(τ) < 1 such
that C(τ) ∼ 2/(2 + α) as τ → 0 and

∣∣∣∣Re

(
es1η

τs1 + sα−1
1

2τs1 + αsα−1
1

)∣∣∣∣ ≤ C(τ)e(|s1| cosβ) η

where β = arg(s1) ∈ (π/2, π) with β → π/(2 − α) and |s1| = O(1/τ1/(2−α))
as τ → 0. Similarly, estimates on derivatives with respect to η of this term
differ by a factor |s1|n where n is the order of the derivative.

Proof. This is proved by using Lemma B.1 and (B.6) of Appendix B. Details
are left to the reader. �

We next derive estimates that we apply to (3.8) and (3.13). Essentially,
we get estimates on the uniform norms of v, v′, Q and dQ/dη, estimates on
the integral of |v′| over [0, η] and on v′′. We also need to get estimates on
the integral terms of Q and dQ/dη.
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Lemma 3.5. The following estimates hold for all η > 0 and τ small enough:

(i) There exist constants C(‖φ′′0‖L∞) > 0 and C > 0 such that

(3.14) |Q(φ0, φτ , η)| ≤ (1 + 3|φ−|+ |φ+|) |ψ̄τ (η)|+ τC(‖φ′′0‖L∞)

and

(3.15)

∣∣∣∣
dQ
dη

(φ0, φτ , η)

∣∣∣∣ ≤ C
(
|ψ̄τ (η)|+ |ψ̄′τ (η)|+ τη1−α)+ τ ‖φ′′′0 ‖L∞ .

(ii) There exists a constant C > 0 such that

|Q(φ0, φτ , 0)| ≤ τ
(
C + |φ′′0(ξ0

τ )|
)
.

(iii) The functions v, v′ and v′′ are uniformly bounded on [0,∞). the
first one by a constant independent of τ , whereas the other two by
an constant that becomes unbounded as τ → 0+. Moreover, for all
η > 0 there exists a constant C > 0

(3.16) |v′(η)| ≤ C
(
τ

α
2(2−α) η

α−2
2 + τ

1−α
2−α η−α + τ

3−α
2−α
)

+2C(τ)e(|s1| cosβ) η|s1|

s1 being the zero of (3.10) with positive imaginary part and β ∈
(π/2, π) its principal argument, and

(3.17) |v′′(η)| ≤ C(τ−1 + τ−
2

2−α + τ−
α

2−α + τ
1−α
2−α ) .

Proof. Statement (i) follows from the properties of φτ and φ0. In order to
estimate the integral term of Q we use the construction of the solutions φτ
and φ0 in the interval (−∞, ξ0

τ ] and that λτe
λτy−λ0e

λ0y = eλ0yF (τ, y) where
F (τ, y) in uniformly bounded in y < ξ0

τ τ > 0 (see Lemma 3.2, (3.1)). One
can show (ii) similarly, since

Q(φ0, φτ , 0) = −dαDα(ξ0
τ )− φ′′0(ξ0

τ ) .

The integral term of dQ/dη reads, here η > 0,

I := −dα
∫ ξ0τ

−∞

ψ′τ (y)

(ξ − y)α+1
dy = −dα

∫ 0

−∞

ψ̄′τ (y)

(η − y)α+1
dy .

Integration by parts gives

I = −dα
α

ψ̄′τ (0)

ηα
+
dα
α

∫ 0

−∞

ψ̄′′τ (y)

(η − y)α
dy

and using Lemma 3.2, (3.1) gives the estimate.
The statement in (iii) about v and v′ follows from (C.5) and (C.14) of

Appendix C.
Let us get the estimate on |v′(η)|. Using the expression of v′(η) in (3.12)

and Lemma 3.4 we obtain a first estimate

|v′(η)| ≤ 1

π

∫ ∞

0
e−ηrrα

∣∣∣K̃τ,α(r)
∣∣∣ dr + 2

∣∣∣∣Re

(
es1η

τs2
1 + sα1

2τs1 + αsα−1
1

)∣∣∣∣

≤ 1

π

∫ ∞

0
e−ηrrα

∣∣∣K̃τ,α(r)
∣∣∣ dr + Ce(|s1| cosβ) η)|s1| ,

for some positive constant independent of τ , where s1 is the zero of (3.10)
with positive imaginary part and β its principal argument. We estimate the
first term on the right-hand side of the inequality above assuming that τ is
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small enough and so that we can apply Lemma 3.3. Thus we first split the
integral over r and apply this lemma:

∫ τ
− 1

2−α

0
e−ηrrα

∣∣∣K̃τ,α(r)
∣∣∣ dr

≤
∫ τ

− 1
2−α

0

e−ηrrα−γrγ

1 + 2rα cos(απ) + r2α
dr + τ1− 1

2−αC

∫ τ
− 1

2−α

0
e−ηrrα−1 dr ,

(3.18)

where γ ∈ (α, 2α) and

(3.19)

∫ ∞

τ
− 1

2−α
e−ηrrα

∣∣∣K̃τ,α(r)
∣∣∣ dr ≤ τ

2
2−αC

∫ ∞

τ
− 1

2−α
e−ηrrα dr .

In order to estimate (3.18) we shall use that

(3.20)

∫ B

A
e−ηrrσ dr ≤

∫ ∞

0
e−ηrrσ dr =

Γ(σ + 1)

ησ+1

with σ > −1, 0 ≤ A < B, η > 0, and in each integral term we apply this
as an estimate with different values of σ. For the first term on the right-

hand side of (3.18) we first rescale r = τ−
1

2−α r̄ and observe that for any

γ ∈ (α, 2α] the function r̄γ/(τ
2α
2−αa2 + τ

α
2−α 2r̄α cos(απ) + r̄2α) is uniformly

bounded for r̄ ∈ [0, 1] by a constant independent of τ . Then, after this
change of variables, the estimate and applying (3.20) with A = 0, B = 1
and σ = α− γ one gets:

∫ τ
− 1

2−α

0

e−ηrrα

1 + 2 cos(απ)rα + r2α
dr ≤ τ

α−1
2−αC

∫ 1

0
e−τ

− 1
2−α ηr̄r̄α−γ dr̄

≤ τ
2α−γ
2−α C(α)

1

ηα−γ+1
.

We obtain

∫ τ
− 1

2−α

0
e−ηrrα

∣∣∣K̃τ,α(r)
∣∣∣ dr ≤ τ

2α−γ
2−α C(α)ηγ−α+1 + τ

1−α
2−αCΓ(α)η−α

and, taking γ = 3α/2, this gives the first two terms on the right-hand side
of (3.16). We further estimate (3.19) as follows:

∫ ∞

τ
− 1

2−α
e−ηrrα

∣∣∣K̃τ,α(r)
∣∣∣ dr

≤τ 2
2−αC

∫ ∞

τ
− 1

2−α
e−ηrr2rα−2 dr ≤ τ 2

2−αC

∫ ∞

τ
− 1

2−α
rα−2 dr = τ

3−α
2−αC ,

where we use Lemma 3.3 in the first step. Putting the estimates together
we obtain (3.16).
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Let us get now the estimate on |v′′(η)|. We differentiate (3.12) and esti-
mate the last term as in Lemma 3.4, then

|v′′(η)| ≤ | sin(απ)|
π

∫ ∞

0
e−rηrα+1|K̃(r)|dr + 2

∣∣∣∣Re

(
es1η

τs3
1 + sα+1

1

2τs1 + αsα−1
1

)∣∣∣∣

≤ | sin(απ)|
π

∫ ∞

0
e−rηrα+1|K̃(r)|dr + C e(|s1| cosβ)η|s1|2 .(3.21)

We get estimates on the first term on the right-hand side by dividing the
integral over the intervals (0, τ−1/(2−α)) and (τ−1/(2−α),∞) and apply the

estimates on K̃ of Lemma 3.3, then

| sin(απ)|
π

∫ ∞

0
e−rηrα+1|K̃(r)|dr

≤C
(∫ τ

− 1
2−α

0

e−rηr2αr1−α

1 + 2rα cos(απ) + r2α
dr + τ

∫ τ
− 1

2−α

0
e−rηrα+1dr

+ τ
2

2−α

∫ ∞

τ
− 1

2−α
e−rηr3rα−2dr

)

≤C
(∫ τ

− 1
2−α

0
r1−αdr + τ−

α
2−α + τ

2
2−α

∫ ∞

τ
− 1

2−α
rα−2dr

)

=C

(
τ−1

2− α + τ−
α

2−α +
τ

1−α
2−α

1− α

)
.

This together with (3.21) and the asymptotic behaviour of |s1| as τ → 0+

(see Lemma 3.4) concludes the proof of (3.17). �

We can now prove Theorem 3.1

Proof of Theorem 3.1. We start estimating |ψ̄τ (η)| and |ψ̄′τ (η)| directly from
(3.8) and (3.13) and using the estimates of Lemma 3.5:

|ψ̄τ (η)| ≤τC(‖φ′′0‖L∞)

∫ η

0
|v′(y)|dy + τ2C|v′(η)|+

∫ η

0
|v′(y)| |ψ̄τ (η − y)|

|ψ̄′τ (η)| ≤τC(|v′(η)|+ τ |v′′(η)|) +

∫ η

0
|v′(y)| |ψ̄′τ (η − y)|dy|

+

∫ η

0
|v′(y)|

(
|ψ̄τ (η − y)|+ τ(η − y)1−α + τ‖φ′′′0 ‖L∞

)
dy .

The result follows by using Gronwall’s Lemma, which implies that

|ψ̄τ (η)| ≤ A1(η) +

∫ η

0
A1(x)B(x)e

∫ η
x B(s)dsdx(3.22)

|ψ̄′τ (η)| ≤ A2(η) +

∫ η

0
A2(x)B(x)e

∫ η
x B(s)dsdx(3.23)

68 2. KORTEWEG-DE VRIES-BURGERS EQUATIONS

appeared as: F. Achleitner, C. M. Cuesta, and S. Hittmeir. “Travelling
waves for a non-local Korteweg–de Vries–Burgers equation”. In: J. Differen-
tial Equations 257.3 (2014), pp. 720–758



16 FRANZ ACHLEITNER, CARLOTA MARIA CUESTA, AND SABINE HITTMEIR

where

A1(η) =τC(‖φ′′0‖L∞)

∫ η

0
|v′(y)|dy + τ2C|v′(η)| , B(η) = |v′(η − x)|

A2(η) =τC(|v′(η)|+ τ |v′′(η)|)

+

∫ η

0
|v′(y)|

(
|ψ̄τ (η − y)|+ τ(η − y)1−α + τ‖φ′′′0 ‖L∞

)
dy .

Observe that A1,
∫ η

0 B1(y)dy and exp(
∫ η
s B1(s)ds) are uniformly bounded

for η < Cτ−1/(2−α) and, moreover, |A1(η)| ≤ τC for some C > 0. Using
this in (3.22) implies |ψ̄τ (η)| ≤ τC for some C > 0 for all such η’s. We can
apply this last fact to (3.23) to conclude the proof, since A2 ≤ τCη1−α, thus

in this range of η’s A2 ≤ τ1/(2−α)C. �

Finally, we discuss the fact that in the tail travelling waves are mono-
tone as long as τ is small enough. This does not imply that the waves are
decreasing in the whole of the domain, however. The following result holds:

Theorem 3.2. Let φ be a solution of (2.1)-(2.2) as constructed in Theo-
rem 2.1, then there exist a ξ̄ large enough such that if τ is small enough φ
is monotone decreasing in (ξ̄,∞).

Proof. We only sketch the proof. It can be done by a bootstrap argument
based on the behaviour of the solutions in the tail for τ small enough. For
every δ, let ξδ ∈ R be such that ξδ = inf{ξ : φ(ξ) − φ+ = δ}. Let us write
(2.1) as follows:

(3.24) h(φ) = Dαξδφ+

∫ ξδ

−∞

φ′(y)

(ξ − y)α
dy + τφ′′ .

Let ψ(ξ) = φ(ξ)− φ+, then (3.24) reads

h(φ)− h(φ+)− h′(φ+)ψ = Dαξδψ +

∫ ξδ

−∞

ψ′(y)

(ξ − y)α
dy + τψ′′ − h′(φ+)ψ ,

where we use that h(φ+) = 0. It is convenient to shift the independent
variable as follows ζ = ξ − ξδ and let ψ(ξ) = Ψ(ζ). Then, (3.24) reads,
rearranging terms,

(3.25) τΨ′′+Dα0 Ψ−h′(φ+)Ψ = h(φ)−h(φ+)−h′(φ+)Ψ−
∫ 0

−∞

Ψ′(y)

(ζ − y)α
dy ,

Then, we express the solution implicitly as in Appendix C with a = −h′(φ+) >
0

Ψ(ζ) = ψ̄(0+)v(ζ) +
τ

h′(φ+)
ψ̄′(0+)v′(ζ) +

1

h′(φ+)

∫ ζ

0
v′(y)Q(ζ − y) dy ,

(3.26)

Q(ζ) := h(φ(ζ + ξδ))− h(φ+)− h′(φ+)Ψ(ζ)−
∫ 0

−∞

Ψ′(y)

(ζ − y)α
dy(3.27)
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(cf. (C.6)) where v(ζ) has been computed in Appendix C and reads (see
(C.12) and (C.13))
(3.28)

v(ζ) = −h′(φ+)
sin(απ)

π

∫ ∞

0
e−ζrKα(r) dr + 2Re

(
es1ζ

τs1 + sα−1
1

2τs1 + αsα−1
1

)
,

(cf. (3.9)) where, as before, s1 is the solution of

(3.29) τz2 + zα − h′(φ+) = 0

with positive imaginary part, and β = arg(s1) ∈ (π/2, π) (see appendixes B

and C), and where Kα(r) = rα−1K̃α(r) with

K̃α(r) =
1

(τr2 − h′(φ+))2 + 2(τr2 − h′(φ+))rα cos(απ) + r2α
.

Observe that v(ζ) is the sum of a monotone (first term on the right-hand
side of (3.28)) and a oscillatory term (second term on the right-hand side of
(3.28)). On the other hand, the non-monotone contribution of v′(ζ) is given
by the derivative of the exponential oscillatory term of v(ζ) if ζ is very large
(thus if δ is very small), and the last term on the right hand side of (3.26) can
be made arbitrarily small for δ small. Thus taking ζ large enough and τ small
enough the small oscillations get damped by the algebraic decaying terms of

the monotone part. Observe that Re
(
es1ζ

τs1+sα−1
1

2τs1+αsα−1
1

)
has infinitely many

oscillations with frequency ω = ρ sinβ = Im(s1), but its amplitude decreases

exponentially like e(|s1| cosβ)ζ as ζ →∞ (recall that |s1| = O(τ−1/(2−α)) and
cos(β) < 0). �

4. Asymptotic stability of monotone travelling waves

In this section we assume that the travelling waves found in Theorem 2.1
are monotone (decreasing) and we prove their dynamic stability. Existence
of such waves is guaranteed for small enough values of τ as the analysis of
the previous section suggests. The stability analysis is done in a similar way
as for the KdV-Burgers equation and the Burgers equation (see e.g. [17],
and also [1] for the corresponding fractional diffusion Burgers equation). We
next outline the key ideas of the proof.

It is convenient to first change variables to x→ ξ = x− ct in (1.1), so it
becomes

(4.1) ∂tu+ ∂ξ(u
2 − cu) = ∂ξDαu+ τ∂3

ξu .

We then look for solutions of (4.1) which are a small perturbation of a
travelling wave and that in particular share the same far-field values. Let
u0(ξ) be an initial datum and φ(ξ) a monotone travelling wave as constructed
in Theorem 2.1, with a shift in ξ chosen such that

(4.2)

∫

R
(u0(ξ)− φ(ξ)) dξ = 0 .

Observe that conservation of mass, a property satisfied by (4.1), implies that
∫

R
(u(t, ξ)− φ(ξ))dξ = 0 , for all t ≥ 0 .
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Now, the perturbation U = u− φ satisfies the equation

(4.3) ∂tU + ∂ξ((2φ− c)U) + ∂ξU
2 = ∂ξDαU + τ∂3

ξU .

The aim is to show that U tends to 0 in a suitable sense as t tends to ∞ for
small enough U0 = u0 − φ. We use integral estimates. For instance, testing
(4.3) with U , we get

(4.4)
1

2

d

dt
‖U‖2L2 +

∫

R
φ′U2dξ = −aα‖U‖2

Ḣ
1+α
2
,

where several integrations by parts have been carried out. Since we are
assuming that φ′ ≤ 0, the second term in (4.4) is non-positive. We next
introduce the primitive of the perturbation and of the corresponding initial
data

W (t, ξ) =

∫ ξ

−∞
U(t, η)dη , W0(ξ) =

∫ ξ

−∞
U0(η)dη ,

which satisfies the integrated version of (4.3),

(4.5) ∂tW + (2φ− c)∂ξW + (∂ξW )2 = Dα∂ξW + τ∂3
ξW ,

and

(4.6)
1

2

d

dt
‖W‖2L2 −

∫

R
φ′W 2d ξ +

∫

R
(∂ξW )2W dξ = −aα‖W‖2

Ḣ
1+α
2
.

This integral identity has the crucial property that the term involving φ′

is non-negative. In the cubic term (arising from the nonlinearity) we can
estimate |W | by the L∞-norm, this factor can then be controlled by using
the Sobolev embedding H1(R) ⊂ L∞(R).

The right-hand side in (4.4) is obtained using Plancherel’s theorem that,
together with |û(k)|2 = |û(−k)|2, implies that

∫

R
sgn(k) |k|j |û(k, t)|2 dk = 0 j ∈ N .

We observe that (as one can easily check based on (1.3) and (1.5))

(4.7) F(∂xDα) = F(Dα∂x) = −(aα − ibαsgn(k))|k|α+1 ,

and from this we can obtain in the same way as for (4.4) the right-hand side
of (4.6).

The well-posedness result below and the fact that (1.1), or (4.1), is a third
order equation requires that we work with U ∈ H2, in fact we shall require
that at least U0 ∈ H3(R) since we need integral estimates of higher order.
We assume for the moment that the following theorem holds, and we prove
it in Section 5:

Theorem 4.1. For every U0 ∈ Hs(R), s ≥ 3 and assuming that φ ∈
Hs+1(R), there is a T > 0 such that (4.3) with initial data U(ξ, 0) = U0(ξ)
has a unique solution U ∈ C([0, T ];Hs(R)) ∩ C1([0, T ];L2(R)) satisfying

‖U‖Hs ≤ C‖U0‖Hs .

The same result applies to (4.5) with initial condition W (ξ, 0) = W0(ξ).
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Then assuming this, we can locally perform further integral estimates of
the consecutive differentiations of (4.5). Namely, from

(4.8) ∂t∂
2
ξW + ∂2

ξ ((2φ− c)∂ξW ) + ∂2
ξ (∂ξW )2 = ∂2

ξDα∂ξW + τ∂5
ξW .

we obtain, testing with ∂2
ξW , the integral identity

1

2

d

dt
‖∂2

ξW‖2L2 −
∫

R
φ′′′(∂ξW )2dξ + 3

∫

R
φ′(∂2

ξW )2dξ +

∫

R
(∂2
ξW )3dξ

=− aα‖∂2
ξW‖2

Ḣ
1+α
2
.

(4.9)

Further, from the equation

(4.10) ∂t∂
3
ξW + ∂3

ξ ((2φ− c)∂ξW ) + ∂3
ξ (∂ξW )2 = ∂3

ξDα∂ξW + τ∂6
ξW ,

we obtain testing now with ∂3
ξW the integral identity

1

2

d

dt
‖∂3

ξW‖2L2 + 2

∫

R
φ′′′∂ξW ∂3

ξWdξ − 3

∫

R
φ′′′(∂2

ξW )2dξ

+ 5

∫

R
φ′(∂3

ξW )2dξ + 5

∫

R
∂2
ξW (∂3

ξW )2dξ

=− aα‖∂3
ξW‖2

Ḣ
1+α
2
.

(4.11)

In order to justify the vanishing of the integral terms coming from the
highest order term in each equation, we use Theorem 4.1 above, that allows
to obtain these identities in [0, T ] provided the initial condition W0 ∈ Hs+1

with s ≥ 3. The proof of stability then uses a combination of the integral
identities just obtained choosing the coefficients in such a way that the
resulting functional is decreasing in time. The main point is that the terms
with the wrong sign, coming in general from the nonlinear terms and the
ones involving derivatives of φ, can be controlled by the dissipative ones via
versions of the interpolation inequality

(4.12) b2‖g‖2
Ḣ1 ≤ b1+α‖g‖2

Ḣ
1+α
2

+ b3+α‖g‖2
Ḣ

3+α
2
, b > 0

that holds as a consequence of (bk)2 ≤ |bk|1+α + |bk|3+α, k ∈ R with b > 0.
We shall also need the following one

(4.13) ‖g‖2
Ḣ1 ≤ max{1, 1/b}

(
‖g‖2

Ḣ
1+α
2

+ b‖g‖2
Ḣ

3+α
2

)
, b > 0 ,

that follows from (k)2 ≤ |k|1+α + |k|3+α ≤ min{b̃|k|1+α + |k|3+α, |k|1+α +

b̃|k|3+α} for any b̃ > 1.
After these preparations we can prove the following result.

Theorem 4.2. Let φ be a travelling wave as in Theorem 2.1, and let u0(ξ) be

an initial datum for (4.1), such that W0(ξ) =
∫ ξ
−∞(u0(η)− φ(η))dη satisfies

W0 ∈ Hs+1 with s ≥ 3. Then if ‖W0‖H3 is small enough, the Cauchy
problem for (4.1) with initial datum u0 has a unique global solution with
u(t) ∈ Hs−1 for all t > 0 converging to the travelling wave in the sense that

lim
t→∞

∫ ∞

t
‖u(σ, ·)− φ‖2H2dσ = 0 .

Note that (4.2), which can be translated into the condition W0(±∞) = 0,
is part of the assumption W0 ∈ Hs in Theorem 4.2.
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Proof. As mentioned earlier the integral identities (4.4)-(4.11) are justified
by Theorem 4.1 in an interval [0, T ]. Then, (4.4) and (4.6) imply the esti-
mates

1

2

d

dt
‖U‖2L2 − C0‖U‖2L2 ≤ −aα‖U‖2

Ḣ
1+α
2
,(4.14)

1

2

d

dt
‖W‖2L2 − ‖W‖L∞‖∂ξW‖2L2 ≤ −aα‖W‖2

Ḣ
1+α
2
,(4.15)

with C0 = ‖φ′‖L∞ . Now, (4.9) and (4.11) imply the estimates

1

2

d

dt
‖∂2

ξW‖2L2 − C1‖∂ξW‖2L2 − (‖∂2
ξW‖L∞ + 3C0) ‖∂2

ξW‖2L2

≤− aα‖∂2
ξW‖2

Ḣ
1+α
2
,

(4.16)

and

1

2

d

dt
‖∂3

ξW‖2L2 − C1‖∂ξW‖2L2 − 3C1‖∂2
ξW‖2L2

−
(
5‖∂2

ξW‖L∞ + 5C0 + C1

)
‖∂3

ξW‖2L2

≤− aα‖∂3
ξW‖2

Ḣ
1+α
2
.

(4.17)

with C1 = ‖φ′′′‖L∞ and where we choose the constant X > 0 below.
Then we can combine the estimate by choosing three positive constants,

say A, B and C to obtain the functional (that can be seen as a function of
t)

J = ‖W‖2L2 +A‖∂ξW‖2L2 +B‖∂2
ξW‖2L2 + C‖∂3

ξW‖2L2

that clearly satisfies that there exist constants C∗ and C∗ such that

(4.18) C∗‖W‖2H3 ≤ J ≤ C∗‖W‖2H3 .

Combining these estimates we obtain

1

2

dJ

dt
− (‖W‖L∞ +AC0 +BC1 + CC1) ‖W‖2

Ḣ1

−B
(
‖∂2

ξW‖L∞ + 3C0

)
‖W‖2

Ḣ2 − C
(
5‖∂2

ξW‖L∞ + 5C0 + C1

)
‖W‖2

Ḣ3

+aα

(
‖W‖2

Ḣ
1+α
2

+A‖W‖2
Ḣ

3+α
2

+B‖W‖2
Ḣ

5+α
2

+ C‖W‖2
Ḣ

7+α
2

)
≤ 0 .

Then we can estimate as follows

(AC0 +BC1 + CC1)‖W‖2
Ḣ1 ≤

aα
2

(
‖W‖2

Ḣ
1+α
2

+
A

2
‖W‖2

Ḣ
3+α
2

)
,(4.19)

3(CC1 +BC0)‖W‖2
Ḣ2 ≤

aα
2

(
A

2
‖W‖2

Ḣ
3+α
2

+
B

2
‖W‖2

Ḣ
5+α
2

)
,(4.20)

C (5C0 + C1) ‖W‖2
Ḣ3 ≤

aα
2

(
B

2
‖W‖2

Ḣ
5+α
2

+ C‖W‖2
Ḣ

7+α
2

)
.(4.21)

2. KORTEWEG-DE VRIES-BURGERS EQUATIONS 73

appeared as: F. Achleitner, C. M. Cuesta, and S. Hittmeir. “Travelling
waves for a non-local Korteweg–de Vries–Burgers equation”. In: J. Differen-
tial Equations 257.3 (2014), pp. 720–758



21

In order to obtain this we use (4.12), this implies, identifying coefficients,
that the following must be satisfied:

2

aα
(AC0 +BC1 + CC1) =

(
A

2

) 1−α
2

,

12

aαA
(CC1 +BC0) =

(
B

A

) 1−α
2

,

B = C

(
2α+3

aα
(5C0 + C1)

) 2
1+α

.

This can be solved using the third equation to eliminate C from the second
one that can then be solve for B/A. Then one can eliminate C and B from
the first equation to solve for A, and recovering B and C from the second
and third equations, one gets

(4.22) A =
1

2
3−α
1+α

(
aαL1L2

C0L1L2 + C1(L1 + 1)

) 2
1+α

, B =
A

L2
, C =

B

L1

where

L1 =

(
2α+3

aα
(5C0 + C1)

) 2
1+α

, L2 =

(
12

aα

(
C0 +

C1

L1

)) 2
1+α

.

Finally, we can also estimate the terms that contain coefficients with L∞

norms of W and/or its second derivative. Namely, the following hold easily
from (4.13)

‖W‖2
Ḣ1 ≤ max{1, 2/A}

(
‖W‖2

Ḣ
1+α
2

+
A

2
‖W‖2

Ḣ
3+α
2

)
(4.23)

B‖W‖2
Ḣ2 ≤

B

A
max{1, 2A/B}

(
A

2
‖W‖2

Ḣ
3+α
2

+
B

2
‖W‖2

Ḣ
5+α
2

)
(4.24)

5C‖W‖2
Ḣ3 ≤

10C

B
max{1, B/2C}

(
B

2
‖W‖2

Ḣ
5+α
2

+ C‖W‖2
Ḣ

7+α
2

)
(4.25)

and hence the combined estimate reads:

1

2

dJ

dt
+

(
aα
2
−max{1, 2

A
}‖W‖L∞

)(
‖W‖2

Ḣ
1+α
2

+
A

2
‖W‖2

Ḣ
3+α
2

)

+

(
aα
2
−max{B

A
, 2}‖∂2

ξW‖L∞
)(

A

2
‖W‖2

Ḣ
3+α
2

+
B

2
‖W‖2

Ḣ
5+α
2

)

+

(
aα
2
−max{10

C

B
, 5}‖∂2

ξW‖L∞
)(

B

2
‖W‖2

Ḣ
5+α
2

+ C‖W‖2
Ḣ

7+α
2

)

≤0 .

(4.26)

By the Sobolev embedding and (4.18) we have

‖W‖L∞ , ‖∂2
ξW‖L∞ ≤ ‖W‖H3 ≤

√
1

C∗
J .

then letting the initial data be small enough such that

J(0) < C∗a2
α(min{1/5, B/10C,A/B,A/2})2/8 ;
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this and (4.26) imply the existence of a λ > 0 and a λ̄ > 0, such that

dJ

dt
≤ −λ

(
‖W‖2

Ḣ
1+α
2

+A‖W‖2
Ḣ

3+α
2

+B‖W‖2
Ḣ

5+α
2

+ C‖W‖2
Ḣ

7+α
2

)

≤ −λ̄‖U‖2H2

for all t > 0. Integration with respect to time concludes the proof. �

5. The proof of Theorem 4.1

We now prove the well-posedness of the Cauchy problem for (4.5) for a
given initial data W (0, x) = W0(x) ∈ Hs(R) with s ≥ 3. In fact we show
that the operators involved satisfy certain properties, collected in Lemma 5.1
below. Then, we can prove the existence of the Cauchy problem for (4.3)
by applying Lemma 5.1 and then we can apply the lemma again (writing
(∂ξW )2 = U∂ξW in (4.5)) to conclude local existence of the Cauchy problem
associated to (4.5).

In the analysis we follow the semigroup approach for the Korteweg-de
Vries equation by Pazy in [16, Section 8.5], which is a variant of Kato [10],
Namely, one has to use [16, Theorem 6.4.3] and the fact that the conditions
of the theorem can be relaxed for time independent and transport type
operators, as is done in [16, Section 8.5] for the KdV equation. We can then
use the following version of [16, Theorem 6.4.3] to conclude local existence:

Lemma 5.1. Let X and Y be Banach spaces such that Y is densely and
continuously embedded in X. For every r > 0, let A(v) be a family of
operators A(v), v ∈ Br := {v ∈ Y : ‖v‖Y ≤ r} that satisfies the conditions

(i) Each of the operators of family A(v), with v ∈ Br, generate a C0

semigroup Tv(t) in Y such that ‖Tv(t)‖ ≤ exp(βt) where β ≥ c0‖v‖Y
with c0 independent of v.

(ii) There is an isomorphism S from Y onto X such that, for every
v ∈ Br, SA(v)S−1 −A(v) is a bounded operator in X and

‖SA(v)S−1 −A(v)‖X→X ≤ C1 for all v ∈ Br .
(iii) For each v ∈ Br, D(A(v)) ⊂ Y , A(v) is a bounded linear operator

from Y into X and

‖A(v1)−A(v2)‖Y→X ≤ C2‖v1 − v2‖X for all v1 , v2 ∈ Br .
Then, there exists a T > 0 such that the quasilinear problem

(5.1)

{
∂tu+A(u)u = 0 for 0 ≤ t ≤ T ,
u(0) = u0 ∈ Y ,

has a unique mild solution u ∈ C([0, T ], Y ) ∩ C1([0, T ], X).

In order to verify the conditions of the lemma, we shall split the homo-
geneous linear operators of (4.3) (and of (4.5)) into two operators. Namely,
we take

A0 : D(A0) = H3(R) 7→ L2(R) , u 7−→ ∂3
ξu ,(5.2)

A2 : D(A2) = H2(R) 7→ L2(R) , u 7−→ ∂ξDαu .(5.3)
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In addition we define the following family of transport operators for v ∈ Br:
(5.4) A1(v) : D(A1(v)) = H1(R) 7→ L2(R) , u 7→ v∂ξu .

In order to show that the conditions of Lemma 5.1 are satisfied, we first
derive some properties of these operators.

Lemma 5.2. (i) A0 is the infinitesimal generator of a C0 group of
isometries on L2(R).

(ii) For every v ∈ Hs(R) with s ≥ 3, the operator A1(v) is well-defined
with domain D(A1(v)) = H1(R) (dense in L2(R)). Moreover, the
operator −(A1(v) + βI) is dissipative for all β ≥ β0(v) = c0‖v‖Hs

where c0 is independent of v. Also, if u ∈ H3(R) and ε > 0, the
estimate

(5.5) ‖A1(v)‖L2 ≤ ε‖∂3
xu‖L2 + C1(ε, ‖v‖Hs)‖u‖L2

holds for some positive constant C1 depending on ε and on ‖v‖Hs.
(iii) For every 0 < α < 1, the operator A2 is well-defined with domain

D(A2) = H2(R) (dense in L2(R)). Moreover, A2 is dissipative with

(A2u, u) = −aα‖u‖2
Ḣ
α+1
2
≤ 0 for u ∈ H2(R) ,

where aα = sin(απ2 ) > 0. Finally, it satisfies for u ∈ H3(R) and
ε > 0 the estimate

(5.6) ‖A2u‖L2 ≤ ε‖∂3
xu‖L2 + C2(ε)‖u‖L2

with C2(ε) = (εp)
1

1−p ( p
p−1)−1 and p = 3

α+1 > 1.

Proof. The proofs of (i) and (ii) can be found in [16, Lemma 8.5.2 and
Lemma 8.5.3] respectively. We next prove (iii).

That A2 is dissipative follows from Plancherel’s formula and the fact that
|û(k)|2 = |û(−k)|2 imply

∫

R
sgn(k)|k|γ |û(k, t)|2 dk = 0 for γ > 0

(see [1]). Namely, for every u ∈ H2(R) and 0 < α < 1,

(A2u, u) =

∫

R

(
∂xDαu

)
udx = −

∫

R
(aα − ibα sgn(k)) |k|α+1|F(u)(k)|2dk

= −aα
∫

R
|k|α+1|F(u)(k)|2dk = −aα‖u‖2

Ḣ
α+1
2
≤ 0 .

It remains to prove (5.6). Indeed, for every u ∈ H3(R) and 0 < α < 1, we
obtain the estimate

‖A2u‖2L2 =

∫

R

∣∣|k|α+1F(u)(k)
∣∣2 dk

=

∫

R

(
|k|α+1|F(u)(k)|α+1

3

)2 (
|F(u)(k)|1−α+1

3

)2
dk

≤
(∫

R

(
|k|3|F(u)(k)|

)2
dk

) 1
p
(∫

R
|F(u)(k)|2 dk

) p−1
p

= ‖∂3
xu‖

2
p

L2 ‖u‖
2(p−1)
p

L2 ,
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where we have used again Plancherel’s formula, the fact that (a2
α + b2α) = 1,

and Hölder’s inequality with p = 3/(α + 1) > 1. Taking the square root of
the last inequality and using Young’s inequality 1 for some ε > 0, we infer
that

‖A2u‖L2 ≤ ε‖∂3
xu‖L2 + C2(ε)‖u‖L2

with C2(ε) = (εp)
1

1−p ( p
p−1)−1 and p = 3

α+1 > 1. �

Lemma 5.3. (i) For every v ∈ Hs, the operator A0 − A1(v) is the
infinitesimal generator of a C0-semigroup Tv(t) on L2 satisfying
Tv(t) ≤ exp(βt) for every β ≥ β0(v) = c0‖v‖Hs, where c0 is a
constant independent of v.

(ii) For every 0 < α < 1 and v ∈ Hs(R) with s ≥ 3, the operator
A1(v) − A2 is well-defined from H2(R) to L2(R). Moreover, the
operator A(v) = A0 + A2 − A1(v) is the infinitesimal generator of
a C0-semigroup Sv(t) on L2 satisfying

(5.7) ‖Sv(t)‖ ≤ exp(βt)

for every β ≥ β0(v) := c0‖v‖Hs, where c0 is a constant independent
of v.

Proof. The proof of the statement (i) can be found in [16, Lemma 8.5.3].
We then prove (ii).

Due to v ∈ Hs(R) with s ≥ 3, ∂xv ∈ Hs−1(R) and Hs−1(R) ↪→ L∞(R)
such that ‖∂xv‖L∞ ≤ C‖∂xv‖Hs−1 ≤ C‖v‖Hs . For every u ∈ H2(R),

((A1(v)−A2)u, u) ≥ −c0‖v‖Hs‖u‖2L2 + aα‖u‖2
Ḣ
α+1
2
≥ −c0‖v‖Hs‖u‖2L2 ,

since c0 and aα are positive constants. Therefore −(A1(v) − A2 + βI) is
dissipative for all β ≥ β0(v) := c0‖v‖Hs . A0 is a skew-adjoint operator,
whence A0 + A2 − A1(v) − βI is also dissipative for β ≥ β0(v). Moreover,
due to the estimates (5.5) and (5.6),

‖(A1(v)−A2 + βI)u‖L2 ≤ ‖A1(v)u‖L2 + ‖A2u‖L2 + |β|‖u‖L2

≤ 2ε‖∂3
xu‖L2 + C3(β, ε, ‖v‖Hs)‖u‖L2

holds with a positive constant C3(β, ε, ‖v‖Hs) := C1(ε, ‖v‖Hs) + C2(ε) +
|β|. Due to [16, Corollary 3.3.3] and the last estimate with 0 < ε < 1

2 ,
we conclude that A0 + A2 − A1(v) − βI is the infinitesimal generator of a
C0-semigroup of contractions on X for every β ≥ β0(v). Therefore A0 +
A2 −A1(v) is the infinitesimal generator of a C0-semigroup Tv(t) satisfying
(5.7). �

We can now prove Theorem 4.1.

Proof of Theorem 4.1. We need only to check that the assumptions of Lemma 5.1
are satisfied for the operator, in the notation of this section

A(u)u = 2φ′u+ (2φ− c+ 2u)∂ξu− ∂xDαu− τ∂3
xu .

1For positive real numbers a, b and ε, as well as 1 < p, q < ∞ with 1
p

+ 1
q

= 1, the

inequality

a b ≤ ε ap + C(ε) bq with C(ε) = (εp)
− q
p q−1

holds.
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We first observe that the second operator term can be seen as the sum
of three operators of the form A1 and the results of the previous lemmas
apply. The first term has not been analysed in the previous lemmas, but
since φ′ ∈ Hs+1(R) the operator is bounded and adding it to the ones of the
form A1 preserves the properties shown above. Thus, Lemma 5.2 and 5.3
show that (i) holds with A1 given by

A1(v)u = (2φ− c+ 2w)∂xu with v := 2φ− c+ 2w ,

we only observe that the constants that depend on ‖v‖Hs in these lemmas
now depend on ‖w‖Hs , c, ‖φ‖∞ and ‖φ′‖∞.

Let us show that (ii) holds. We proceed as in [16]. For s ≥ 3 (for s ≥ 3/2,
in fact) the operator

f → Λsf(x) :=
1√
2π

∫

R
exp(ix · ξ)(1 + ξ2)

s
2 f̂(ξ) dξ ,

is an isomorphism from Hs(R) to L2(R). We notice that for u, v ∈ Hs(R)

(5.8) (ΛsA(v)Λ−s −A(v))u = (Λsv − vΛs)Λ−s∂xu+ 2(Λsφ′Λ−su− φ′u) ,

since for u ∈ Hs

Λs∂3
xΛ−su = ∂3

xu and Λs∂xDαΛ−su = ∂xDαu ,

(see [16] for details). Therefore, for u, v ∈ Hs and the multiplication opera-
tor u 7→ vu, we deduce from (5.8) and [16, Lemma 8.5.4] that

‖(Λsv − vΛs)Λ1−sΛ−1∂xu‖L2 ≤ C‖v‖Hs‖u‖L2 .

It is easy to also show that

‖Λsφ′Λ−su− φ′u‖L2 ≤ (‖φ′‖Hs + ‖φ′‖∞)‖u‖L2 ≤ C‖u‖L2 .

This estimate and Hs(R) being dense in R, implies that ‖SA(v)S−1 −
A(v)‖L2→L2 ≤ C(‖w‖Hs + c + ‖φ′‖∞ + 1) ≤ C for w ∈ Br ⊂ Hs and
(ii) is satisfied with S = Λs.

It remains to show (iii). Observe that for s ≥ 3 and 0 < α < 1,

H3(R) = D(A(v)) ⊃ Hs(R) for every v ∈ L∞(R) ,

and also

‖A(v)u‖L2 ≤ ‖2φ′ u‖L2 + ‖v∂xu‖L2 + ‖∂xDαu‖L2 + ‖∂3
xu‖L2

≤ 2‖φ′‖L∞ ‖u‖L2 + ‖v‖L∞ ‖∂xu‖L2 + ‖u‖Ḣα+1 + ‖∂3
xu‖L2

≤ C(1 + ‖v‖∞)‖u‖Hs .

Therefore, for w ∈ Br, A(v) is a bounded operator from Hs(R) into L2(R).
Moreover, if v1, v2 ∈ Br and u ∈ Hs(R), then

‖(A(v1)−A(v2))u‖L2 = ‖(w1 − w2)∂xu‖L2

≤ ‖w1 − w2‖L2‖∂xu‖L∞ ≤ C‖w1 − w2‖L2‖u‖Hs

and (iii) holds as well, since v1 − v2 = w1 − w2. �
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Appendix

Appendix A. The linear problem (2.8) on (−∞, ξ0]

In this appendix we show that the only solutions of the linear problem
(2.8) are exponential functions in suitable weighted spaces. We shall assume
without loss of generality that ξ0 = 0 throughout this section. We use the
approach introduced for Wiener-Hopf integral equations of the form

(A.1) W (ξ)−
∫ ∞

0
K(ξ − y)W (y)dy = 0 ξ ≥ 0 ,

which are related to the Fredholm property by conditions on its symbol,
see [21]. We use the result by Krein [13, 14] that extends the method to
equations with L1-integrable kernels. Namely:

Theorem A.1 (Krein (1958&62)). Let K ∈ L1(R). If the symbol a(k) :=
1−

∫
R e
−ixkK(x) dx (= 1−

√
2πF [K]) is elliptic, i.e. infs∈R |a(s)| > 0, and

the winding number of the curve {a(s) : s ∈ (−∞,∞)} around the origin
is a non-negative integer r, then (A.1) has exactly r linearly independent
solutions in any of the Lebesgue spaces Lp(R+), with 1 ≤ p ≤ ∞.

We observe that have adapted Theorem A.1 from the original result by
Krein that is stated for

√
2πF(−k) instead of F(k).

It is not obvious that (2.8) can be transformed into a Wiener-Hopf equa-
tion, i.e. to the form (A.1). In particular, we will investigate the problem
on weighted spaces, such that it is admissible to consider the integrated
equation and compute its symbol.

For a generalisation of the Wiener-Hopf method to other spaces we refer
to [5] and for generalisations to convolution kernels being distributions we
refer to [7].

In order to write (2.8) as a Wiener-Hopf equation we first change variables
so that it is posed in R+ rather than in R−:

Lemma A.1. If V ∈ H3(R+) is a solution of the integral equation

(A.2) 0 = τV (ξ) +

∫ ∞

ξ

∫ ∞

y
Dα−[V ](z) dz dy − h′(φ−)

∫ ∞

ξ

∫ ∞

y
V (z) dz dy

where Dα−[V ](ξ) := −dα
∫∞
ξ

V ′(y)
(y−ξ)α dy, then v(ξ) := V (−ξ) for ξ ∈ R− is a

solution of (2.8).
Moreover, if v ∈ H3(R−) is a solution of (2.8) whose primitives are inte-

grable, then V (ξ) := v(−ξ) for ξ ∈ R+ is a solution of (A.2).

Proof. Due to a Sobolev embedding H3(R−) ↪→ C2
b (R−), a solution v ∈

H3(R−) has a representative in C2
b (R−), such that equation (2.8) holds

pointwise. We perform the change of variables in (2.8) V (−ξ) = v(ξ), such
that V ∈ H3(R+) ↪→ C2

b (R+), ξ → −ξ ∈ R+ and y → −y inside the integral
term, to get

(A.3) 0 = τV ′′(ξ) +Dα−[V ](ξ)− h′(φ−)V (ξ) ∀ξ ∈ R+ .

Finally, V ∈ H3(R+) ↪→ C2
b (R+) implies that V has a representative in

C2
b (R+), such that

lim
ξ→+∞

V (ξ) = 0 , lim
ξ→+∞

V ′(ξ) = 0 and lim
ξ→+∞

V ′′(ξ) = 0 .
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Integrating (A.3) twice under the assumption that the primitives of V are
integrable and reverting the change of variables yields (A.2). �

Lemma A.2. Suppose that µ > 0 and let

V ∈ H3
µ(R+) = {f ∈ H3(R+) : f(ξ) = e−µξg(ξ) for some g ∈ H3(R+)}

be a solution of (A.2). Then, the corresponding equation for W where
V (ξ) = e−µξW (ξ) and W ∈ H3(R+) can be written in the form (A.1) with
the L1-integrable kernel

(A.4) K(z) := −(θ(−z)eµz(−z)α−1) + h′(φ−) (θ(−z)eµz) ∗ (θ(−z)eµz)
having support on the negative real line R−, and has symbol

(A.5) aµ(k) =
τ(µ− ik)2 + (µ− ik)α − h′(φ−)

(µ− ik)2
.

Proof. Let V (ξ) = e−µξW (ξ) with W ∈ H3(R+), then (A.2) becomes, after
multiplying by eµξ,
(A.6)

0 = τW (ξ)+eµξ
∫ ∞

ξ

∫ ∞

y
Dα−[We−µ.](z) dz dy−eµξh′(φ−)

∫ ∞

ξ

∫ ∞

y
W (z)e−µz dz dy .

We have to extract alternative representations for the integral operators in
(A.6). The first integral operator satisfies

eµξ
∫ ∞

ξ

∫ ∞

y
Dα−[We−µ·](z) dz dy =

∫ ∞

ξ
eµ(ξ−y)

∫ ∞

y
eµ(y−z)Dα−[Weµ(z−.)](z) dz dy

= (θ(−·)eµ·) ∗ (θ(−·)eµ·) ∗ Dα−[Weµ(z−·)](z) .

Observe that

Dα−[Weµ(z−·)](z) = −dα
∫ ∞

z

(
W (σ)eµ(z−σ)

)′

(σ − z)α dσ = −dα
(

[θ(−·)eµ·(−·)−α]∗W ′−[µθ(−·)eµ·(−·)−α]∗W
)
.

The convolution kernel (θ(−·)eµ·) is L1 integrable and its Fourier transform
satisfies F [θ(−·)eµ·](k) = (µ−ik)−1/

√
2π. We use the identities F [f∗g](k) =√

2πF [f ](k)F [g](k), F [feµ·](k) = F [f ](k + iµ), and

F
[
θ(−ξ)
(−ξ)α

]
(k) = F

[
θ(ξ)

ξα

]
(−k) =

(−ik)α−1

dα
√

2π

for k ∈ C, to compute

F
[
eµ.Dα[We−µ.](.)

]
(k) = −dαF

[
[θ(−·)eµ·(−·)−α] ∗W ′ − [µθ(−·)eµ.(−·)−α] ∗W

]

= −dα
√

2π

(
F [θ(−·)(−·)−α](k + iµ)

)(
(ik − µ)F [W ](k)

)

= (µ− ik)αF [W ](k) .

Therefore, the first integral operator is a pseudo-differential operator with

(A.7) F
[
eµξ
∫ ∞

ξ

∫ ∞

y
Dα−[We−µ.](z) dz dy

]
(k) = (µ− ik)α−2F [W ](k) .
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The second integral operator satisfies

−eµξh′(φ−)

∫ ∞

ξ

∫ ∞

y
W (z)e−µz dz dy = −h′(φ−) (θ(−.)eµ.) ∗ (θ(−.)eµ.) ∗W ,

whence the integral operator is a pseudo-differential operator with
(A.8)

F
[
−eµξh′(φ−)

∫ ∞

ξ

∫ ∞

y
W (z)e−µz dz dy

]
(k) = −h′(φ−) (µ−ik)−2F [W ](k) .

Thus the linear operator in (A.6) is a pseudo-differential operator with sym-
bol (A.5).

It remains to justify that (A.6) is a Wiener-Hopf equation with some L1

integrable kernel. Indeed, inverting the symbols (A.7) and (A.8) allows to
write (A.6) as τW (x) − K ∗W (x) = 0 with K given by (A.4), which has
support on the negative real line R− and is L1 integrable. �

Theorem A.2. Suppose that 0 < µ < min{λ, h′(φ−)/(2 − α)}, where λ is
the unique positive real root of (2.9). Then, all solutions of (2.8) that are
in the space

L∞w (R−) = {f ∈ L∞(R+) : f(ξ) = eµξg(ξ) for some g ∈ L∞(R−)}
are given by the one-parameter family {beλξ : b ∈ R}.

Proof. Let us see that the conditions of Theorem A.1 are satisfied by the
symbol (A.5). The symbol aµ gives a closed curve s→ aµ(s) for s ∈ R, since
lims→±∞ aµ(s) = τ . The ellipticity follows from the fact that the numerator
of (A.5) only vanishes identically at s = 0 and µ = λ (by assumption
0 < µ < λ) and the denominator of

|aµ(s)|2 =
|τ(µ− is)2 + (µ− is)α − h′(φ−)|2

(µ2 − s2)2 + 4µ2s2

does not vanish.
Moreover, the winding number of the closed curve is a well-defined inte-

ger. In order to compute the winding number around the origin we add the
number of times that the curve crosses the negative real line in the anticloc-
kwise direction and subtract the number of times it does it in the clockwise
one.

There is a crossing at s = 0, since

aµ(0) =
τµ2 + µα − h′(φ−)

µ4
< 0 µ ∈ (0, λ) .

Let us see that this is the only one. In order to do that we compute
(A.9)

Re(aµ(s)) = τ+
(µ2 + s2)

α
2

(
(µ2 − s2) cos(Θs,µα) + 2sµ sin(Θs,µα)

)
− (µ2 − s2)h′(φ−)

µ4 + s4 + 2µ2s2
,

and

Im(aµ(s)) =
(µ2 + s2)

α
2

(
2sµ cos(Θs,µα)− (µ2 − s2) sin(Θs,µα)

)
− 2sµh′(φ−)

µ4 + s4 + 2µ2s2
.
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We observe that when the curve crosses the real line then Im(aµ(s)) = 0,
imposing this condition and using (2.6) gives

h′(φ−) = (µ2 + s2)
α+2
2

sin(Θs,µα)

2sµ
> 0

and substituting this expression into (A.9) gives

Re = τ + (µ2 + s2)
α
2

sin(Θs,µα)

2sµ
> 0 ,

thus the curve crosses the negative real line only once. It remains to deter-
mine whether the crossing is in the clockwise or anticlockwise direction. We
compute2

d

ds
Re(aµ(s))

∣∣
s=0

=
3h′(φ−)

µ2
> 0

and, under the assumption on µ,

d

ds
Im(aµ(s))|s=0 =

(2− α)µα − h′(φ−)

µ
< 0 .

Thus the curve aµ(s) runs once around the origin in the anticlockwise sense,
i.e. the winding number is 1. Applying Theorem A.1 and changing from W
to V and then to the original variable imply the statement. �

Appendix B. The roots of (2.9), (3.10) and (3.29)

In this appendix we show that (2.9) has exactly one real positive root two
complex conjugate roots with negative real part. We prove the result for
the more general algebraic equation:

(B.1) f(z) = z2 + azα − b for a , b > 0 , α ∈ (0, 1) .

In order to prove this we use a version of Rouche’s theorem as in [4], where
it is shown that

(B.2) g(z) = z2 + azα + b for a , b > 0 , α ∈ (0, 1)

has exactly two complex conjugate roots with negative real part. We observe
that (3.10) and (3.29) are of this form, so they have two complex conjugate
roots with negative real part.

Lemma B.1. For any positive values of a, b and any value α ∈ (0, 1).
Assume that z is the principal part of zα (−π < arg(z) < π), then (B.1) has
exactly one real positive root and two complex conjugate roots with negative
real part, and (B.2) has exactly two complex conjugate roots with negative
real part on the principal branch.

2We give the full expressions of the derivatives for completeness:

d

ds
Re(aµ(s)) =

(2− α)(µ2 + s2)
α
2

(
(µ2 − 3s2)µ sin(Θs,µα)− (3µ2 − s2)s cos(Θs,µα)

)
+ (3µ2 − s2)h′(φ−)

µ4 + s4 + 2µ2s2

and

d

ds
Im(aµ(s))|s=0 = − (µ2 + s2)

α
2 (2− α)

(
(3s2 − µ2)µ cos(Θs,µα) + (s2 − 3µ2)s sin(Θs,µα)

)
− 2µ(µ2 − 3s2)h′(φ−)

µ4 + s4 + 2µ2s2
.
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Proof. The statement about (B.2) has been shown in [4] (Theorem 13), we
do not prove it here. In fact the proof for (B.1) can be done along the same
lines, as follows.

First, it is easy to see that the unique positive real root of (B.1) is the
only root with positive real part (see argument following (2.9)). Indeed, we
argue by contradiction and assume that there exists a z0 ∈ C that solves
f(z) = 0 and that Re(z0) > 0. Since clearly z̄0 must also solve f(z) = 0 we
can assume that arg(z0) ∈ (0, π/2). Then, inspection of f(z0) shows that
Im(f(z0)) > 0, which contradicts the assumption f(z0) = 0.

It is also easy to show by simple inspection of f(z) that there are neither
purely imaginary roots of (B.1) nor negative real ones.

Since f(z) = 0 implies f(z̄) = 0 we can restrict ourselves to the open
sector

Q := {z ∈ C : arg(z) ∈ (π/2, π)} .
It then remains to show that there is only one z ∈ Q such that f(z) = 0. In
order to do that we use a version of Rouche’s theorem by T.Estermann [6].
This theorem says that if f and l are regular functions on a simply connected
region Ω ⊂ C and if |f − l| < |f | + |l| on ∂Ω then f and h have the same
number of zeros in Ω counted with their multiplicity. We shall then apply
this to f as in (B.1), which we shall compare to l given by

l(z) = z2 + i .

Let z ∈ Q ∩ AR where, for any given R > 0, AR denotes the ring {z ∈ C :
1/R < |z| < R}. One can check that if R is large enough so that for all
θ ∈ [π/2, π] z = Reθi then

|f(z)|+ |l(z)| > 2R2 − aRα − b− 1 > aRα + b+ 1 > |f(z)− l(z)| .
In order to prove the strict inequality on the rest of the boundary of Q∩AR,
we argue by contradiction and assume that |f − l| = |f |+ |l| in this region.
Thus, in particular, there exists a L > 0 such that f = −L l there. Then
for z = eiθ/R with θ ∈ (π/2, π) we obtain |Im(l)| > |Im(f)|, but |Re(l)| <
|Re(f)| if R is sufficiently large, and this contradicts f = −L l. Finally, if
θ ∈ {π/2, π} then Im(−l) = −c < 0 and Im(f) = a|z| sin(αθ) > 0, and this
also contradicts f = −L lh. Since we can take R as large as we want, this
concludes the proof. �

Let us for completeness compute the two term expansion of the roots of
(2.9) for very small values of τ (this can be made rigorous be applying the
implicit function theorem): A regular expansion gives the real root, in this
case it is easy to obtain by inserting the ansatz λ = λ0 + τλ1 +O(τ2), and
one gets that

(B.3) λ = h′(φ−)
1
α − τ

α
h′(φ−)

3−α
α +O(τ2) .

The complex conjugated roots are obtained by first performing the scaling

λ = τ−
1

2−α λ̄, and inserting the ansatz λ̄ = λ̄0 + τ
1

2−α λ̄1 in the rescaled

equation λ̄2 + λ− τ 1
2−α = 0. To leading order one gets three zeros, namely

λ̄0 = 0, eiπ/(α−2) and e−iπ/(α−2). The first one corresponds to the real one
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already found, from the other two one then gets (in the original scaling):

(B.4) λ = e±iπ
1

α−2
1

τ
1

2−α
+

h′(φ−)

2e±iπ
1

α−2 + αe±iπ
(α−1)
α−2

+O(τ
1

2−α ) .

A similar approach can be used to compute the expansion of the zeros of

(B.5) τz2 + azα + b = 0

provided that a and b are of order 1 as τ → 0. In that case the zeros are
approximated by
(B.6)

z = a
1

α−2 e±iπ
1

α−2
1

τ
1

2−α
− b

2a
1

α−2 e±iπ
1

α−2 + a
1

α−2
+1αe±iπ

(α−1)
α−2

+O(τ
1

2−α ) as τ → 0+ .

Appendix C. Computation of the linear problems (2.23), (3.5)
and (3.25)

In this appendix we give a way of solving implicitly equations of the type
(3.5) and (3.25) for a given inhomogeneity and initial conditions on the
unknown and its derivative. The method is by using the Laplace transform
and the computations can be found in e.g. [4] and [8], we follow the latter.

Given the initial value problem

(C.1) τψ′′ +Dα0ψ + aψ = Q(η) , ′ =
d

dη

subject to

(C.2) ψ(0+) = C0 , ψ′(0+) = C1 .

we apply the Laplace transform, L to get

(C.3) L(ψ)(s) =
1

τs2 + sα + a

(
L(Q)(s) + (τs+ sα−1)ψ(0+) + τψ′(0+))

)
,

we recall that L(f)(s) =
∫∞

0 e−sηf(η)dη. And using that L(f ∗ g)(s) =
L(f)(s)L(g)(s) then:

ψ = ψ(0+)L−1

(
τs+ sα−1

τs2 + sα + a

)
+τψ̄′(0+)L−1

(
1

τs2 + sα + a

)
+L−1

(
1

τs2 + sα + a

)
∗Q .

For simplicity, we let

(C.4) v(η) = L−1

(
τs+ sα−1

τs2 + sα + a

)
and ṽ(s) =

τs+ sα−1

τs2 + sα + a

and observe that, since

1

τs2 + sα + a
=

1

a
(1− sṽ(s))

then

L−1

(
1

τs2 + sα + a

)
(η) = −1

a
v′(η) .

We also observe that:

(C.5) lim
η→0+

v(η) = lim
s→∞

sṽ(s) = 1 and lim
η→0+

v′(η) = 0 .
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We can write the expression of ψ in terms of v instead to get

(C.6) ψ(η) = ψ(0+)v(η)− τ

a
ψ̄′(0+)v′(η)− 1

a

∫ η

0
v′(y)Q(η − y) dy .

For a > 0, let us sketch the computation of v(η), we recall that since this
is the inverse Laplace transform of ṽ(s), we have to compute:

(C.7) v(η) =
1

2πi

∫

Br
esη

τs+ sα−1

τs2 + sα + a
ds

where Br ⊂ C is a Bromwich contour:

(C.8) Br := {s : Re(s) = σ ≥ 1 & Im(s) ∈ (−∞,∞)}
moreover, we restrict to the principal representation of s, namely, here
arg(s) ∈ (−π, π]. We follow the approach in [8], although they do it in some
more detail for a different example and in the analogous case the estate the
formulae. The results of [4] about the zeros of τz2 + zα + a apply here to
the poles of the integrand in (C.7) for a > 0, thus, there exist two zeros that
are complex conjugates and have negative real part, let them be denoted
by s1 and s2. Then the contribution to the integral of these poles can be
computed away from the Riemann surface cut (since α ∈ (0, 1)) that is the
negative part of the real line. One can then split the integral as follows:
(C.9)

v(η) =
1

2πi
lim
δ→0

∫

Ha(δ)
esη

τs+ sα−1

τs2 + sα + a
ds+

∑

s=s1,s2

Res

(
esη

τs+ sα−1

τs2 + sα + a

)

where Ha(δ) is the Hankel path in C
(C.10)

Ha(δ) = {s = −r+iδ , r > 0}∪{s = −r−iδ , r > 0}∪{s = δeiβ , β ∈ [−π/2, π/2]}
It is easy to see by splitting the first integral term of (C.9) on these three
contours that the one corresponding to the semicircle tends to 0 as δ tends
to 0. The contribution of the other two is symmetric and gives:
(C.11)

v(η) = − 1

π

∫ ∞

0
e−ηrIm

(
τ(reiπ) + (reiπ)α−1

τ(reiπ)2 + (reiπ)α + a

)
dr+

∑

s=s1,s2

Res

(
esη

τs+ sα−1

τs2 + sα + a

)
.

We compute the integrand and residues, and get (using trigonometry)

Im

(
τ(reiπ) + (reiπ)α−1

τ(reiπ)2 + (reiπ)α + a

)
= − arα−1 sin(απ)

(τr2 + a)2 + 2(τr2 + a)rα cos(απ) + r2α

and (using that s1 and s2 are complex conjugates)

∑

s=s1,s2

Res

(
esη

τs+ sα−1

τs2 + sα + a

)
= 2Re

(
es1η

τs1 + sα−1
1

2τs1 + αsα−1
1

)
.

We then write v(η) as

(C.12) v(η) =
a sin(απ)

π

∫ ∞

0
e−ηrK(r) dr + 2Re

(
es1η

τs1 + sα−1
1

2τs1 + αsα−1
1

)
,
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where
(C.13)

K(r) = rα−1K̃(r) with K̃(r) =
1

(τr2 + a)2 + 2(τr2 + a)rα cos(απ) + r2α
.

That the integral term is bounded follows from application of Watson Lemma
(see [20]), since K̃ is C∞ near r = 0, K̃(0) = 1 6= 0, α − 1 > −1 and cle-
arly there exist non-negative constants C and b such that |K(r)| < Cebr.
Then the integral is bounded and moreover if η is large enough the following
approximation holds

∫ ∞

0
e−ηrK(r)dr ∼

∞∑

n=0

K̃n)(0)Γ(α+ n)

n!ηα+n
as η →∞ .

One can compute the derivatives of K̃ and show that the odd order ones
are zero at r = 0 and the even order ones do not vanish there; a two-term
expansion reads:
(C.14)∫ ∞

0
e−ηrK(r)dr ∼ Γ(α)

a2

1

ηα
− 4τΓ(α+ 2)

a3

1

ηα+2
+O

(
1

ηα+4

)
as η →∞ .
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ADDENDUM TO “TRAVELLING WAVES FOR A

NON-LOCAL KORTEWEG-DE VRIES-BURGERS

EQUATION” [J. DIFFERENTIAL EQUATIONS 257 (2014),

NO. 3, 720–758]

FRANZ ACHLEITNER AND CARLOTA MARIA CUESTA

Abstract. We add a theorem to [J. Differential Equations 257 (2014),
no. 3, 720–758] by F. Achleitner, C.M. Cuesta and S. Hittmeir. In
that paper we studied travelling wave solutions of a Korteweg-de Vries-
Burgers type equation with a non-local diffusion term. In particular, the
proof of existence and uniqueness of these waves relies on the assumption
that the exponentially decaying functions are the only bounded solutions
of the linearised equation. In this addendum we prove this assumption
and thus close the existence and uniqueness proof of travelling wave
solutions.

1. Introduction

In [1] we study the existence and stability of travelling waves of the follo-
wing one-dimensional evolution equation:

(1.1) ∂tu+ ∂xu
2 = ∂xDαu+ τ∂3xu , x ∈ R , t ≥ 0

with τ > 0, see also [2] for the case τ = 0. The symbol Dα denotes the non-
local operator acting on x that, applied to a general function f : R → R,
reads
(1.2)

Dαf(x) = dα

∫ x

−∞

f ′(y)

(x− y)α
dy , with 0 < α < 1 , dα :=

1

Γ(1− α)
> 0 ,

here Γ denotes the Gamma function.This operator can be interpreted as
a fractional derivative of order α in the Caputo sense, see e.g. [3], with
integration taken from −∞.

We recall that travelling wave solutions of (1.1) are solutions of the form
u(x, t) = φ(ξ) with ξ = x− ct and c ∈ R, that satisfy

(1.3) h(φ) = Dαφ+ τφ′′ , where h(φ) := −c(φ− φ−) + φ2 − φ2− .
and

(1.4) lim
ξ→−∞

φ(ξ) = φ− , lim
ξ→∞

φ(ξ) = φ+

(see [1] for details) for some constant values φ− and φ+. Here ′ denotes
differentiation with respect to ξ. Further, it is assumed that φ− > φ+ (Lax

2010 Mathematics Subject Classification. 47J35, 26A33, 35C07.
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2 FRANZ ACHLEITNER AND CARLOTA MARIA CUESTA

entropy condition), which implies that c = φ++φ− (Rankine-Hugoniot wave
speed), and also that h′(φ−) = φ− − φ+ > 0.

The proof of existence and uniqueness of travelling wave solutions, for
both τ > 0 and τ = 0, relies on the assumption that the functions v(ξ) =
Ceλξ, C ∈ R, are the only solutions in the Sobolev spaces Hs((−∞, 0]) with
s = 2 if τ = 0 (see [2]) and s = 4 if τ > 0 (see [1]) of the linearised equation

(1.5) h′(φ−)v = Dαv + τv′′ ,

where the exponent λ > 0 is the real and strictly positive zero of

(1.6) P (z) = τz2 + zα − h′(φ−) .

We recall that for τ > 0 there is a unique positive real zero of (1.6), the
other zeros being two complex conjugates with negative real part, see [1].

In [1] we do not give a complete proof of this assumption, however, we
prove it in suitable weighted exponential spaces. We show this by writing
the equation as a Wiener-Hopf equation ([6]) and applying the results by [4].
Namely, we show that if 0 < µ < min{λ, h′(φ−)/(2−α)}, then, all solutions
of (1.5) that are in the space

L∞w (−∞, 0) = {f ∈ L∞(−∞, 0) : f(ξ) = eµξg(ξ) for some g ∈ L∞(−∞, 0)}
are given by the one-parameter family {Ceλξ : C ∈ R}. A similar result is
given in [2] for the case τ = 0, where it is also shown that bounded solutions
decay to 0 as ξ → −∞ faster than algebraically.

The aim of the current addendum is thus to present a proof that removes
the weight of the space. Namely, we show that:

Theorem 1.1. All solutions of (1.5) with τ ≥ 0 that are in Hs(−∞, 0) with
s ≥ 2 are given by the one-parameter family {ξ ∈ (−∞, 0)→ Ceλξ : C ∈ R},
where λ is the positive zero of (1.6).

A crucial point in our proof will be the non-negativity of the integral

(1.7) I[v] :=

∫ 0

−∞
v′(ξ)Dαv(ξ)dξ.

We give the proof of Theorem 1.1 in the next section. Let us now recall
some notation and properties of (1.2). For s ≥ 0 we shall adopt the following
notation for the Sobolev space of square integrable functions,

Hs(R) := {u : ‖u‖Hs(R) <∞} , ‖u‖Hs(R) := ‖(1 + |k|2)s/2û‖L2(R) ,

and the corresponding homogeneous norm ‖u‖Ḣs(R) := ‖|k|sû‖L2(R), where

û denotes the Fourier transform of u. It is easy to see that ‖Dαu‖Ḣs(R) =

‖u‖Ḣs+α(R), so thatDα is a bounded linear operator fromHs(R) toHs−α(R).

We recall that the analysis in [1] starts out by proving a ’local’ existence
result on (−∞, ξ0] with ξ0 < 0 and |ξ0| sufficiently large. This proof is based
on linearisation about ξ = −∞ (or, equivalently, φ = φ−), which is given by
(1.5). It is then assumed that

(1.8) N
(
τ∂2ξ +Dα − h′(φ−)Id

)
= span{eλξ} in Hs(−∞, ξ0)

where Id denotes the identity operator and s = 4 if τ > 0 and s = 2 if
τ = 0. The assumption (1.8) follows if Theorem 1.1 is true. Notice that the
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problem is invariant under translation, so we can take ξ0 = 0 without loss
of generality in order to show (1.8).

2. Proof of Theorem 1.1

We work in the Hilbert space

H2
0 (−∞, 0) = {v ∈ H1(−∞, 0) : v(0) = 0} ∩H2(−∞, 0) .

We need two lemmas. First, we find a way of writing the potential in Dα as
an integral (see [5]):

Lemma 2.1. (i) Let h ∈ C∞c (R) be an even function, then H : R→ R
defined by

H(t) :=

∫

R
h(t− r)h(r) dr

is an even non-negative function with compact support. Moreover,
h can be normalised such that

∫∞
0 H(t)dt = 1.

(ii) Let β > −1 and H as in (i), then for all x ∈ R

|x|−(β+1) =

∫ ∞

0
tβH(tx)dt .

Moreover, for any ξ, y ∈ R and a > 0, we have

(2.1) |ξ − y|−a =

∫ ∞

0
ta
∫

R
h(t(z − ξ))h(t(z − y)) dz dt.

We can now show the following key result:

Lemma 2.2. Let v ∈ H2
0 (−∞, 0), then the integral I[v] in (1.7) is well-

defined and is non-negative. Moreover, I[v] is zero if and only v ≡ 0.

Proof. We first show that I[v] is well-defined. Indeed, using the Cauchy-
Schwarz inequality and that α ∈ (0, 1), it follows that

(2.2)

∣∣∣∣
∫ 0

−∞
v′(ξ)Dαv(ξ)dξ

∣∣∣∣ ≤ ‖v′‖L2(−∞,0)‖Dαv‖L2(−∞,0) .

We now use the reflection operator E : H2
0 (−∞, 0)→ H2(R),

E [u](x) := u∗(x) =

{
u(x) if x ≤ 0,

−u(−x) if x > 0,

so that ‖u∗‖2L2(R) = 2‖u‖2L2(−∞,0). Then,

‖Dαv‖2L2(−∞,0) ≤ ‖Dαv∗‖2L2(R) = ‖v∗‖2
Ḣα(R) ≤ ‖v

∗‖2H1(R) = 2‖v‖2H1
0 (−∞,0)

<∞ .

This and ( 2.2) imply that I[v] is well-defined.
In order to determined the sign of I[v], we first write (1.7) over integrals

on R:

I[v] =

∫ 0

−∞

∫ 0

y

v′(ξ)v′(y)

(ξ − y)α
dξ dy =

1

2

∫

R

∫

R

[v′(ξ)θ(−ξ)] [v′(y)θ(−y)]

|ξ − y|α dξ dy

where θ denotes the Heaviside function. In the first identity we have used
the definition of Dα and Fubini-Tonelli Theorem. Let us, for simplicity
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of notation, write F (x) = v′(x)θ(−x). Then, by expressing the potential
according to Lemma 2.1 (2.1), we obtain

I[v] =
1

2

∫

R

∫

R
F (ξ)F (y)

∫ ∞

0
tα
∫

R
h(t(z − ξ))h(t(z − y)) dz dt dy dξ

and by Fubini-Tonelli Theorem we have that

I[v] =
1

2

∫ ∞

0
tα
∫

R

(∫

R
F (ξ)h(t(z − ξ))dξ

)2

dz dt ≥ 0 .

Now, if I[v] = 0 then F ∗ ht = 0 almost everywhere, where ht(x) = h(tx).
Since h has compact support, ht acts as a mollifier as t → ∞ and it is not
hard to show that then F ≡ 0 ([5]). Recalling that F (x) = v′(x)θ(−x) with
v(0) = 0 then v ≡ 0. �

Proof of Theorem 1.1. First let us prove the uniqueness of solutions of (1.5)
in H2(−∞, 0) for a given data in ξ = 0. This is equivalent to proving that
the only solution of (1.5) in H2

0 (−∞, 0) is v ≡ 0; indeed, if v1 and v2 are
two solutions of (1.5) with v1(0) = v2(0), then v = v1 − v2 satisfies

(2.3)

{
h′(φ−)v = Dαv + τv′′

v(0) = 0 .

Testing (2.3) with v′ ∈ H1(−∞, 0) and integrating with respect to ξ we
obtain:

0 =
h′(φ−)

2
v(0)2 =

∫ 0

−∞
v′(ξ)Dαv(ξ)dξ +

τ

2
v′(0)2

and Lemma 2.2 implies that v ≡ 0.
It is easy to see, just by a straight computation, that the exponential

functions Ceµξ with µ being a zero of (1.6) satisfy (1.5). If µ = λ, then
these exponential functions are the only solutions in H2(−∞, 0), by the
uniqueness just established. On the other hand, since these functions are
also solutions in Hs(−∞, 0) with s > 2 and Hs(−∞, 0) ⊂ H2(−∞, 0), the
result follows. �
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TWO CLASSES OF NONLOCAL EVOLUTION EQUATIONS

RELATED BY A SHARED TRAVELING WAVE PROBLEM

FRANZ ACHLEITNER

Abstract. We consider nonlocal reaction-diffusion equations and non-
local Korteweg-de Vries-Burgers (KdVB) equations, i.e. scalar conser-
vation laws with diffusive-dispersive regularization. We review the exis-
tence of traveling wave solutions for these two classes of evolution equa-
tions. For classical equations the traveling wave problem (TWP) for a
local KdVB equation can be identified with the TWP for a reaction-
diffusion equation. In this article we study this relationship for these
two classes of evolution equations with nonlocal diffusion/dispersion.
This connection is especially useful, if the TW equation is not studied
directly, but the existence of a TWS is proven using one of the evolution
equations instead. Finally, we present three models from fluid dynam-
ics and discuss the TWP via its link to associated reaction-diffusion
equations.

1. Introduction

We will consider two classes of (nonlocal) evolution equations and study
the associated traveling wave problems in parallel: On the one hand, we
consider scalar conservation laws with (nonlocal) diffusive-dispersive regu-
larization

(1) ∂tu+ ∂xf(u) = εL1[u] + δ∂xL2[u] , t > 0 , x ∈ R ,

for some nonlinear function f : R → R, Lévy operators L1 and L2, as well
as constants ε, δ ∈ R. The Fourier multiplier operators L1 and ∂xL2 model
diffusion and dispersion, respectively. On the other hand, we consider scalar
reaction-diffusion equations

(2) ∂tu = σL3[u] + r(u) , t > 0 , x ∈ R ,

for some positive constant σ, as well as a nonlinear function r : R→ R and
a Lévy operator L3 modeling reaction and diffusion, respectively.

Definition 1.1. A traveling wave solution (TWS) of an evolution equation–
such as (1) and (2)–is a solution u(x, t) = ū(ξ) whose profile ū depends on
ξ := x − ct for some wave speed c. Moreover, the profile ū ∈ C2(R) is
assumed to approach distinct endstates u± such that

(3) lim
ξ→±∞

ū(ξ) = u± , lim
ξ→±∞

ū(n)(ξ) = 0 with n = 1, 2.

Such a TWS is also known as a front in the literature. A TWS (ū, c) is
called monotone, if its profile ū is a monotone function.

Key words and phrases. nonlocal evolution equations, traveling wave solutions,
reaction-diffusion equations, Korteweg-de Vries-Burgers equation.
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Definition 1.2. The traveling wave problem (TWP) associated to an evo-
lution equation is to study for some distinct endstates u± the existence of a
TWS (ū, c) in the sense of Definition 1.1.

We want to identify classes of evolutions equations of type (1) and (2),
which lead to the same TWP. This connection is especially useful, if the
TWP is not studied directly, but the existence of a TWS is proven using
one of the evolution equations instead. A classical example of (1) is a scalar
conservation law with local diffusive-dispersive regularization

(4) ∂tu+ ∂xf(u) = ε∂2
xu+ δ∂3

xu , t > 0 , x ∈ R ,

for some nonlinear function f : R→ R and some constants ε > 0 and δ ∈ R.
Equation (4) with Burgers flux f(u) = u2 is known as Korteweg-de Vries-
Burgers (KdVB) equation; hence we refer to Equation (4) with general f as
generalized KdVB equation and Equation (1) as nonlocal generalized KdVB
equation. A TWS (ū, c) satisfies the traveling wave equation (TWE)

(5) −cū′ + f ′(ū) ū′ = εū′′ + δū′′′ , ξ ∈ R ,

or integrating on (−∞, ξ] and using (3),

(6) h(ū) := f(ū)− cū− (f(u−)− c u−) = εū′ + δū′′ , ξ ∈ R .

However, the TW ansatz v(x, t) = ū(x− εt) for the scalar reaction-diffusion
equation

(7) ∂tv = −h(v) + δ∂2
xv , t > 0 , x ∈ R ,

leads to the same TWE (6) except for a different interpretation of the pa-
rameters. The traveling wave speeds in the TWP of (4) and (7) are c and ε,
respectively. For fixed parameters c, ε, and δ, the existence of a traveling
wave profile ū satisfying (3) and (6) reduces to the existence of a hetero-
clinic orbit for this ODE. This is an example, where the existence of TWS
is studied directly via the TWE.

An example, where the TWE is not studied directly, is the TWP for a
nonlocal KdVB equation (1) with L1[u] = ∂2

xu and L2[u] = φε∗u−u for some
even non-negative function φ ∈ L1(R) with compact support and unit mass,
where φε(·) := φ(·/ε)/ε with ε > 0. It has been derived as a model for phase
transitions with long range interactions close to the surface, which supports
planar TWS associated to undercompressive shocks of (51), see [52]. In
particular, the TWP for a cubic flux function f(u) = u3 is related to the
TWP for a reaction-diffusion equation (2) with L3[u] = L2[u]. The existence
of TWS for this reaction-diffusion equation has been proven via a homotopy
of (2) to a classical reaction-diffusion model (7), see [14].

Outline. In Section 2 we collect background material on Lévy operators L,
which will model diffusion in our nonlocal evolution equations. Special em-
phasize is given to convolution operators and Riesz-Feller operators. In
Section 3 we review the classical results on the TWP for reaction-diffusion
equations (7) and generalized Korteweg-de Vries-Burgers equation (4). We
study their relationship in detail, especially the classification of function
h(u), which will be used again in Section 4. In Section 4, first we review the
results on TWP for nonlocal reaction-diffusion equations (2) with operators
L3 of convolution type and Riesz-Feller type, respectively. Finally, we study
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the example of nonlocal generalized Korteweg-de Vries-Burgers equation (1)

with L1[u] = D1/3
+ u and L2[u] = ∂2

xu modeling a shallow water flow [44],
and Fowler’s equation

(8) ∂tu+ ∂xu
2 = ∂2

xu− ∂xD1/3
+ u , t > 0 , x ∈ R ,

modeling dune formation [36], where Dα+ is a Caputo derivative. In the
Appendix, we collect background material on Caputo derivatives Dα+ and
the shock wave theory for scalar conservation laws, which will explain the
importance of the TWP for KdVB equations.

Scalar conservation laws with fractional Laplacian are another example of
equation (1) with L1[u] = −(−∂2

x)α/2 u, 0 < α < 2, and L2[u] ≡ 0. However,
its traveling wave problem can not be related to a nonlocal reaction-diffusion
problem like our examples. Therefore, instead of discussing its traveling
wave problem, we refer the interested reader to the literature [15, 31, 32, 7,
10, 43, 30, 23, 8, 33, 26] and references therein.

Notations. We use the conventions in probability theory, and define the
Fourier transform F and its inverse F−1 for g ∈ L1(R) and x, k ∈ R as

F [g](k) :=

∫

R
e+ i kx g(x) dx ; F−1[g](x) := 1

2π

∫

R
e− i kx g(k) dk .

In the following, F and F−1 will denote also their respective extensions to
L2(R).

2. Lévy Operators

A Lévy process is a stochastic process with independent and stationary
increments which is continuous in probability [12, 40, 53]. Therefore a Lévy
process is characterized by its transition probabilities p(t, x), which evolve
according to an evolution equation

(9) ∂tp = Lp
for some operator L, also called a Lévy operator. First, we define Lévy
operators on the function spaces C0(R) := {f ∈ C(R) | lim|x|→∞ f(x) = 0}
and C2

0 (R) := {f, f ′, f ′′ ∈ C0(R)}.
Definition 2.1. The family of Lévy operators in one spatial dimension
consists of operators L defined for f ∈ C2

0 (R) as
(10)

Lf(x) = 1
2Af

′′(x)+γ f ′(x)+

∫

R

(
f(x+ y)− f(x)− y f ′(x)1(−1,1)(y)

)
ν( dy)

for some constants A ≥ 0 and γ ∈ R, and a measure ν on R satisfying

ν({0}) = 0 and

∫

R
min(1, |y|2) ν( dy) <∞ .

Remark 1. The function f(x+y)−f(x)−y f ′(x)1(−1,1)(y) is integrable with
respect to ν, because it is bounded outside of any neighborhood of 0 and

f(x+ y)− f(x)− y f ′(x)1(−1,1)(y) = O(|y|2) as |y| → 0

for fixed x. The indicator function c(y) = 1(−1,1)(y) is only one possi-
ble choice to obtain an integrable integrand. More generally, let c(y) be a
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bounded measurable function from R to R satisfying c(y) = 1 + o(|y|) as
|y| → 0, and c(y) = O(1/|y|) as |y| → ∞. Then (10) is rewritten as

(11)

Lf(x) = 1
2Af

′′(x)+γc f
′(x)+

∫

R

(
f(x+ y)− f(x)− y f ′(x)c(y)

)
ν( dy) ,

with γc = γ +
∫
R y (c(y)− 1(−1,1)(y)) ν( dy) .

Alternative choices for c:

(c 0) If a Lévy measure ν satisfies
∫
|y|<1 |y| ν( dy) < ∞ then c ≡ 0 is

admissible.
(c 1) If a Lévy measure ν satisfies

∫
|y|>1 |y| ν( dy) < ∞ then c ≡ 1 is

admissible.

We note that A and ν are invariant no matter what function c we choose.

Examples.

(a) The Lévy operators

(12) Lf =

∫

R

(
f(x+ y)− f(x)

)
ν( dy)

are infinitesimal generators associated to a compound Poisson pro-
cess with finite Lévy measure ν satisfying (c 0). The special case of
ν( dy) = φ(−y) dy for some function φ ∈ L1(R) yields

(13) Lf(x) =

∫

R

(
f(x+ y)− f(x)

)
φ(−y) dy =

(
φ ∗ f −

∫

R
φ dy f

)
(x) .

(b) Riesz-Feller operators. The Riesz-Feller operators of order a and
asymmetry θ are defined as Fourier multiplier operators

(14) F [Da
θf ](k) = ψaθ (k) F [f ](k) , k ∈ R ,

with symbol ψaθ (k) = −|k|a exp [i sgn(k) θπ/2] such that (a, θ) ∈
Da,θ and

Da,θ := { (a, θ) ∈ R2 | 0 < a ≤ 2 , |θ| ≤ min{a, 2− a} } .
Special cases of Riesz-Feller operators are
• Fractional Laplacians−(−∆)a/2 on R with Fourier symbol−|k|a

for 0 < a ≤ 2. In particular, fractional Laplacians are the
only symmetric Riesz-Feller operators with −(−∆)a/2 = Da

0

and θ ≡ 0.
• Caputo derivatives −Dα+ with 0 < α < 1 are Riesz-Feller oper-

ators with a = α and θ = −α, such that −Dα+ = Dα
−α, see also

Section A.
• Derivatives of Caputo derivatives ∂xDα+ with 0 < α < 1 are

Riesz-Feller operators with a = 1 + α and θ = 1− α, such that
∂xDα+ = D1+α

1−α.

Next we consider the Cauchy problem

(15) ∂tu(x, t) = Da
θ [u(·, t)](x) , u(x, 0) = u0(x) ,

for (x, t) ∈ R× (0,∞) and initial datum u0.
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Figure 1. The family of Fourier multipliers ψaθ (k) =
−|k|a exp

[
i sgn(k)θπ/2)

]
has two parameters a and θ. Some

Fourier multiplier operators F [Tf ](k) = ψaθ (k) F [f ](k) are
inserted in the parameter space (a, θ): partial derivatives and
Caputo derivatives Dα+ with 0 < α < 1. The Riesz-Feller op-
erators Da

θ are those operators with parameters (a, θ) ∈ Da,θ.
The set Da,θ is also called Feller-Takayasu diamond and de-
picted as a shaded region, see also [47].

Proposition 2.2. For (a, θ) ∈ Da,θ with θ 6= ±1 and 1 ≤ p < ∞, the
Riesz-Feller operator Da

θ generates a strongly continuous Lp-semigroup

St : Lp(R)→ Lp(R) , u0 7→ Stu0 = Gaθ(·, t) ∗ u0 ,

with heat kernel Gaθ(x, t) = F−1[exp(t ψaθ (·))](x). In particular, Gaθ(x, t) is
the probability measure of a Lévy strictly a-stable distribution.

The proof of this proposition for a subclass 1 < α ≤ 2 in [6, Proposition
2.2] can be extended to cover all cases (a, θ) ∈ Da,θ with θ 6= ±1. For
(a, θ) ∈ {(1, 1), (1,−1)}, the probability measure Gaθ is a delta distribution,
e.g. G1

1(x, t) = δx+t and G1
−1(x, t) = δx−t, and is called trivial [53, Definition

13.6]. However, we are interested in non-trivial probability measures Gaθ for

(a, θ) ∈ D�a,θ := { (a, θ) ∈ Da,θ | |θ| < 1 } ,
such that Da,θ = D�a,θ ∪ {(1, 1), (1,−1)}. Note, nonlocal Riesz-Feller Da

θ

operators are those with parameters

(a, θ) ∈ D•a,θ := { (a, θ) ∈ Da,θ | 0 < a < 2 , |θ| < 1 },
such that D�a,θ = D•a,θ ∪ {(2, 0)}.
Proposition 2.3 ([6, Lemma 2.1]). For (a, θ) ∈ D�a,θ the probability mea-
sure Gaθ is absolutely continuous with respect to the Lebesgue measure and
possesses a probability density which will be denoted again by Gaθ . For all
(x, t) ∈ R× (0,∞) the following properties hold;

(a) Gaθ(x, t) ≥ 0. If θ 6= ±a then Gaθ(x, t) > 0;
(b) ‖Gaθ(·, t)‖L1(R) = 1;
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(c) Gaθ(x, t) = t−1/aGaθ(xt
−1/a, 1);

(d) Gaθ(·, s) ∗Gaθ(·, t) = Gaθ(·, s+ t) for all s, t ∈ (0,∞);
(e) Gaθ ∈ C∞0 (R× (0,∞)).

The Lévy measure ν of a Riesz-Feller operator Da
θ with (a, θ) ∈ D•a,θ is

absolutely continuous with respect to Lebesgue measure and satisfies

(16) ν( dy) =

{
c−(θ)y−1−a dy on (0,∞) ,

c+(θ)|y|−1−a dy on (−∞, 0) ,

with c±(θ) = Γ(1 + a) sin((a± θ)π/2)/π, see [47, 54].
To study a TWP for evolution equations involving Riesz-Feller operators,

it is necessary to extend the Riesz-Feller operators to C2
b (R). Their singular

integral representations (10) may be used to accomplish this task.

Theorem 2.4 ([6]). If (a, θ) ∈ D•a,θ with a 6= 1, then for all f ∈ S(R) and
x ∈ R

Da
θf(x) =

c+(θ)− c−(θ)

1− a f ′(x)

+ c+(θ)

∫ ∞

0

f(x+ y)− f(x)− f ′(x) y1(−1,1)(y)

y1+a
dy(17)

+ c−(θ)

∫ ∞

0

f(x− y)− f(x) + f ′(x) y1(−1,1)(y)

y1+a
dy

with c±(θ) = Γ(1 + a) sin((a± θ)π/2)/π. Alternative representations are

• If 0 < a < 1, then

Da
θf(x) = c+(θ)

∫ ∞

0

f(x+ y)− f(x)

y1+a
dy+c−(θ)

∫ ∞

0

f(x− y)− f(x)

y1+a
dy .

• If 1 < a < 2, then

(18) Da
θf(x) = c+(θ)

∫ ∞

0

f(x+ y)− f(x)− f ′(x) y

y1+a
dy

+ c−(θ)

∫ ∞

0

f(x− y)− f(x) + f ′(x) y

y1+a
dy .

These representations allow to extend Riesz-Feller operators Da
θ to C2

b (R)
such that Da

θC
2
b (R) ⊂ Cb(R). For example, one can show

Proposition 2.5 ([6, Proposition 2.4]). For (a, θ) ∈ Da,θ with 1 < a < 2,
the integral representation (18) of Da

θ is well-defined for functions f ∈ C2
b (R)

with

(19) sup
x∈R
|Da

θf(x)| ≤ K‖f ′′‖Cb(R)
M2−a

2− a + 4K‖f ′‖Cb(R)
M1−a

a− 1
<∞

for some positive constants M and K = Γ(1+a)
π | sin((a+θ)π2 )+sin((a−θ)π2 )|.

Estimate (19) is a key estimate, which is used to adapt Chen’s approach [24]
to the TWP for nonlocal reaction-diffusion equations with Riesz-Feller op-
erators [6].
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3. TWP for classical evolution equations

In this section we review the importance of the TWP for reaction-diffusion
equations and scalar conservation laws with higher-order regularizations,
respectively.

3.1. Reaction-diffusion equations. A scalar reaction-diffusion equations
is a partial differential equation

(20) ∂tu = σ∂2
xu+ r(u) , t > 0 , x ∈ R ,

for some positive constant σ > 0, as well as a nonlinear function r : R→ R
and second-order derivative ∂2

xu modeling reaction and diffusion, respec-
tively. The TWP for given endstates u± is to study the existence of a
TWS (ū, c) for (20) in the sense of Definition 1.1. If the profile ū ∈ C2(R)

is bounded, then it satisfies limξ→±∞ ū(n)(ξ) = 0 for n = 1, 2. A TWS (ū, c)
satisfies the TWE

(21) −cū′ = r(ū) + σū′′ , ξ ∈ R .

Phase plane analysis. A traveling wave profile ū is a heteroclinic orbit of
the TWE (21) connecting the endstates u±. To identify necessary conditions
on the existence of TWS, TWE (21) is written as a system of first-order
ODEs for u, v := u′:

(22)
d

dξ

(
u

v

)
=

(
v

(−r(u)− cv)/σ

)
=: F (u, v) , ξ ∈ R .

First, an endstate (us, vs) of a heteroclinic orbit has to be a stationary state
of F , i.e. F (us, vs) = 0, which implies vs ≡ 0 and r(us) = 0. Second, (u−, 0)
has to be an unstable stationary state of (22) and (u+, 0) either a saddle or
a stable node of (22). As long as a stationary state (us, vs) is hyperbolic,
i.e. the linearization of F at (us, vs) has only eigenvalues λ with non-zero
real part, the stability of (us, vs) is determined by these eigenvalues. The
linearization of F at (us, vs) is

(23) DF (us, vs) =

(
0 1

−r′(us)/σ −c/σ

)
.

Eigenvalues λ± of the Jacobian DF (us, vs) satisfy the characteristic equation
λ2 +λc/σ+r′(us)/σ = 0. Moreover, λ−+λ+ = −c/σ and λ−λ+ = r′(us)/σ.
The eigenvalues λ± of the Jacobian DF (us, vs) are

(24) λ± = − c

2σ
±
√

c2

4σ2
− r′(us)

σ
=
−c±

√
c2 − 4σr′(us)

2σ
.

Thus r′(us) < 0 ensures that (us, 0) is a saddle point, i.e. with one positive
and one negative eigenvalue.

Balance of potential. The potential R (of the reaction term r) is defined as
R(u) :=

∫ u
0 r(υ) dυ . The potentials of the endstates u± are called balanced

if R(u+) = R(u−) and unbalanced otherwise. A formal computation reveals
a connection between the sign of c and the balance of the potential R(u):
Multiplying TWE (21) with ū′, integrating on R and using (3), yields

(25) −c‖ū′‖2L2 =

∫ u+

u−
r(υ) dυ = R(u+)−R(u−) ,
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since
∫
R ū′′ū′ dξ = 0 due to (3). Thus − sgn c = sgn(R(u+) − R(u−)).

In case of a balanced potential the wave speed c is zero, hence the TWS is
stationary.

Definition 3.1. Assume u− > u+. A function r ∈ C1(R) with r(u±) = 0 is

• monostable if r′(u−) < 0, r′(u+) > 0 and r(u) > 0 for u ∈ (u+, u−).
• bistable if r′(u±) < 0 and

∃u∗ ∈ (u+, u−) : r(u)

{
< 0 for u ∈ (u+, u∗) ,

> 0 for u ∈ (u∗, u−) .

• unstable if r′(u±) > 0.

We chose a very narrow definition compared to [56]. Moreover, in most
applications of reaction-diffusion equations a quantity u models a density of
a substance/population. In these situations only nonnegative states u± and
functions u are of interest.

Proposition 3.2 ([56, §2.2]). Assume σ > 0 and u− > u+.

• If r is monostable, then there exists a positive constant c∗ such that
for all c ≥ c∗ there exists a monotone TWS (ū, c) of (20) in the
sense of Definition 1.1. For c < c∗ no such monotone TWS exists
(however oscillatory TWS may exist).
• If r is bistable, then there exists an (up to translations) unique mono-

tone TWS (ū, c) of (20) in the sense of Definition 1.1.
• If r is unstable, then there does not exist a monotone TWS (ū, c) of

(20).

If a TWS (ū, c) exists, then a closer inspection of the eigenvalues (24) at
(u+, 0) indicates the geometry of the profile ū for large ξ:

c2 − 4σr′(u+)

{
≥ 0 TWS with monotone decreasing profile ū for large ξ;

< 0 TWS with oscillating profile ū for large ξ.

3.2. Korteweg-de Vries-Burgers equation (KdVB). A generalized KdVB
equation is a scalar partial differential equation

(26) ∂tu+ ∂xf(u) = ε∂2
xu+ δ∂3

xu, x ∈ R, t > 0,

for some flux function f : R → R as well as constants ε > 0 and δ ∈ R.
The TWP for given endstates u± is to study the existence of a TWS (ū, c)
for (26) in the sense of Definition 1.1. The importance of the TWP for KdVB
equations in the shock wave theory of (scalar) hyperbolic conservation laws
is discussed in Section B. A TWS (ū, c) satisfies the TWE

(27) −cū′ + f ′(ū) ū′ = εū′′ + δū′′′ , ξ ∈ R ,

or integrating on (−∞, ξ] and using (3),

(28) h(ū) := f(ū)− cū− (f(u−)− c u−) = εū′ + δū′′ , ξ ∈ R .

Connection with reaction-diffusion equation. A TWS u(x, t) = ū(x−ct) of
a generalized Korteweg-de Vries-Burgers equation (26) satisfies TWE (28).
Thus v(x, t) = ū(x− εt) is a TWS (ū, ε) of the reaction-diffusion equation

(29) ∂tv = −h(v) + δ∂2
xv , x ∈ R , t > 0 .
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Phase plane analysis. Following the analysis of TWE (21) for a reaction-
diffusion equation (20) with r(u) = −h(u) and σ = δ, necessary conditions
on the parameters can be identified. First, a TWE is rewritten as a system
of first-order ODEs with vector field F . Then the condition on stationary
states implies that endstates u± and wave speed c have to satisfy

(30) f(u+)− f(u−) = c(u+ − u−) .

This condition is known in shock wave theory as Rankine-Hugoniot condi-
tion (54) on the shock triple (u−, u+; c). The (nonlinear) stability of hyper-
bolic stationary states (us, vs) of F is determined by the eigenvalues

(31) λ± = −1

2

ε

δ
±
√
ε2 + 4δh′(us)

2|δ|
of the Jacobian DF (us, vs). If ε, δ > 0, then (u+, 0) is always either a saddle
or stable node, and h′(u−) = f ′(u−)−c > 0 ensures that (u−, 0) is unstable.
For example, Lax’ entropy condition (55), i.e. f ′(u+) < c < f ′(u−), implies
the latter condition.

Convex flux functions.

Theorem 3.3. Suppose f ∈ C2(R) is a strictly convex function. Let ε, δ
be positive and let (u−, u+; c) satisfy the Rankine-Hugoniot condition (54)
and the entropy condition (55), i.e. u− > u+. Then, there exists an (up to
translations) unique TWS (ū, c) of (26) in the sense of Definition 1.1.

Proof. We consider the associated reaction-diffusion equation (29), i.e. ∂tu =
r(u) + δ∂2

xu with r(u) = −h(u). Due to (54) and (55), r(u) is monostable
in the sense of Definition 3.1. Moreover, function r is strictly concave, since
r′′(u) = −f ′′(u) and f ∈ C2(R) is strictly convex. In fact, (u±, 0) are the
only stationary points of system (22), where (u−, 0) is a saddle point and
(u+, 0) is a stable node. Thus, for all wave speeds ε there exists a TWS (ū, ε)
– with possibly oscillatory profile ū – of reaction-diffusion equation (29).
Moreover, (ū, c) is a TWS of (26), due to (27)–(29). �

The TWP for KdVB equations (26) with Burgers’ flux f(u) = u2 has
been investigated in [16]. The sign of δ in (26) is irrelevant, since it can be
changed by a transformation x̃ = −x and ũ(x̃, t) = −u(x, t), see also [41].
First, the results in Theorem 3.3 on the existence of TWS and geometry
of its profiles are proven. More importantly, the authors investigate the
convergence of profiles ū(ξ; ε, δ) in the limits ε → 0, δ → 0, as well as ε
and δ tending to zero simultaneously. Assuming that the ratio δ/ε2 remains
bounded, they show that the TWS converge to the classical Lax shocks for
this vanishing diffusive-dispersive regularization [16].

Concave-convex flux functions.

Definition 3.4 ([45]). A function f ∈ C3(R) is called concave-convex if

(32) uf ′′(u) > 0 ∀u 6= 0 , f ′′′(0) 6= 0 , lim
u→±∞

f ′(u) = +∞ .

Here the single inflection point is shifted without loss of generality to the
origin. We consider a cubic flux function f(u) = u3 as the prototypical
concave-convex flux function with a single inflection point, see [39, 45].
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u∗ < u+ < u− monostable −h(u)

u+ < u∗ < u− bistable −h(u)

u+ < u− < u∗
monostable h(u)

monostable h(u) u− < u+ < u∗

bistable h(u) u− < u∗ < u+

monostable h(u)
u∗ < u− < u+

u+ = u−

u+ = −u−/2 ⇔ u+ = u∗

u+ = −2u− ⇔ u− = u∗

u−

u+

Figure 2. classification of the cubic reaction function
r(u) = −h(u) in (34) depending on its roots u−, u+ and
u∗ = −u− − u+ according to Definition 3.1.

Proposition 3.5 ([41, 38]). Suppose f(u) = u3 and ε > 0.

(a) If δ ≤ 0 then a TWS (ū, c) of (26) exists if and only if (u−, u+; c)
satisfy the Rankine-Hugoniot condition (54) and the entropy condi-
tion (55).

(b) If δ > 0 then a TWS (ū, c) of (26) exists for u− > 0 if and only if
u+ ∈ S(u−) with

(33) S(u−) =

{
[−u−

2 , u−) if u− ≤ 2β ,

{−u− + β} ∪ [−β, u−) if u− > 2β ,

where the coefficient β is given by β =
√

2
3

ε√
δ
.

Proof. Following the discussion from (26)–(29), we consider the associated
reaction-diffusion equation (29), i.e. ∂tu = r(u) + δ∂2

xu with r(u) = −h(u).
From this point of view, we need to classify the reaction term r(u) = −h(u):
Whereas r(u−) = 0 by definition, r(u+) = 0 if and only if (u−, u+; c) satis-
fies the Rankine-Hugoniot condition (54). The Rankine-Hugoniot condition
implies c = u2

+ + u+ u− + u2
−. Hence, the reaction term r(u) has a factor-

ization

(34) r(u) = −(u3 − u3
− − c(u− u−)) = −(u− u−) (u− u+) (u+ u+ + u−)

Thus, r(u) is a cubic polynomial with three roots u1 ≤ u2 ≤ u3, such that
r(u) = −(u − u1)(u − u2)(u − u3). In case of distinct roots u1 < u2 < u3

we deduce r′(u1) < 0, r′(u2) > 0 and r′(u3) < 0. The ordering of the roots
u± and u∗ = −u− − u+ depending on u± is visualized in Figure 2. Next,
we will discuss the results in Proposition 3.5(b) (for u− > 0 and δ > 0) via
results on the existence of TWS for a reaction-diffusion equation (29).
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(1) For u+ < u∗ < u−, function r(u) is bistable, see also Figure 2. Due
to Proposition 3.2, there exists an (up to translations) unique TWS
(ū, ε) with possibly negative wave speed. Under our assumption
that the wave speed ε is positive, relation (25) yields the restriction
−u+ > u−. In fact, for u− > 2β and u+ = −u− + β there exists
a TWS (ū, ε) for reaction-diffusion equation (29), see [41, Theorem
3.4]. The function r is bistable with u∗ = −u− − u+ = −β, hence
f ′(u±) > c. This violates Lax’ entropy condition (55) and is known
in the shock wave theory as a slow undercompressive shock [45].

(2) For u∗ < u+ < u−, function r(u) is monostable, see Figure 2. Due
to Proposition 3.2, there exists a critical wave speed c∗, such that
monotone TWS (ū, ε) for (29) exist for all ε ≥ c∗. However, not all
endstates (u−, u+) in the subset defined by u∗ < u+ < u− admit a
TWS (ū, c), see (33) and Figure 3B). The TWS (ū, c) associated to
non-classical shocks appear again, with reversed roles for the roots
u+ and u∗: For u− > 2β and u+ = −β, there exists a TWS (ū, ε) for
reaction-diffusion equation (29), see [41, Theorem 3.4]. These TWS
form a horizontal halfline in Figure 3B) and divides the set defined
by u∗ < u+ < u− into two subsets. In particular, TWS exist only
for endstates (u−, u+) in the subset above this halfline.

(3) For u+ < u− < u∗, function r(u) = −h(u) satisfies r(u) < 0 for all
u ∈ (u+, u−), see also Figure 2. Thus the necessary condition (25)
can not be fulfilled for positive c = ε, hence there exists no TWS
(ū, ε) for the reaction-diffusion equation.

(4) For u∗ < u− < u+, function r(u) is monostable with reversed roles of
the endstates u±, see Figure 2. Due to Proposition 3.2, there exists
a TWS (ū, ε) however satisfying limξ→∓∞ ū(ξ) = u±.

If δ = 0, then equation (26) is a viscous conservation law, and its TWE (28)
is a simple ODE −εū′ = r(ū) with r(u) = −h(u). Thus a heteroclinic orbit
exists only for monostable r(u), i.e. if the unstable node u− and the stable
node u+ are not separated by any other root of r.

If δ < 0, then we rewrite TWE (28) as εū′ = h(u) + |δ|ū′′. It is associated
to a reaction-diffusion equation ∂tu = h(u) + |δ|∂2

xu via a TWS ansatz
u(x, t) = ū(x − (−ε)t); note the change of sign for the wave speed. If
u+ < u∗ < u− then h(u) is an unstable reaction function. Thus there exists
no TWS (ū,−ε) according to Proposition 3.2. If u∗ < u+ < u− then function
h(u) = −r(u) satisfies h(u) < 0 for all u ∈ (u+, u−), see also Figure 2. The
necessary condition (25) is still fine, since also the sign of the wave speed
changed. In contrast to the case δ > 0, there exists no TWS connecting u−
with u∗, which would indicate a bifurcation. Thus, the existence of TWS
for all pairs (u−, u+) in the subset defined by u∗ < u+ < u− can be proven.
The TWP for other pairs (u−, u+) is discussed similarly. �

4. TWP for nonlocal evolution equations

4.1. Reaction-diffusion equations. The first example of a reaction-diffusion
equation with nonlocal diffusion is the integro-differential equation

(35) ∂tu = J ∗ u− u+ r(u) , t > 0 , x ∈ R ,
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u∗ < u+ < u−
monostable r

u+ < u∗ < u−
bistable r

u+ = u−

u+ = −u−/2

u− = 2β = 2
√

2
3

ε√
δ

u+ = −2u−

u−

u+

(a)

TWS

u+ = u−

u− = 2β = 2
√

2
3

ε√
δ

u+ = −β
u+ = −u−/2
u+ = −u− + β
TWS

u+ = −u−

u−

u+

(b)

Figure 3. A) classification of reaction function r depending
on its roots u−, u+ and u∗ = −u− − u+; B) Endstates u±
in the shaded region and on the thick line can be connected
by TWS of the cubic KdVB equation; TWS in the shaded
region and on the thick line are associated to classical and
non-classical shocks of ∂tu + ∂xu

3 = 0, respectively. For a
classical shock the shock triple satisfies Lax’ entropy condi-
tion f ′(u−) > c > f ′(u+); i.e. characteristics in the Riemann
problem meet at the shock. In contrast, the non-classical
shocks are of slow undercompressive type, i.e. characteristics
in the Riemann problem cross the shock.

for some even, non-negative function J with mass one, i.e. for all x ∈ R

(36) J ∈ C(R) , J ≥ 0 , J(x) = J(−x) ,

∫

R
J(y) dy = 1 ,

and some function r. The operator L[u] = J ∗ u − u is a Lévy operator,
see (13), which models nonlocal diffusion. It is the infinitesimal generator
of a compound Poisson stochastic process, which is a pure jump process.

The TWP for given endstates u± is to study the existence of a TWS (ū, c)
for (35) in the sense of Definition 1.1. Such a TWS (ū, c) satisfies the TWE
−cū′ = J ∗ ū− ū+ r(ū) for ξ ∈ R. Next, we recall some results on the TWP
for (35), which will depend crucially on the type of reaction function r and
the tail behavior of a kernel function J . We will present the existence of
TWS with monotone decreasing profiles ū, which will follow from the cited
literature after a suitable transformation.

Proposition 4.1 ((monostable [27]), (bistable [14, 24])). Suppose u− > u+

and consider reaction functions r in the sense of Definition 3.1. Suppose
J ∈W 1,1(R) and its continuous representative satisfies (36).

• If r is monostable and there exists λ > 0 such that
∫
R J(y) exp(λy) dy <

∞ then there exists a positive constant c∗ such that for all c ≥ c∗
there exists a monotone TWS (ū, c) of (35). For c < c∗ no such
monotone TWS exists.
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• If r is bistable and
∫
R |y|J(y) dy <∞, then there exists an (up to

translations) unique monotone TWS (ū, c) of (35).

For monostable reaction functions, the tail behavior of kernel function J is
very important. There exist kernel functions J , such that TWS exist only for
bistable – but not for monostable – reaction functions r, see [58]. The prime
example are kernel functions J which decay more slowly than any exponen-
tially decaying function as |x| → ∞ in the sense that J(x) exp(η|x|) → ∞
as |x| → ∞ for all η > 0.

For reaction-diffusion equations of bistable type, Chen established a uni-
fied approach [24] to prove the existence, uniqueness and asymptotic sta-
bility with exponential decay of traveling wave solutions. The results are
established for a subclass of nonlinear nonlocal evolution equations

∂tu(x, t) = A[u(·, t)](x) for (x, t) ∈ R× (0, T ] ,

where the nonlinear operator A is assumed to

(a) be independent of t;
(b) generate a L∞ semigroup;
(c) be translational invariant, i.e. A satisfies for all u ∈ domA the

identity

A[u(·+ h)](x) = A[u(·)](x+ h) ∀x , h ∈ R .
Consequently, there exists a function r : R → R which is defined
by A[υ1] = r(υ)1 for υ ∈ R and the constant function 1 : R → R,
x 7→ 1. This function r is assumed to be bistable in the sense of
Definition 3.1;

(d) satisfy a comparison principle: If ∂tu ≥ A[u], ∂tv ≤ A[v] and
u(·, 0) 
 v(·, 0), then u(·, t) > v(·, t) for all t > 0.

Chen’s approach relies on the comparison principle and the construction of
sub- and supersolutions for any given traveling wave solution. Importantly,
the method does not depend on the balance of the potential. More quan-
titative versions of the assumptions on A are needed in the proofs. Finally
integro-differential evolution equations

(37) ∂tu = ε∂2
xu+G(u, J1 ∗ S1(u), . . . , Jn ∗ Sn(u))

are considered for some diffusion constant ε ≥ 0, smooth functions G and
Sk, and kernel functions Jk ∈ C1(R) ∩W 1,1(R) satisfying (36) where k =
1, . . . , n. Additional assumptions on the model parameters guarantee that
an equation (37) can be interpreted as a reaction-diffusion equation with
bistable reaction function including equations (20) and (35) as special cases.

Another example of reaction-diffusion equations with nonlocal diffusion
are the integro-differential equations

(38) ∂tu = Da
θu+ r(u) , t > 0 , x ∈ R ,

for a (particle) density u = u(x, t), some function r = r(u), and a Riesz-
Feller operator Da

θ with (α, θ) ∈ Da,θ. The nonlocal Riesz-Feller operators
are models for superdiffusion, where from a probabilistic view point a cloud
of particle is assumed to spread faster than by following Brownian motion.
Integro-differential equation (38) can be derived as a macroscopic equation
for a particle density in the limit of modified Continuous Time Random
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Walk (CTRW), see [48]. In the applied sciences, equation (38) has found
many applications, see [54, 57] for extensive reviews on modeling, formal
analysis and numerical simulations.

The TWP for given endstates u± is to study the existence of a TWS (ū, c)
for (38) in the sense of Definition 1.1. Such a TWS (ū, c) satisfies the TWE

(39) −cū′ = Da
θ ū+ r(ū) , ξ ∈ R .

First we collect mathematical rigorous results about the TWP associated
to (38) in case of the fractional Laplacian Da

0 = −(−∆)a/2 for a ∈ (0, 2), i.e.
a Riesz-Feller operator Da

θ with θ = 0.

Proposition 4.2 ((monostable [17, 18, 34]), (bistable [21, 19, 20, 50, 25,
37])). Suppose u− > u+. Consider the TWP for reaction-diffusion equa-
tion (38) with functions r in the sense of Definition 3.1 and fractional
Laplacian Da

0 , i.e. symmetric Riesz-Feller operators Da
θ with 0 < a < 2

and θ = 0.

• If r is monostable then there does not exist any TWS (ū, c) of (38).
• If r is bistable then there exists an (up to translations) unique mono-

tone TWS (ū, c) of (38).

For monostable reaction functions, Cabré and Roquejoffre prove that a
front moves exponentially in time [17, 18]. They note that the genuine
algebraic decay of the heat kernels Ga0 associated to fractional Laplacians
is essential to prove the result, which implies that no TWS with constant
wave speed can exist. Engler [34] considered the TWP for (38) for a different
class of monostable reaction functions r and non-extremal Riesz-Feller oper-
atorsDa

θ with (a, θ) ∈ D+
a,θ and D+

a,θ := { (a, θ) ∈ Da,θ | |θ| < min{a, 2− a} }.
Again the associated heat kernels Gaθ(x, t) with (a, θ) ∈ D+

a,θ decay alge-

braically in the limits x→ ±∞, see [47].
To our knowledge, we established the first result [6] on existence, unique-

ness (up to translations) and stability of traveling wave solutions of (38)
with Riesz-Feller operators Da

θ for (a, θ) ∈ Da,θ with 1 < a < 2 and bistable
functions r. We present our results for monotone decreasing profiles, which
can be inferred from our original result after a suitable transformation.

Theorem 4.3 ([6]). Suppose u− > u+, (a, θ) ∈ Da,θ with 1 < a < 2, and
r ∈ C∞(R) is a bistable reaction function. Then there exists an (up to
translations) unique monotone decreasing TWS (ū, c) of (38) in the sense
of Definition 1.1.

The technical details of the proof are contained in [6], whereas in [5]
we give a concise overview of the proof strategy and visualize the results
also numerically. In a forthcoming article [4], we extend the results to all
non-trivial Riesz-Feller operators Da

θ with (a, θ) ∈ D�a,θ. The smoothness
assumption on r is convenient, but not essential. To prove Theorem 4.3, we
follow – up to some modifications – the approach of Chen [24]. It relies on a
strict comparison principle and the construction of sub- and supersolutions
for any given TWS. His quantitative assumptions on operator A are too
strict, such that his results are not directly applicable. A modification allows
to cover the TWP for (38) for all Riesz-Feller operators Da

θ with 1 < a < 2
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also for non-zero θ, and all bistable functions r regardless of the balance of
the potential.

Next, we quickly review different methods to study the TWP of reaction-
diffusion equations (38) with bistable function r and fractional Laplacian.
In case of a classical reaction-diffusion equation (20), the existence of a TWS
can be studied via phase-plane analysis [13, 35]. This method has no obvious
generalization to our TWP for (38), since its traveling wave equation (39) is
an integro-differential equation. The variational approach has been focused
– so far – on symmetric diffusion operators such as fractional Laplacians and
on balanced potentials, hence covering only stationary traveling waves [50].
Independently, the same results are achieved in [21, 19, 20] by relating the
stationary TWE (39)θ=0,c=0 via [22] to a boundary value problem for a
nonlinear partial differential equation. The homotopy to a simpler TWP
has been used to prove the existence of TWS in case of (35), and (38)θ=0

with unbalanced potential [37].
Chmaj [25] also considers the TWP for (38)θ=0 with general bistable

functions r. He approximates a given fractional Laplacian by a family of
operators Jε ∗ u− (

∫
Jε)u such that limε→0 Jε ∗ u− (

∫
Jε)u = Da

0u in an ap-
propriate sense. This allows him to obtain a TWS of (38)θ=0 with general
bistable function r as the limit of the TWS uε of (35) associated to (Jε)ε≥0.
It might be possible to modify Chmaj’s approach to study reaction-diffusion
equation (38) with asymmetric Riesz-Feller operators. This would give an
alternative existence proof for TWS in Theorem 4.3. However, Chen’s ap-
proach allows to establish uniqueness (up to translations) and stability of
TWS as well.

4.2. Nonlocal Korteweg-de Vries-Burgers equation. First we con-
sider the integro-differential equation in multi-dimensions d ≥ 1

(40) ∂tu+∂xf(u) = ε∆xu+γε2
d∑

j=1

(
φε ∗∂xju−∂xju

)
, x ∈ Rd , t > 0 ,

for parameters ε > 0, γ ∈ R, a smooth even non-negative function φ with
compact support and unit mass, i.e.

∫
Rd φ(x) dx = 1, and the rescaled

kernel function φε(x) = φ(x/ε)/εd. It has been derived as a model for phase
transitions with long range interactions close to the surface, which supports
planar TWS associated to undercompressive shocks of (51), see [52]. A
planar TWS (ū, c) is a solution u(x, t) = ū(x − cte) for some fixed vector
e ∈ Rd, such that the profile is transported in direction e. The existence of
planar TWS is proven by reducing the problem to a one-dimensional TWP
for (40)d=1, identifying the associated reaction-diffusion equation (35) and
using results in Proposition 4.1. For cubic flux function u3, the existence of
planar TWS associated to undercompressive shocks of (51) is established.
Moreover, the well-posedness of its Cauchy problem and the convergence of
solutions uε as ε↘ 0 have been studied [52].

Another example is the fractal Korteweg-de Vries-Burgers equation

(41) ∂tu+ ∂xf(u) = ε∂xDα+u+ δ∂3
xu, x ∈ R, t > 0,

for some ε > 0 and δ ∈ R.
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Equation (41) with α = 1/3 has been derived as a model for shallow
water flows, by performing formal asymptotic expansions associated to the
triple-deck (boundary layer) theory in fluid mechanics, e.g. see [44, 55].
In particular, the situations of one-layer and two-layer shallow water flows
have been considered, which yield a quadratic (one layer) and cubic flux
function (two layer), respectively. In the monograph [49], similar models are
considered and the well-posedness of the initial value problem and possible
wave-breaking are studied.

The TWP for given endstates u± is to study the existence of a TWS (ū, c)
for (41) in the sense of Definition 1.1. Such a TWS (ū, c) satisfies the TWE

(42) h(ū) := f(ū)− f(u−)− c(ū− u−) = εDα+ū+ δū′′ .

We obtain a necessary condition for the existence of TWS – see also (25) –
by multiplying the TWE with ū′ and integrating on R,

(43)

∫ u+

u−
h(u) du = ε

∫ ∞

−∞
ū′ Dα+ū(ξ) dξ ≥ 0 ,

where the last inequality follows from (50).
Connection with reaction-diffusion equation. If a TWS (ū, c) for (41) ex-

ists, then u(x, t) = ū(x) is a stationary TWS (ū, 0) of the evolution equation

(44) ∂tu = −εDα+u− δ∂2
xu+ h(u), x ∈ R, t > 0.

To interpret equation (44) as a reaction-diffusion equation, we need to verify
that −εDα+u−δ∂2

xu is a diffusion operator, e.g. that −εDα+u−δ∂2
xu generates

a positivity preserving semigroup.

Lemma 4.4. Suppose 0 < α < 1 and γ1, γ2 ∈ R. The operator γ1Dα+u +
γ2∂

2
xu is a Lévy operator if and only if γ1 ≤ 0 and γ2 ≥ 0. Moreover, the

associated heat kernel is strictly positive if and only if γ2 > 0.

Proof. For α ∈ (0, 1), the operator −Dα+ is a Riesz-Feller operator Dα
−α and

generates a positivity preserving convolution semigroup with a Lévy stable
probability distribution Gα−α as its kernel. The probability distribution is
absolutely continuous with respect to Lebesgue measure and its density has
support on a half-line [47]. For example the kernel associated to −D1/2 is
the Lévy-Smirnov distribution. Thus, for γ1 ≤ 0 and γ2 ≥ 0, the operator
γ1Dα+u+γ2∂

2
xu is a Lévy operator, because it is a linear combination of Lévy

operators. Using the notation for Fourier symbols of Riesz-Feller operators,
the partial Fourier transform of equation

∂tu = −|γ1|Dα[u] + γ2∂
2
xu

is given by ∂tF [u](k) = (|γ1|ψα−α(k)−γ2k
2)F [u](k). Therefore, the operator

generates a convolution semigroup with heat kernel

F−1[exp{(|γ1|ψα−α(k)− γ2k
2) t}](x) = Gα−α(·, |γ1|t) ∗G2

0(·, γ2t) (x) ,

which is the convolution of two probability densities. The kernel is posi-
tive on R since probability densities are non-negative on R and the normal
distribution G2

0 is positive on R for positive γ2t.
The operator Dα+ for α ∈ (0, 1) is not a Riesz-Feller operator, see Figure 1,

and it generates a semigroup which is not positivity preserving. Thus it and
any linear combination with γ1 > 0 is not a Lévy operator. �
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International Publishing, 2017, pp. 47–72



17

Convex flux functions.

Proposition 4.5. Consider (41) with 0 < α < 1, δ ∈ R and strictly con-
vex flux function f ∈ C3(R). For a shock triple (u−, u+; c) satisfying the
Rankine-Hugoniot condition (54), a non-constant TWS (ū, c) can exist if
and only if Lax’ entropy condition (55) is fulfilled, i.e. u− > u+.

Proof. The Rankine-Hugoniot condition (54) ensures that h(u) in (42) has
exactly two roots u±. If Lax’ entropy condition (55) is fulfilled, then u− >
u+ and −h(u) is monostable in the sense of Definition 3.1. Thus, the nec-
essary condition (43) is satisfied. If u− = u+ then (43) implies that ū is a
constant function satisfying ū ≡ u±. If u− < u+ then −h(u) is monostable
in the sense of Definition 3.1 with reversed roles of u±. Thus, the necessary
condition (43) is not satisfied. �

Next, we recall some existence result which have been obtained by directly
studying the TWE. In an Addendum [28], we removed an initial assumption
on the solvability of the linearized TWE.

Theorem 4.6 ([3]). Consider (41) with δ = 0 and convex flux function f(u).
For a shock triple (u−, u+; c) satisfying (54) and (55), there exists a mono-
tone TWS of (41) in the sense of Definition 1.1, whose profile ū ∈ C1

b (R) is
unique (up to translations) among all functions u ∈ u−+H2(−∞, 0)∩C1

b (R).

This positive existence result is consistent with the negative existence
result in Proposition 4.2 and Engler [34] for (38) with non-extremal Riesz-
Feller operators Da

θ for (a, θ) ∈ D+
a,θ. The reason is that −Dα+ for 0 < α < 1

is the generator of a convolution semigroup with a one-sided strictly stable
probability density function as its heat kernel; in contrast to heat kernels
with genuine algebraic decay [17, 18, 34].

Theorem 4.7 ([2]). Consider (41) with flux function f(u) = u2/2. For a
shock triple (u−, u+; c) satisfying (54) and (55), there exists a TWS of (41)
in the sense of Definition 1.1, whose profile ū is unique (up to translations)
among all functions u ∈ u− +H4(−∞, 0) ∩ C3

b (R).

If dispersion dominates diffusion then the profile of a TWS (ū, c) will be
oscillatory in the limit ξ →∞. For a classical KdVB equation this geometry
of profiles depends on the ratio ε2/δ and the threshold can be determined
explicitly.

Concave-convex flux functions. We consider a cubic flux function f(u) =
u3 as the prototypical concave-convex flux function. Again the necessary
condition (43) and the classification of function h(u) = −r(u) in Figure 2
can be used to identify non-admissible shock triples (u−, u+; c) for the TWP
of (41).

We conjecture that a statement analogous to Proposition 3.5 holds true.
Of special interest is again the occurrence of TWS (ū, c) associated to non-
classical shocks, which are only expected in case of (41) with ε > 0 and
δ > 0.

Proposition 4.8. Suppose f(u) = u3 and ε > 0.
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(1) If δ ≤ 0 then a TWS (ū, c) of (41) exists if and only if (u−, u+; c)
satisfy the Rankine-Hugoniot condition (54) and the entropy condi-
tion (55).

(2) Conjecture: If δ > 0 then a TWS (ū, c) of (41) exists for u− > 0 if
and only if u+ ∈ S(u−) for some set S(u−) similar to (33).

Sketch of proof. If δ = 0, then equation (41) is a viscous conservation law,
and its TWE (42) is a fractional differential equation εDα+ū = h(ū). Thus a
heteroclinic orbit exists only for monostable −h(u), i.e. if the unstable node
u− and the stable node u+ are not separated by any other root of h. This
follows from Theorem 4.6 and its proof in [3, 28].

If δ < 0, then the TWE (42) is associated to a reaction-diffusion equa-
tion (44) via a stationary TWS ansatz u(x, t) = ū(x). First we note that a
stronger version of the necessary condition (43) is available

(45)

∫ ξ

−∞
h(ū)ū′(y) dy = ε

∫ ξ

−∞
ū′ Dα+ū(y) dy ≥ 0 , ∀ξ ∈ R ,

see [2]. If u+ < u∗ < u− then h(u) is an unstable reaction function, see
Figure 2. Thus there exists no TWS in the sense of Definition 1.1 satisfying
the necessary condition (45). If u∗ < u+ < u− then function −h(u) is
monostable in the sense of Definition 3.1 and the necessary condition (43)
can be satisfied. The existence of a TWS (ū, c) can be proven by following the
analysis in [2, 28]. The TWP for other pairs (u−, u+) is discussed similarly.

If δ > 0 then the occurrence of TWS (ū, c) associated to non-classical
shocks is possible. Unlike in our previous examples, the associated evolution
equation (44) is not a reaction-diffusion equation, since −εDα+ū− δū′′ is not
a Lévy operator. Especially, the results on existence of TWS for reaction-
diffusion equations with bistable reaction function can not be used to prove
the existence of TWS (ū, c) associated to undercompressive shocks. Instead,
we investigate the TWP directly [1], extending the analysis in [2, 28] for
Burgers’ flux to the cubic flux function f(u) = u3. �

4.3. Fowler’s equation. Fowler’s equation (8) for dune formation is a spe-
cial case of the evolution equation

(46) ∂tu+ ∂xf(u) = δ∂2
xu− ε∂xDα+u , t > 0 , x ∈ R ,

with 0 < α < 1, positive constant ε, δ > 0 and flux function f . Here the
fractional derivative appears with the negative sign, but this instability is
regularized by the second order derivative. The initial value problem for (8)
is well-posed in L2 [9]. However, it does not support a maximum principle,
which is intuitive in the context of the application due to underlying ero-
sions [9]. The existence of TWS of (8) – without assumptions (3) on the
far-field behavior – has been proven [11].

For given endstates u±, the TWP for (46) is to study the existence of a
TWS (ū, c) for (46) in the sense of Definition 1.1. Such a TWS (ū, c) satisfies
the TWE

(47) h(ū) := f(ū)− f(u−)− c(ū− u−) = δū′ − εDα+ū , ξ ∈ R .

For δ = 0, the TWE reduces to a fractional differential equation εDα+ū =
−h(ū), which has been analyzed in [3, 28] for monostable functions −h(u).
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Equation (47) is also the TWE for a TWS (ū, δ) of an evolution equation

(48) ∂tu = −εDα+u− h(u), x ∈ R, t > 0.

For ε > 0, the operator is −εDα+ū is a Riesz-Feller operator εDα
−α whose heat

kernel Gα−α has only support on a halfline. For a shock triple (u−, u+; c)
satisfying the Rankine-Hugoniot condition (54), at least h(u±) = 0 holds.
Under these assumptions, equation (48) is a reaction-diffusion equation with
a Riesz-Feller operator modeling diffusion.

The abstract method in [11] does not provide any information on the
far-field behavior. Thus, assume the existence of a TWS (ū, c) in the sense
of Definition 1.1, for some shock triple (u−, u+; c) satisfying the Rankine-
Hugoniot condition (54). Again, a necessary condition is obtained by mul-
tiplying TWE (47) with ū′ and integrating on R; hence,

(49)

∫ u+

u−
h(u) du =

∫

R
(ū′)2 dξ −

∫

R
ū′Dα+ū dξ .

The left hand side is indefinite since each integral is non-negative, see also (50).
For a cubic flux function f(u) = u3 and a shock triple (u−, u+; c) satisfying

the Rankine-Hugoniot condition (54), we deduce a bistable reaction function
r(u) = −h(u) as long as u+ < −u+− u− < u− see Figure 2. However, since
the heat kernel has only support on a halfline, we can not obtain a strict
comparison principle as needed in Chen’s approach [24, 6, 4].

Appendix A. Caputo fractional derivative on R

For α > 0, the (Gerasimov-)Caputo derivatives are defined as, see [42, 54],

(Dα+f)(x) =

{
f (n)(x) if α = n ∈ N0 ,

1
Γ(n−α)

∫ x
−∞

f (n)(y)
(x−y)α−n+1 dy if n− 1 < α < n for some n ∈ N0 .

(Dα−f)(x) =

{
f (n)(x) if α = n ∈ N0 ,
(−1)n

Γ(n−α)

∫∞
x

f (n)(y)
(y−x)α−n+1 dy if n− 1 < α < n for some n ∈ N0 .

Properties:

• For α > 0 and λ > 0

(Dα+ exp(λ·))(x) = λα exp(λx) , (Dα− exp(−λ·))(x) = λα exp(−λx)

• For α > 0 and f ∈ S(R), a Caputo derivative is a Fourier mul-
tiplier operator with (FDα+f)(k) = (i k)α(Ff)(k) where (i k)α =
exp(απ i sgn(k)/2).
• If ū is the profile of a TWS (ū, c) in the sense of Definition 1.1, then

(50)

∫ ∞

−∞
ū′(y)Dα+ū(y) dy = 1

2

∫

R
ū′(x)

∫

R

ū′(y)

|x− y|α dy dx ≥ 0 ,

where the last inequality follows from [46, Theorem 9.8].
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Appendix B. Shock wave theory for scalar conservation laws

A standard reference on the theory of conservation laws is [29], whereas [45]
covers the special topic of non-classical shock solutions. A scalar conserva-
tion law is a partial differential equation

(51) ∂tu+ ∂xf(u) = 0 , t > 0 , x ∈ R ,

for some flux function f : R→ R. For nonlinear functions f , it is well known
that the initial value problem (IVP) for (51) with smooth initial data may
not have a classical solution for all time t > 0 (due to shock formation).
However, weak solutions may not be unique. The Riemann problems are
a subclass of IVPs for (51), and especially important in some numerical
algorithms: For given u−, u+ ∈ R, find a weak solution u(x, t) for the initial
value problem of (51) with initial condition

(52) u(x, 0) =

{
u− , x < 0 ,

u+ , x > 0 .

Weak solutions of a Riemann problem that are discontinuous for t > 0 may
not be unique.

Example B.1. A shock wave is a discontinuous solution of the Riemann
problem,

(53) u(x, t) =

{
u− , x < ct ,

u+ , x > ct ,

if the shock triple (u−, u+; c) satisfies the Rankine-Hugoniot condition

(54) f(u+)− f(u−) = c(u+ − u−) .

The Rankine-Hugoniot condition (54) is a necessary condition that u± are
stationary states of an associated TWE (28), see (30).

shock admissibility. Classical approaches to select a unique weak solution
of the Riemann problem are

(a) Lax’ entropy condition:

(55) f ′(u+) < c < f ′(u−) .

It ensures that in the method of characteristics all characteristics
enter the shock/discontinuity of a shock solution (53). For convex
flux function f , condition (55) reduces to u− > u+. Shocks satis-
fying (55) are also called Lax or classical shocks. For non-convex
flux functions f , also non-classical shocks can arise in experiments,
called slow undercompressive shocks if f ′(u±) > c, and fast under-
compressive shocks if f ′(u±) < c.

(b) Oleinik’s entropy condition.

(56)
f(w)− f(u−)

w − u−
≥ f(u+)− f(u−)

u+ − u−
for all w between u− and u+.

(c) Entropy solutions satisfying integral inequalities based on entropy-
entropy flux pairs, such as Kruzkov’s family of entropy-entropy flux
pairs.
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(d) Vanishing viscosity. In the classical vanishing viscosity approach,
instead of (51) one considers for ε > 0 equation

(57) ∂tu+ ∂xf(u) = ε∂2
xu , t > 0 , x ∈ R ,

where ε∂2
xu models diffusive effects such as friction. Equation (57) is

a parabolic equation, hence the Cauchy problem has global smooth
solutions uε for positive times, especially for Riemann data (52). An
admissible weak solution of the Riemann problem is identified by
studying the limit of uε as ε↘ 0.
In other applications, different higher order effects may be impor-
tant. For example, a nonlocal generalized KdVB equation (1) can
be interpreted as a scalar conservation law (51) with higher-order
effects R[u] := εL1[u] + δ∂xL2[u].

Already for convex functions f , the convergence of solutions of the
regularized equations (e.g. (1)) to solutions of (51) reveals a diverse
solution structure. The solutions of viscous conservation laws (57)
converge for ε↘ 0 to Kruzkov entropy solutions of (51). In contrast,
in case of KdVB equation (4) the limit ε, δ → 0 depends on the
relative strength of diffusion and dispersion:
• Weak dispersion: δ = O(ε2) for ε → 0 e.g. δ = βε2 for some
β > 0.
TWS converge strongly to entropy solution of Burgers equation.
• Moderate dispersion: δ = o(ε) for ε → 0 includes weak

dispersion.
TWS converge strongly to entropy solution of Burgers equation,
see [51].
• Strong dispersion: weak limit of TWS for ε, δ → 0 may not

be a weak solution of Burgers equation.

For non-convex flux functions f , a TWS may converge to a weak
solution of (51) which is not an Kruzkov entropy solution, but a
non-classical shock.

A simplistic shock admissibility criterion based on the vanishing viscosity
approach is the existence of TWS for a given shock triple:

Definition B.2 (compare with [41]). A solution u of the Riemann problem
is called admissible (with respect to a fixed regularization R), if there exists
a TWS (ū, c) in the sense of Definition 1.1 of the regularized equation (e.g.
(1)) for every shock wave with shock triple (u−, u+; c) in the solution u.
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[12] D. Applebaum. Lévy processes and stochastic calculus, volume 116 of Cambridge Stud-
ies in Advanced Mathematics. Cambridge University Press, Cambridge, second edi-
tion, 2009.

[13] D. G. Aronson and H. F. Weinberger. Nonlinear diffusion in population genetics,
combustion, and nerve pulse propagation. In Partial differential equations and related
topics, pages 5–49. Lecture Notes in Math., Vol. 446. Springer, Berlin, 1975.

[14] P. W. Bates, P. C. Fife, X. Ren, and X. Wang. Traveling waves in a convolution
model for phase transitions. Archive for Rational Mechanics and Analysis, 138:105–
136, 1997.

[15] P. Biler, T. Funaki, and W. A. Woyczynski. Fractal Burgers equations. J. Differential
Equations, 148(1):9–46, 1998.

[16] J. L. Bona and M. E. Schonbek. Travelling-wave solutions to the Korteweg-de Vries-
Burgers equation. Proc. Roy. Soc. Edinburgh Sect. A, 101(3-4):207–226, 1985.
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TRAVELING WAVES FOR A BISTABLE EQUATION WITH

NONLOCAL-DIFFUSION

FRANZ ACHLEITNER AND CHRISTIAN KUEHN

Abstract. We consider a single component reaction-diffusion equa-
tion in one dimension with bistable nonlinearity and a nonlocal space-
fractional diffusion operator of Riesz-Feller type. Our main result shows
the existence, uniqueness (up to translations) and local asymptotic sta-
bility of a traveling wave solution connecting two stable homogeneous
steady states. In particular, we provide an extension to classical re-
sults on traveling wave solutions involving local diffusion. This exten-
sion to evolution equations with Riesz-Feller operators requires several
technical steps. These steps are based upon an integral representation
for Riesz-Feller operators, a comparison principle, regularity theory for
space-fractional diffusion equations, and control of the far-field behavior.

1. Introduction

We consider evolution equations

(1) ∂tu = Dα
θ u+ f(u) , x ∈ R , t ∈ (0,∞) ,

where f ∈ C∞(R) is a nonlinear function of bistable type, i.e., f has precisely
three roots u− < a < u+ in the interval [u−, u+] such that

(2) f(u−) = f(a) = f(u+) = 0 , f ′(u−) < 0 , f ′(u+) < 0 ,

and Dα
θ is a Riesz-Feller operator for some fixed parameters 1 < α ≤ 2 and

|θ| ≤ min{α, 2 − α}. A Riesz-Feller operator can be defined as a Fourier
multiplier operator

F [Dα
θ u](ξ) = ψαθ (ξ) F [u](ξ), ξ ∈ R,

with F denoting the Fourier transform and symbol

ψαθ (ξ) = −|ξ|α exp
[
i(sgn(ξ))θ π2

]
for 0 < α ≤ 2 and |θ| ≤ min{α, 2− α}.

Special cases are the second order derivative D2
0 = ∂2

x, the fractional Lap-
lacians Dα

0 = −(−∂2
x)α/2 for 0 < α ≤ 2 and θ = 0, and Weyl fractional

derivatives Dα
2−α for 0 < α < 2 and θ = 2− α; for details see Section 2.

The study of reaction-diffusion equations in the form (1) is motivated
by the observation of ensembles of particles in experiments which do not
spread according to normal diffusion modeled by ∂tu = D2

0 u. These diffu-
sion processes are called anomalous and one distinguishes between subdif-
fusive and superdiffusive processes, given that the ensemble spreads slower,
respectively, faster than normal diffusion [5, 29, 30]. In particular, diffusion
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equations with Riesz-Feller operator, ∂tu = Dα
θ u, are models which exhibit

superdiffusive behavior. Consequently, reaction-diffusion equations of the
form (1) have been used to model systems where reactions and superdif-
fusion occur simultaneously; examples include geophysical flows [13], the
dynamics of fronts in magnetically confined plasmas [14], the spreading of
epidemics due to complex mobility patterns of individuals [22], step-flow gro-
wth of a crystal surface [25], and experiments on the Belousov-Zhabotinsky
reaction in a fluid forced by Faraday waves [30, 44].

A traveling wave solution of (1) is a solution of the form u(t, x) = U(ξ),
for some constant wave speed c ∈ R, a traveling wave variable ξ := x −
ct, and a function U connecting different endstates limξ→±∞ U(ξ) = u±.
The profile U of a traveling wave solution has to satisfy the traveling wave
equation

−cU ′(ξ) = Dα
θ U + f(U)

where Dα
θ has to be understood as its extension to C2

b -functions.

The existence of traveling waves of (1) has been proved for D2
0 = ∂2

x [2, 18]

and in case of fractional Laplacians Dα
0 = −(−∂2

x)α/2 modeling symmetric
superdiffusion [7, 8, 21, 46, 35, 11]. However, some experiments indicate
asymmetric superdiffusive behavior [13, 14, 22] and have been modeled by
equation (1) with Riesz-Feller operator Dα

θ with non-zero asymmetry para-
meter θ.

Our aim is to prove existence, uniqueness (up to translations) and local
asymptotic stability of traveling wave solutions u(x, t) = U(x − ct) of (1)
for 1 < α < 2 and |θ| ≤ min{α, 2− α}. In the following we discuss only the
case u− = 0 and u+ = 1 without loss of generality.

First, we briefly review previous results on traveling wave solutions of
classical bistable reaction-diffusion equations in Subsection 1.1 and of bista-
ble reaction-diffusion equations with fractional Laplacian in Subsection 1.2.
Then we will present our main results in Subsection 1.3 and conclude with
a discussion in Subsection 1.4.

1.1. Classical Bistable Reaction-Diffusion equations. Equation (1)
with D2

0 = ∂2
x and bistable nonlinear reaction term f(u) = u(1 − u)(u − a)

is known as Nagumo’s equation to model propagation of signals [28, 31],
as one-dimensional real Ginzburg-Landau equation to model long-wave am-
plitudes e.g. in case of convection in binary mixtures near the onset of
instability [33, 39], as well as Allen-Cahn equation to model phase transi-
tions in solids [1]. This equation has three homogeneous steady states (or
equilibria) 0 = u− < a < u+ = 1, where u = u± are locally asymptotically
stable and u = a is unstable. It is natural to search for monotone traveling
wave solutions u(x, t) = U(x− ct) = U(ξ) which connect two stable states
(3)

lim
ξ→−∞

U(ξ) = u− , lim
ξ→∞

U(ξ) = u+ and U ′(ξ) > 0 for all ξ ∈ R .

The existence of—up to translation unique—traveling wave solutions u(x, t) =
U(x− ct) of reaction diffusion equations

(4) ∂tu = ∂2
xu+ f(u) , x ∈ R , t > 0 ,
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with general bistable reaction function f ∈ C1(R) and their stability are
well-known; see e.g. [2, 18, 42] and references therein.

It is important to highlight that phase plane methods may be used [19]
to study the existence and uniqueness of traveling wave solutions of (4). In
case of a partial integro-differential equation like (1) these classical geometric
methods do not generalize immediately. A similar remark applies to the
asymptotic stability of traveling wave solutions—with exponential rate of
decay—which may be deduced from a special variational structure availabe
in case of (4).

If a traveling wave solution with profile U exists then its wave speed c
satisfies

(5) c = −
∫ u+
u− f(w) dw

∫
R (U ′(x))2 dx

.

Thus the potential F (u) = F (u−) +
∫ u
u−

f(v) dv indicates which stable

state, either u− or u+, will replace the other one. In case of a balanced
potential,

∫ u+
u−

f(v) dv = 0, a stationary traveling wave will exist, i.e., both

stable states will co-exist. In contrast, in case of an unbalanced potential,∫ u+
u−

f(v) dv 6= 0, the stable state with smaller potential value will replace

the one with larger potential value, also called the metastable state. It
is important to note that many of the following results are restricted to
balanced bistable functions f .

In some applications a reaction-diffusion model with nonlocal diffusion
may be more appropriate; Bates et al. [4] considered

(6) ∂tu = J ∗ u− u+ f(u) =

∫

R
J(x− y) u(y, t) dy − u(x, t) + f(u(x, t)) ,

for x ∈ R, t > 0, some suitable non-negative function J ∈ C1(R) and general
bistable function f ∈ C2(R). This is an example of a nonlocal reaction-
diffusion equation with diffusion operator of convolution type, J∗u−u, which
has—under suitable assumptions on J—similar properties as the Laplacian.
They prove existence of traveling wave solutions via homotopy to a local
reaction-diffusion model (4). However, local asymptotic stability of traveling
wave solutions with exponential rate of decay is proven only for stationary
traveling wave solutions, i.e., in case of a balanced bistable function f , since
a variational structure used in (4) seems not to be available for (6).

Chen [10] established a unified approach to prove the existence, unique-
ness and local asymptotic stability with exponential decay of traveling wave
solutions for a class of nonlinear nonlocal evolution equations including (4)
and (6) and many more examples from the literature. His approach is suit-
able for equations supporting a comparison principle and based on con-
structing suitable sub- and super-solutions. In Section 4.1 we recall his
assumptions and results in more detail.

1.2. Bistable Reaction-Diffusion equations with Fractional Lapla-
cian. We briefly review previous results on traveling wave solutions for
equation (1) with fractional Laplacian Dα

0 where 0 < α < 2.
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4 FRANZ ACHLEITNER AND CHRISTIAN KUEHN

Zanette [45] considered equation (1) to study the effects of anomalous dif-
fusion represented by a fractional Laplacian Dα

0 in combination with a sim-
ple reaction function f introduced by McKean in his study [28] of Nagumo’s
equation [31]. Restricting to monotone traveling wave solutions, an explicit
solution in integral form is derived, and the asymptotic behavior of front
tails and front width are studied.

Volpert et al. [43] consider (1) for fractional Laplacians Dα
0 with α ∈ [1, 2]

and general reaction function f . They notice that if a traveling wave solution
u(x, t) = U(x − ct) with monotone profile U exists, then its wave speed c
has to satisfy again (5). Moreover, traveling wave profiles U are shown to
approach the endstates at an algebraic rate 1/|ξ|α for 1 ≤ α < 2, in contrast,
to an exponential rate for α = 2.

Nec et al. [32] consider (1) for fractional Laplacians Dα
0 with α ∈ (1, 2)

and bistable reaction function f(u) = u(1 − u2). They derive a variational
formulation such that (1) is the associated Euler-Lagrange equation, and
approximate traveling wave solutions. Similarly, they discuss examples with
bistable reaction function f of unbalanced type.

A first rigorous proof for the existence and uniqueness of stationary trave-
ling wave solutions of (1) for fractional Laplacian Dα

0 and balanced bistable
function f was given by Cabré and Sire [7, 8] as well as Palatucci, Savin
and Valdinoci [35]. They consider equations in general space-dimensions,
whereas we only discuss their results in one space-dimension.

Cabré and Sire [7, 8] consider the stationary problem

(7) 0 = Dα
0 w + f(w) in R

for α ∈ (0, 2) and a function f ∈ C1,γ(R) with γ > max(0, 1− α). Due to a
result by Caffarelli and Silvestre [9], they relate equation (7) to a boundary
value problem for a nonlinear partial differential equation. Then they prove
that a stationary traveling wave solution, w(x) = U(x), of (7) exists if and
only if f is a function of bistable type f(u−) = f(u+) = 0 with a balanced
potential; if—in addition—f ′(u±) > 0 then they prove that a traveling wave
solution is unique up to translations. Moreover, they derive the asymptotic
behavior of front tails.

Palatucci, Savin and Valdinoci [35] investigate the existence, uniqueness
and other geometric properties of the minimizers of the energy functional

(8) E(w,Ω) := K(w,Ω) +

∫

Ω
F (w(x)) dx

where K(w,Ω) can be viewed as the contribution in Ω of the squared Hs

semi-norm of w, and F is a double-well potential with F (u±) = 0. First,
they show that in one space-dimension stationary traveling wave solutions,
w(x) = U(x), of (7) are local minimizers of the functional E(w,R). For a
bistable function f ∈ C1(R) with balanced potential, they prove the exis-
tence of a unique (up to translations) nontrivial global minimizer w of the
energy E which is strictly increasing. This minimizer w solves (7) and is
unique (up to translations) also in the class of monotone solutions of this
equation. Moreover, they establish that w belongs to C2(R) and derive the
asymptotic behavior of front tails.
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Chmaj [11] proved the existence of traveling wave solutions of (1) for
fractional Laplacians Dα

0 with α ∈ (0, 2) and general bistable function f . A
fractional Laplacian can be approximated by a family of convolution ope-
rators Jε ∗ U − U such that Jε ∗ U − U −→ Dα

0 U for ε → 0 in a suitable
sense. The associated (traveling wave) equations −cU ′ = Jε ∗U −U + f(U)
exhibit for all sufficiently small ε > 0 a unique monotone solution (Uε, cε)
with U ′ε > 0 see also [4, 10]. Finally the existence of a limit U = limε→0 Uε
is established and that U is the profile of a traveling wave solution of (1)
with θ = 0.

Gui and Zhao also consider (1) for fractional Laplacians Dα
0 with α ∈ (0, 2)

and general bistable reaction function f . They prove existence of unique
traveling wave solutions u ∈ C2(R) via homotopy to the balanced case.
Moreover, they show qualitative properties of the traveling wave solutions
such as the asymptotic behavior of front tails [21, 46].

1.3. Bistable Reaction-Diffusion equations with Riesz-Feller opera-
tor. The reaction-diffusion equation (1) with general Riesz-Feller operators
has been considered in [3, 16]. Baeumer et al. [3] developed a numerical met-
hod for fractional reaction-diffusion equations based on operator splitting.
Engler [16] considered the initial value problem for (1) with initial data
having support on a half-line and studied how the spatial support of the
solution spreads in time. Using comparison arguments he determines con-
ditions on a given reaction function f to decide if the speed of the spread
is bounded or unbounded. In case of (our) bistable reaction function f the
spread of spatial support is proven to be bounded, supporting the existence
of traveling wave solutions.

Remark. In comparison, the Fisher-KPP equation is a reaction-diffusion
equation (1) with D2

0 = ∂2
x and f(u) = u(1− u) describing the competition

of species. The stable state will invade the unstable state at a constant
speed in case of D2

0 = ∂2
x and at an exponential speed in case of a Riesz-

Feller operator Dα
θ with 0 < α < 2 [14, 6, 16].

Main Results. Our main result is summarized in the following theorem.

Theorem 1.1. Suppose 1 < α ≤ 2, |θ| ≤ min{α, 2 − α} and f ∈ C∞(R)
satisfies (2). Then equation (1) admits a traveling wave solution u(x, t) =
U(x − ct) satisfying (3). In addition, a traveling wave solution of (1) is
unique up to translations. Furthermore, traveling wave solutions are locally
asymptotically stable in the sense that there exists a positive constant κ such
that if u(x, t) is a solution of (1) with initial datum u0 ∈ Cb(R) satisfying
0 ≤ u0 ≤ 1 and

lim inf
x→∞

u0(x) > a , lim sup
x→−∞

u0(x) < a ,

then, for some constants ξ ∈ R and K > 0 depending on u0,

‖u(·, t)− U(· − ct+ ξ)‖L∞(R) ≤ Ke−κt ∀t ≥ 0 .

Our proof is structured as follows. In Section 2, first we consider the Riesz-
Feller operators as Fourier multiplier operators on Schwartz functions, then
we extend the Riesz-Feller operators in form of singular integrals to functions
in C2

b (R).
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In Section 3, we investigate the Cauchy problem for (1) with initial da-
tum u0 ∈ Cb(R) such that 0 ≤ u0 ≤ 1. We follow a standard approach,
to consider the Cauchy problem in its mild formulation and to prove the
existence of a mild solution. The Cauchy problem generates a nonlinear
semigroup which allows us to prove uniform Ckb estimates via a bootstrap
argument and to conclude that mild solutions are also classical solutions. In
Subsection 3.1 we establish a comparison principle for the partial integro-
differential equation (1) and investigate the behavior of the spatial limits of
solutions. The comparison principle is essential to prove our result on the
existence, uniqueness and local asymptotic stability of traveling wave soluti-
ons and to allow for a larger class of admissible functions f in the result for
the Cauchy problem. Moreover, in the existence proof we need to show that
the (continuous) solution of the Cauchy problem with some prepared initial
datum exhibits spatial limits at all times. Therefore, we prove Theorem 3.4
on the far-field behavior of solutions.

In Section 4, we consider the traveling wave problem for (1). First, we re-
call the results by Chen [10]. Then we study his necessary assumptions and
notice that some estimates are not of the required form. However Chen’s
approach can be extended, which we prove in the Appendices A–C. Our
main result in Theorem 1.1 will follow from the separate results on unique-
ness in Theorem A.1, on local asymptotic stability in Theorem B.3 and on
existence of a traveling wave solution in Theorem C.1. The details are given
in Subsection 4.2.

1.4. Discussion. To our knowledge, we establish the first result on exis-
tence, uniqueness (up to translations) and local asymptotic stability of tra-
veling wave solutions of (1) with Riesz-Feller operators Dα

θ for 1 < α < 2
with |θ| ≤ min{α, 2− α} and general bistable function f .

The variational approach [35] is—at the moment—restricted to symme-
tric diffusion operators such as fractional Laplacians and balanced bistable
functions. Whereas, Gui and Zhao deduce the existence of a traveling wave
solution for an unbalanced bistable function via a homotopy argument from
the case of a balanced one. It might be possible to modify Chmaj’s appro-
ach to cover reaction-diffusion equation (1) with Riesz-Feller operators Dα

θ .
However his approach is only concerned with the existence of traveling wave
solutions. By following Chen’s approach, we obtain uniqueness and local
asymptotic stability of traveling wave solutions of (1) directly.

In contrast, the existence of traveling wave solutions of equation (1) with
bistable function f and fractional Laplacian Dα

0 with 0 < α ≤ 1 has been
established in case of balanced potentials [7, 8, 35] and in the unbalanced case
by [11, 21]. However, to extend Chen’s approach, if this is possible, to the
general case of Riesz-Feller operators with 0 < α ≤ 1 and |θ| ≤ min{α, 2−α}
remains an open problem.

2. Riesz-Feller Operators

We follow Mainardi, Luchko and Pagnini [27] in their definition of the
Riesz-Feller fractional derivative as a Fourier multiplier operator. They
use a definition of the Fourier transform which is customary in probability
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theory. For f in the Schwartz space

(9) S(R) =

{
f ∈ C∞(R) : sup

x∈R

∣∣∣∣xβ
∂γf

∂xγ
(x)

∣∣∣∣ <∞, ∀β, γ ∈ N0

}

the Fourier transform is defined as

F [f ](ξ) :=

∫

R
e+iξxf(x) dx , ξ ∈ R ,

and the inverse Fourier transform as

F−1[f ](x) :=
1

2π

∫

R
e−iξxf(ξ) dξ , x ∈ R .

In the following, F and F−1 will denote also their respective extensions
to L2(R). Then, the Riesz-Feller space-fractional derivative of order α and
skewness θ is the Fourier multiplier operator

(10) F [Dα
θ f ](ξ) = ψαθ (ξ) F [f ](ξ) , ξ ∈ R ,

with symbol

(11) ψαθ (ξ) = −|ξ|α exp
[
i(sgn(ξ))θ π2

]
, 0 < α ≤ 2 , |θ| ≤ min{α, 2−α} .

The symbol ψαθ (ξ) is the logarithm of the characteristic function of a Lévy
strictly stable probability density with index of stability α and asymmetry
parameter θ according to Feller’s parameterization [17, 20]; see also [47, 36,
34].

2.1. The Linear Space-Fractional Diffusion Equation. To analyze the
Cauchy problem for the reaction diffusion equation (1) we need to investigate
the linear space-fractional diffusion equation

(12) ∂tu(x, t) = Dα
θ [u(·, t)](x) , (x, t) ∈ R× (0,∞) ,

for 0 < α ≤ 2 and |θ| ≤ min{α, 2 − α}. A formal Fourier transform of the
associated Cauchy problem yields

∂tF [u](ξ, t) = ψαθ (ξ) F [u](ξ, t) , F [u](ξ, 0) = F [u0](ξ) ,

which has a solution F [u](ξ, t) = etψ
α
θ (ξ)F [u0](ξ). Hence, a formal solution

of the Cauchy problem is given by

(13) u(x, t) = (Gαθ (·, t) ∗ u0)(x) =

∫

R
Gαθ (x− y, t) u0(y) dy

with kernel (or Green’s function)

(14) Gαθ (x, t) := F−1
[
etψ

α
θ (·)
]

(x) .

To study the properties of the formal solution, first we investigate the kernel
Gαθ and then we verify that (13) defines a semigroup of solutions.

Lemma 2.1. For 0 < α ≤ 2 and |θ| ≤ min{α, 2 − α}, Gαθ (x, t) is the
probability measure of a Lévy strictly α-stable distribution.

Moreover, for |θ| < 1 the probability measure Gαθ is absolutely continu-
ous with respect to the Lebesgue measure and possesses a probability density
which will be denoted again by Gαθ . Furthermore, for all (x, t) ∈ R× (0,∞)
the following properties hold;

(G1) Gαθ (x, t) ≥ 0,
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(G2) Gαθ (x, t) = t−1/αGαθ (xt−1/α, 1).
(G3) ‖Gαθ (·, t)‖L1(R) = 1,
(G4) Gαθ (·, s) ∗Gαθ (·, t) = Gαθ (·, s+ t) for all s, t ∈ (0,∞),

(G5) ‖Gαθ (·, t)‖Lp(R) ≤ ‖Gαθ (·, 1)‖Lp(R)t
1−p
αp for all 1 ≤ p <∞,

(G6) Gαθ ∈ C∞0 (R× (0,∞)).

Moreover, for 1 ≤ α ≤ 2, |θ| ≤ min{α, 2− α} and |θ| < 1,

(G7) For all m ≥ 0 there exists a constant Bm ∈ (0,∞) such that

(15)

∣∣∣∣∂mx Gαθ (x, t)

∣∣∣∣ ≤ t−(1+m)/α Bm

1 + t−2/αx2
, ∀(x, t) ∈ R× (0,∞) .

(G8) For all t > 0, there exists a K such that ‖∂xG(·, t)‖L1(R) = Kt−1/α.
(G9) Gαθ (·, s) ∗ ∂xGαθ (·, t) = ∂xG

α
θ (·, s+ t) for all s, t ∈ (0,∞).

(G10) For all t > t0 > 0 and u ∈ L1(R) we have (Gαθ (·, t) ∗ u) ∈ C∞(R).

For 0 < α ≤ 2 and |θ| ≤ min{α, 2 − α} and α 6= ±θ (i.e. excluding the
so-called extremal pdfs)

(G11) Gαθ (x, t) > 0.

Proof. Due to Theorem [37, Theorem 14.19], the function etψ
α
θ (ξ) is the cha-

racteristic function of a random variable with Lévy strictly α-stable distri-
bution. Thus Gαθ is the scaled probability measure of a Lévy strictly α-stable
distribution. In case of (α, θ) ∈ {(0, 0), (1, 1), (1,−1)}, the probability mea-
sure Gαθ is a delta distribution

G0
0(x, t) = δx , G1

1(x, t) = δx+t , G1
−1(x, t) = δx−t

and is called trivial [37, Definition 13.6]. In all other (non-trivial) cases,
the probability measure Gαθ is absolutely continuous with respect to the Le-
besgue measure and has a continuous probability distribution density [37,
Proposition 28.1], which we will denote again by Gαθ . A non-trivial strictly
α-stable probability density is pointwise non-negative (G1) and satisfies the
scaling property (G2) due to [37, Remark 14.18]; hence the identity (G3) and
the estimate (G5) follow. The (semigroup)-property is satisfied by the de-
fining property of strictly α-stable probability density [37, Definition 13.1].
Moreover, a non-trivial strictly α-stable probability density is C∞-smooth
whose partial derivatives of all orders tend to 0 in the limits x → ±∞ [37,
Proposition 28.1; Example 28.2], hence (G6) holds. Subsequently, the pro-
perties (G7)–(G9) follow from direct calculations, see also [15] for the special
case of fractional Laplacian Dα

0 and [12] for the general case α ∈ (1,∞)\N.
To prove (G10), we consider the basic definition of the derivative as the limit
of a finite difference. Moreover, for t > t0 > 0, Gαθ (·, t) ∈ C∞b (R)∩W∞,1(R)

due to the estimate (G7). Thus 1
ε (G

α
θ (·, t)− τεGαθ (·, t)) converges uniformly

to ∂xG
α
θ (·, t), i.e. with respect to the norm ‖.‖L∞(R). This fact and the

Dominated Convergence Theorem imply that, 1
ε (G

α
θ (·, t) − τεG

α
θ (·, t)) ∗ u

converges uniformly to ∂xG
α
θ (·, t) ∗ u, too. Finally, for h(·, t) := Gαθ (·, t) ∗ u,

the identity 1
ε (G

α
θ (·, t) − τεGαθ (·, t)) ∗ u = 1

ε (h(·, t) − τεh(·, t)) implies that
the derivative ∂xh(·, t) exists and is equal to ∂xG

α
θ (·, t) ∗ u. A mathematical

induction on the order of the derivative proves the general statement. Due
to (G8) and a result by Sharpe [40], the support of Gαθ (·, t) is either all of
R or a half-line for each t > 0 [37, Remark 28.8]. Indeed only the strictly
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α-stable probability densities with 0 < α < 1 and θ = −α or θ = α have
support on (−∞, 0] and [0,∞), respectively; all others have support R [36,
Property 1.2.14]. �

Due to the properties of Gαθ , it is easy to show that Dα
θ generates a

semigroup.

Proposition 2.2. For 1 < α ≤ 2 and |θ| ≤ min{α, 2− α}, the Riesz-Feller
operator Dα

θ generates a strongly continuous, convolution semigroup

St : Lp(R)→ Lp(R) , u0 7→ Stu0 = Gαθ (·, t) ∗ u0 ,

for all 1 ≤ p <∞.

Proof. Due to Lemma 2.1, the probability measure Gαθ is absolutely continu-
ous with respect to the Lebesgue measure and possesses a probability distri-
bution density which will be denoted again by Gαθ . Thus (G3) and Young’s
inequality for convolutions imply ‖Stu‖Lp ≤ ‖Gαθ (·, t)‖L1‖u‖Lp = ‖u‖Lp for
all u ∈ Lp(Rn). Therefore St : Lp(R) → Lp(R) are well-defined bounded
linear operators for all t ≥ 0. (St)t≥0 is a semigroup, since St+s = StSs
for all s, t ≥ 0 holds due to (G4). Whereas the formal definition S0 = Id
is justified, since (G2) and a standard result about convolutions [26, p.64]
yield strong continuity of (St)t≥0. �

2.2. Extensions to Bounded Continuous Functions. We are interested
in traveling wave solutions which will be C2

b (R) functions in space. There-
fore, we are going to derive an extension for the nonlocal operators Dα

θ such
that Dα

θ : C2
b → Cb and it generates a semigroup on Cb.

2.2.1. A Representation Formula. To study the traveling wave problem, it is
necessary to extend the nonlocal operator to C2

b (R). The following integral
representations may be used to accomplish this task.

Proposition 2.3. If 1 < α < 2 and |θ| ≤ min{α, 2 − α}, then for all
f ∈ S(R) and x ∈ R
(16)

Dα
θ f(x) = c1

∫ ∞

0

f(x+ξ)−f(x)−f ′(x) ξ
ξ1+α

dξ + c2

∫ ∞

0

f(x−ξ)−f(x)+f ′(x) ξ
ξ1+α

dξ .

for some constants c1, c2 ≥ 0 with c1 + c2 > 0.

Proof. This representation of the Riesz-Feller operator Dα
θ is well known in

the literature on (generators of stable) stochastic processes [24, 12]. The
representation is stated without proof [24, 12], therefore we show how to
identify our chosen form (16) from a standard reference like [37].

Due to Lemma 2.1, Gαθ is the scaled probability measure of a Lévy strictly
α-stable distribution. Due to [37, Theorem 14.3], such a probability measure
can be characterized by a Lévy triplet (A, ν, γ). In particular, for Gαθ , the
constants are determined as A = 0 and γ ∈ R, and ν is an absolutely
continuous (Lévy) measure

(17) ν( dx) =

{
c1x
−1−α on (0,∞) ,

c2|x|−1−α on (−∞, 0) ,
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for some constants c1, c2 ≥ 0 such that c1 + c2 > 0, see also [37, page 80].
Moreover, there exists a Lévy process (Xt)t≥0 (such that PX1 = Gαθ ), which
is unique up to identity in law [37, Corollary 11.6]. Due to [37, Theorem
31.5], the infinitesimal generator of the associated transition semigroup has
a representation

(18) Dα
θ f(x) = c1−c2

1−α f
′(x) + c1

∫ ∞

0

f(x+ξ)−f(x)−f ′(x) ξ1(−1,1)(ξ)

ξ1+α
dξ

+ c2

∫ ∞

0

f(x−ξ)−f(x)+f ′(x) ξ1(−1,1)(ξ)

ξ1+α
dξ

for the given constants c1 and c2.
In [37, Remark 8.4], alternative representations are discussed. If 1 < α <

2, then the Lévy measure ν satisfies condition
∫
|x|>1 |x| ν( dx) < ∞, hence

the characteristic function has a representation [37, Eq.(8.8)] with generating
triplet (A, ν, γ1)1 = (0, ν, γ1). Due to [37, Theorem 14.7], a strictly α-stable
distribution for 1 < α < 2 satisfies γ1 = 0 which yields representation (16).

�

This representation allows to extend the Dα
θ operator to C2

b (R) such that
Dα
θ C

2
b (R) ⊂ Cb(R).

Proposition 2.4. The integral representation (16) of Dα
θ with 1 < α < 2

and |θ| ≤ min{α, 2− α} is well-defined for functions f ∈ C2
b (R) with

(19)

sup
x∈R
|Dα

θ f(x)| ≤ 1
2(c1 + c2)‖f ′′‖Cb(R)

M2−α

2− α + 2(c1 + c2)‖f ′‖Cb(R)
M1−α

α− 1
<∞

for any positive constant M > 0 and the positive constants c1 and c2 in
Proposition 2.3.

Proof. We consider the two summands in (16) separately, starting with the
first integral for any f ∈ C2

b (R). The goal is to obtain an upper bound.
Choose M > 0 and consider

∫ ∞

0

f(x+ξ)−f(x)−f ′(x)ξ
ξ1+α

dξ =

∫ M

0

f(x+ξ)−f(x)−f ′(x)ξ
ξ1+α

dξ

+

∫ ∞

M

f(x+ξ)−f(x)−f ′(x)ξ
ξ1+α

dξ .

The first integral is written as

∫ M

0

f(x+ξ)−f(x)−f ′(x)ξ
ξ1+α

dξ =

∫ M

0

1
ξ1+α

[ ∫ 1

0
f ′(x+ θξ) ξ dθ − f ′(x)ξ

]
dξ

=

∫ M

0

ξ
ξ1+α

[ ∫ 1

0

∫ 1

0
f ′′(x+ sθξ) θξ ds dθ

]
dξ

=

∫ M

0

ξ2

ξ1+α

[ ∫ 1

0

∫ 1

0
f ′′(x+ sθξ) θ ds dθ

]

︸ ︷︷ ︸
bounded by ‖f ′′‖Cb

dξ

3. REACTION-DIFFUSION EQUATIONS 127

appeared as: F. Achleitner and C. Kuehn. “Traveling waves for a bistable
equation with nonlocal diffusion”. In: Adv. Differential Equations 20.9-10
(2015), pp. 887–936



11

where we use the shorthand notation ‖ · ‖Cb = ‖ · ‖Cb(R). Thus
∣∣∣∣
∫ M

0

f(x+ξ)−f(x)−f ′(x)ξ
ξ1+α

dξ

∣∣∣∣ ≤ 1
2‖f ′′‖Cb

∫ M

0
ξ1−α dξ = 1

2‖f ′′‖CbM
2−α

2−α .

The second integral is written as
∫ ∞

M

f(x+ξ)−f(x)−f ′(x)ξ
ξ1+α

dξ =

∫ ∞

M

1
ξ1+α

[ ∫ 1

0
f ′(x+ θξ) ξ dθ − f ′(x)ξ

]
dξ

=

∫ ∞

M

ξ
ξ1+α

[ ∫ 1

0
f ′(x+ θξ)− f ′(x) dθ

]

︸ ︷︷ ︸
bounded by 2‖f ′‖Cb

dξ

Thus∣∣∣∣
∫ ∞

M

f(x+ξ)−f(x)−f ′(x)ξ
ξ1+α

dξ

∣∣∣∣ ≤ 2‖f ′‖Cb
∫ ∞

M
ξ−α dξ = 2‖f ′‖CbM

1−α
α−1 .

Summarizing we estimate
∣∣∣∣
∫ ∞

0

f(x+ξ)−f(x)−f ′(x)ξ
ξ1+α

dξ

∣∣∣∣ ≤ 1
2‖f ′′‖CbM

2−α
2−α + 2‖f ′‖CbM

1−α
α−1 <∞

and similarly
∣∣∣∣
∫ ∞

0

f(x−ξ)−f(x)+f ′(x)ξ
ξ1+α

dξ

∣∣∣∣ ≤ 1
2‖f ′′‖CbM

2−α
2−α + 2‖f ′‖CbM

1−α
α−1 <∞

for any M > 0. Consequently, the integral representation (16) of Dα
θ satisfies

estimate (19). �
The estimate (19) shows that for 1 < α < 2 there exists a bound for Dα

θ

involving first and second derivatives. This is one key estimate we are going
to use to adapt the assumptions (B3) and (C3) discussed in Section 4.1.

For a self-contained derivation of the representation of fractional Lapla-
cians Dα

0 , 0 < α < 2, see the work of Droniou and Imbert [15, Theorem
1]. Their results on continuity [15, Proposition 1] and on sequences [15,
Theorem 2] generalize to Riesz-Feller operators with obvious modifications
in their proofs.

Proposition 2.5. Let 1 < α < 2, |θ| ≤ min{α, 2 − α} and f ∈ C2
b (R). If

(fn)n≥1 ∈ C2
b (R) is bounded in L∞(R) and D2

0 fn → D2
0 f locally uniformly

on R, then Dα
θ fn → Dα

θ f locally uniformly on R.

Theorem 2.6. Let 1 < α < 2, |θ| ≤ min{α, 2 − α} and f ∈ C2
b (R). If

(xk)k∈N is a sequence in Rn such that f(xk) → supRn f as k → ∞, then
limk→∞∇f(xk) = 0 and lim infk→∞Dα

θ [f ](xk) ≥ 0.

2.2.2. Semigroup Properties. A non-degenerate Riesz-Feller operator gene-
rates a strongly continuous convolution semigroup on C0(R), which can be
extended to a convolution semigroup on L∞(R).

Theorem 2.7. For 1 < α < 2 and |θ| ≤ min{α, 2 − α}, the Riesz-Feller
operator Dα

θ generates a convolution semigroup St : L∞(R) → L∞(R),
u0 7→ Stu0 = Gαθ (·, t) ∗ u0, with kernel Gαθ (x, t). Moreover, the convolu-
tion semigroup with u(x, t) := Stu0 satisfies
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(1) u ∈ C∞(R× (t0,∞)) for all t0 > 0;
(2) ∂tu = Dα

θ u for all (x, t) ∈ R× (t0,∞) and any t0 > 0;

(3) u(·, t) ∗⇀ u0 for t↘ 0 in the weak-∗ topology of L∞(R);
(4) If u0 ∈ Cb(R) then limR×(0,∞)3(x,t)→(x0,0) u(x, t) = u0(x0) for each

x0 ∈ R.

Proof. Due to the assumptions and Lemma 2.1, the kernel is a smooth proba-
bility density function with Gαθ (·, t) ∈ L1(R). This observation and Young’s
inequality for convolutions show that St : L∞(R)→ L∞(R), t > 0, are well-
defined bounded linear operators. We define S0 = Id and the semigroup
property follows from property (G4) in Lemma 2.1. The semigroup (St)t≥0

of bounded linear operators on L∞(R) is not necessarily strongly continu-
ous, see also [23, page 427 ff.]. However Stu0 converges for t ↘ 0 in the
weak-∗ topology of L∞(R), see also [41].

The function u is smooth, since u is a convolution of u0 ∈ L∞(R) with an
integrable smooth function Gαθ having bounded integrable derivatives (G6)–
(G8). Furthermore, u is a solution of (12), since Gαθ is a solution of (12)
for positive times. Finally, Gαθ is an approximate unit with respect to t due
to (G1)–(G3) which is sufficient for the stated convergence to the initial
datum u0. �

In the analysis of the traveling wave problem, we are mostly interested in
the evolution of initial data in Cb. Therefore, it is important to notice the
following corollary.

Corollary 2.8. For 1 < α < 2 and |θ| ≤ min{α, 2 − α}, the Riesz-
Feller operator Dα

θ generates a convolution semigroup St : Cb(R) → Cb(R),
u0 7→ Stu0 = Gαθ (·, t) ∗ u0, with kernel Gαθ (x, t). Moreover, the convolution
semigroup with u(x, t) := Stu0 satisfies

(1) u ∈ C∞(R× (t0,∞)) for all t0 > 0;
(2) ∂tu = Dα

θ u for all (x, t) ∈ R× (t0,∞) and any t0 > 0;
(3) If u0 ∈ Cb(R) then u ∈ Cb(R× [0, T ]) for any T > 0.

Since St : Cb(R)→ Cb(R) is not a strongly continuous semigroup, the rela-
tion between the Cb-extension of the strongly continuous semigroup (St)t≥0

on C0(R) and the C2
b -extension of the Fourier multiplier operators Dα

θ is not
obvious. This issue is discussed in [38], see also [23, Section 4.8].

3. Cauchy Problem and Comparison Principle

We consider the Cauchy problem

(20)

{
∂tu = Dα

θ u+ f(u) for (x, t) ∈ R× (0,∞) ,

u(x, 0) = u0(x) for x ∈ R ,
for 1 < α ≤ 2, |θ| ≤ min{α, 2−α} and f ∈ C∞(R) satisfying (2). We follow a
standard approach, and consider the Cauchy problem in its mild formulation
to prove the existence of a mild solution. The Cauchy problem generates
a nonlinear semigroup which allows to prove uniform Ckb estimates via a
bootstrap argument and to conclude that mild solutions are also classical
solutions.
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Droniou and Imbert [15] studied partial integro-differential equations

∂tu(x, t) = Dα
0 [u(·, t)](x) + F (t, x, u(x, t),∇u(x, t)) for x ∈ Rn , t > 0 ,

involving the fractional Laplacian Dα
0 for 0 < α < 2. First, they introduce

the fractional Laplacian Dα
0 as a Fourier multiplier operator on the Schwartz

class S(R), and then they extend it to C2
b (R) functions in [15, Lemma 2].

In particular, they consider the Cauchy problem for α ∈ (1, 2)

(21)

{
∂tu(x, t) = Dα

0 [u(·, t)](x) + F (t, x, u,∇u) for x ∈ Rn , t > 0 ,

u(x, 0) = u0(x) for x ∈ Rn ,

where u0 ∈W 1,∞(Rn) and F ∈ C∞([0,∞)× Rn × R× Rn).
In the one-dimensional case (n = 1) of a smooth function F = F (u)

depending only on the unknown u and u0 ∈ L∞(R), their assumptions on
F simplify to

(DI1) ∀R > 0, ∀k ∈ N, ∃KR,k > 0 such that ∀v ∈ [−R,R] and ∀β ∈ N
satisfying β ≤ k,

|∂βv F (v)| ≤ KR,k .
(DI2) ∃Λ : [0,∞) 7→ (0,∞) continuous and non-decreasing such that∫∞

0
1

Λ(a) da =∞ and ∀v ∈ R

sgn(v)F (v) ≤ Λ(|v|) .
(DI3) ∀R > 0, ∃ΓR : [0,∞) 7→ (0,∞) continuous and non-decreasing such

that
∫∞

0
1

ΓR(a) da =∞ and ∀v ∈ [−R,R]

|ν|∂vF (v) ≤ ΓR(|ν|) .
A smooth function F = F (u) that depends only on u and satisfies (DI1)

also satisfies (DI3), since

|ν|∂vF (t, x, v, ν) = |ν|F ′(v) ≤ |ν| max
v∈[−R,R]

|F ′(v)| ≤ KR,1|ν| =: ΓR(|ν|)

implies

∫ ∞

0

1

ΓR(u)
du =

∫ ∞

0

1

KR,1 u
du = 1

KR,1 lim
ε→0

ln(u)

∣∣∣∣
u= 1

ε

u=ε

=∞ .

In this case a simplified proof of [15, Theorem 3] allows to show the existence
of a solution for the initial value problem (IVP) with u0 ∈ L∞(R).

Theorem 3.1. Let α ∈ (1, 2), u0 ∈ L∞(R) and F = F (u) satisfy (DI1) and
(DI2). There exists a unique solution of (21) in the following sense: for all
T > 0

(DI4) u ∈ Cb(R× (0, T )) and for all a ∈ (0, T ) u ∈ C∞b (R× (a, T ));
(DI5) u satisfies the partial integro-differential equation (21) on R×(0, T ),
(DI6) If u0 ∈ Cb(R) then u(·, t)→ u0 uniformly on R as t→ 0.

There are also the following estimates on the solution: for all 0 < t < T <
∞,

(DI7) ‖u(·, t)‖L∞(R) ≤ L−1
(
t+ L(‖u0‖L∞(R))

)
,

where L : [0,∞)→ [0,∞), a 7→ L(a) =
∫ a

0
1

Λ(b) db .
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Figure 1. The functions f1(u) = u (1 − u) (u − a) and
f2(u) = (u+ 1)u (u− a) (u− 1) (u− 2) for any a ∈ (0, 1) are
bistable in the sense of (2) and depicted in the left and the
right figure, respectively. Whereas f1 satisfies the assumpti-
ons (DI1)–(DI3), function f2 does not satisfy (DI2).

Remark. The function L : [0,∞) → [0,∞), a 7→ L(a) =
∫ a

0
1

Λ(b) db , is a

non-decreasing C1-diffeomorphism from [0,∞) to [0,∞), due to the assump-
tions on Λ.

For our purposes we need to extend the result of Theorem 3.1 to the case
of all Riesz-Feller operators Dα

θ in (20) and to adapt the result to admissible
functions f which do not satisfy the growth condition (DI2) see also Figure 1.

First, Droniou and Imbert note in [15, Remark 5] that their proof of [15,
Theorem 3] still applies if Dα

0 is replaced by more general operators which
satisfy [15, Theorem 2] and whose associated kernel Kα(x, t) has the pro-
perties [15, (30)]

(P1) Kα ∈ C∞(R × (0,∞)) and (Kα(·, t))t→0 is an approximate unit (in
particular, Kα ≥ 0 and, for all t > 0, ‖Kα(·, t)‖L1(R) = 1),

(P2) ∀t > 0, ∀t′ > 0, Kα(·, t+ t′) = Kα(·, t) ∗Kα(·, t′),
(P3) ∃K > 0, ∀t > 0, ‖∇Kα(·, t)‖L1(R) ≤ Kt−1/α,

and [15, (59)]

(P4) (0,∞) 3 t 7→ Kα(·, t) ∈ L1(R) is continuous.

The Riesz-Feller operators Dα
θ for 1 < α < 2 and |θ| ≤ min{α, 2−α} satisfy

the properties (P1)–(P3), due to Theorem 2.6 and Lemma 2.1, and (P4)
follows from the regularity of Gαθ and the scaling property (G2). Therefore
the result of Theorem 3.1 still holds if the operator Dα

0 in (21) is replaced
by a Riesz-Feller operator Dα

θ for 1 < α < 2 and |θ| ≤ min{α, 2− α}.
Second, the prototype of a function f satisfying assumption (2) is a cubic

polynomial of the form

f1(u) := u (1− u) (u− a) for some a ∈ (0, 1) ,

which satisfies (sgn v)f1(v) ≤ maxu∈[0,1] f1(u) for all v ∈ R and hence as-
sumption (DI2) with a constant Λ. In contrast, other admissible function
such as

f2(u) := (u+ 1)u (u− a) (u− 1) (u− 2) for some a ∈ (0, 1)
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do not satisfy assumption (DI2). The estimate

(sgn v)f2(v) ≤ Λ(|v|) = c(|v|+ 2)5

for some c > 0, implies that
∫ ∞

0

1

Λ(u)
du =

∫ ∞

0

1

c(u+ 2)5
du = − lim

R→∞
1

4c(u+ 2)4

∣∣∣∣
u=R

u=0

=
1

c26
<∞ .

However, we are interested in solutions taking values in [0, 1] and the par-
tial integro-differential equation exhibits a comparison principle see also
Lemma 3.3. Thus we will modify the function f2 outside of [0, 1], such that
it satisfies the assumptions (DI1)–(DI2), see also Figure 1. Consequently
(a generalization of) Theorem 3.1 applies to the associated Cauchy problem
and the solution—taking values in [0, 1]—will be a solution of the original
Cauchy problem (20).

Theorem 3.2. Suppose 1 < α ≤ 2, |θ| ≤ min{α, 2 − α} and f ∈ C∞(R)
satisfies (2). The Cauchy problem (20) with initial condition u(·, 0) = u0 ∈
Cb(R) and 0 ≤ u0 ≤ 1 has a solution u(x, t) in the sense of Theorem 3.1
satisfying 0 ≤ u(x, t) ≤ 1 for all (x, t) ∈ R × (0,∞). Moreover, for all
k ∈ N and t0 > 0 there exists a K > 0 such that ‖u(·, t)‖Ckb (R) ≤ K for all

0 < t0 < t.

Proof. The first assumption (DI1) is satisfied, since f is a smooth function,
hence all derivatives are continuous and bounded on any compact interval
[−R,R]. We are interested in solutions taking values in [0, 1]. Moreover, the
partial integro-differential equation exhibits a comparison principle, such
that classical solutions u(x, t) of our Cauchy problem will satisfy 0 ≤ u ≤ 1.

Therefore, we can modify f in such a way that its modification f̃ satisfies
assumption (DI2) but does not change the dynamics as long as u takes values
in [0, 1]. First, we define fmin := minu∈[0,1] f(u), fmax := maxu∈[0,1] f(u),

and a bounded function f(u) := max{fmin ,min{f(u) , fmax}}. Finally, we

consider a smooth function f̃ ∈ C∞(R), such that f̃(u) = f(u) = f(u) for

all u ∈ [0, 1] and |f̃(u)| ≤ |f(u)| for all u ∈ R. Then, assumption (DI2)

holds for f̃ with (sgn v)f̃(v) ≤ Λ(|v|) := ‖f̃‖∞ < ∞. Assumption (DI1)
continues to hold. Thus, due to (a generalization of) Theorem 3.1, there
exists a unique solution to the Cauchy problem

(22)

{
∂tu = Dα

θ u+ f̃(u) for (x, t) ∈ R× (0, T ] ,

u(·, 0) = u0 for x ∈ R .
Due to the assumptions on the initial datum 0 ≤ u0 ≤ 1 and a comparison
principle—formulated in Lemma 3.3—0 ≤ u(x, t) ≤ 1 for all (x, t) ∈ R ×
[0, T ]. Thus the solution u(x, t) is a solution of the original Cauchy problem,
whose uniqueness has to be verified. Suppose two solutions of (20) with
the stated properties exist, then they are solutions of the modified Cauchy
problem (22) as well. However, the modified Cauchy problem has a unique
solution, hence the two solutions are identical.

Due to (a generalization of) Theorem 3.1 a solution u exists for all T > 0
on a time interval (0, T ). However the comparison principle proves that
0 ≤ u(·, t) ≤ 1 for all t ≥ 0, such that ‖u(·, t)‖L∞(R) satisfies not only (DI7)
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but also ‖u(·, t)‖L∞(R) ≤ 1 for all t ≥ 0. The solution u is also a mild
solution and satisfies

u(x, t) = (Gαθ (·, t) ∗ u0)(x) +

∫ t

0
[Gαθ (·, t− τ) ∗ f(u(·, τ))](x) dτ

for t ≥ 0. For t ≥ t0 > 0 the solution is differentiable and satisfies the mild
formulation

∂xu(x, t) =
(
∂xG

α
θ (·, t) ∗ u0

)
(x) +

∫ t

0

[
∂xG

α
θ (·, t− τ) ∗ f(u(·, τ))

]
(x) dτ

and hence the estimate

(23) sup
x∈R
|∂xu(x, t)| ≤ Kt−

1
α ‖u0‖L∞︸ ︷︷ ︸

≤1

+ max
u∈[0,1]

|f(u)| K t1−
1
α

1− 1
α

due to 0 ≤ u(·, t) ≤ 1 for all t ≥ 0 and Lemma 2.1. In particular, assumption
1 < α ≤ 2 implies

t−
1
α ≤ t−

1
α

0 and t1−
1
α ≤ (2t0)1− 1

α

for all t ∈ [t0, 2t0]. Thus, for t ∈ [t0, 2t0], estimate (23) yields

sup
x∈R
|∂xu(x, t)| ≤ Kt−

1
α

0 + max
u∈[0,1]

|f(u)| K (2t0)1− 1
α

1− 1
α

.

This gives an estimate on bounded intervals, but not a global estimate on
[t0,∞). However, the IVP generates a nonlinear semigroup; the solution u
of the IVP with initial condition u(·, 0) = u0(·) is equal to the solution v of
the IVP with initial condition v(·, t0) = u(·, t0) on the time interval [t0,∞).
Hence, u and its derivative ∂xu(x, t) satisfy

u(x, t) = (Gαθ (·, t− t0) ∗ u(·, t0))(x) +

∫ t

t0

[Gαθ (·, t− τ) ∗ f(u(·, τ))](x) dτ

and

∂xu(x, t) =
(
∂xG

α
θ (·, t− t0)∗u(·, t0)

)
(x)+

∫ t

t0

[
∂xG

α
θ (·, t− τ) ∗ f(u(·, τ))

]
(x) dτ

for t ≥ t0 > 0. The estimate now reads

sup
x∈R
|∂xu(x, t)| ≤ K(t− t0)−

1
α ‖u(·, t0)‖L∞ + max

u∈[0,1]
|f(u)| K (t− t0)1− 1

α

1− 1
α

for t ≥ t0 > 0 and t ∈ [2t0, 3t0] we obtain again

sup
x∈R
|∂xu(x, t)| ≤ Kt−

1
α

0 + max
u∈[0,1]

|f(u)| K (2t0)1− 1
α

1− 1
α

due to 1 < α ≤ 2 and the uniform estimate on u. By induction we obtain
the uniform estimate of ∂xu(x, t) on (x, t) ∈ R × [t0,∞), and in a similar
way the uniform estimates for all other derivatives of u. �
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3.1. Comparison principles and far-field behavior.

Lemma 3.3. Assume 1 < α ≤ 2, |θ| ≤ min{α, 2 − α}, T > 0 and u, v ∈
Cb(R× [0, T ]) ∩ C2

b (R× (t0, T ]) for all t0 ∈ (0, T ) such that

∂tu ≤ Dα
θ u+ f(u) and ∂tv ≥ Dα

θ v + f(v) in R× (0, T ] .

(i) If v(·, 0) ≥ u(·, 0) then v(x, t) ≥ u(x, t) for all (x, t) ∈ R× (0, T ].
(ii) If v(·, 0) 	 u(·, 0) then v(x, t) > u(x, t) for all (x, t) ∈ R× (0, T ].

(iii) Moreover, there exists a positive continuous function

η : [0,∞)× (0,∞)→ (0,∞) , (m, t) 7→ η(m, t) ,

such that if v(·, 0) ≥ u(·, 0) then for all (x, t) ∈ R× (0, T )

v(x, t)− u(x, t) ≥ η(|x|, t)
∫ 1

0
v(y, 0)− u(y, 0) dy .

Proof. (i) The function w := v−u satisfies w ∈ Cb(R×[0, T ])∩C2
b (R×(t0, T ])

for all t0 ∈ (0, T ), w(·, 0) ≥ 0 in R and

∂tw = ∂t(v − u) ≥ Dα
θ (v − u) + f(v)− f(u)

= Dα
θ (v − u) +

∫ 1

0
f ′(θv + (1− θ)u) (v − u) dθ

= Dα
θ w +

(∫ 1

0
f ′(θv + (1− θ)u) dθ

)

︸ ︷︷ ︸
=:k(x,t)

w .

In particular, k : R × [0, T ] → R, (x, t) 7→ k(x, t), is a bounded continuous
function, due to the properties of u and v. To prove w ≥ 0 in R× (0, T ], we
will derive a contradiction following [10, page 153]. Assume w takes negative
values in R× [0, T ]. Due to w ∈ Cb(R× [0, T ]) and w(·, 0) ≥ 0, for any κ > 0

there exist ε > 0 and T ≥ T̃ > 0 such that

w(x, t) > −ε e2κt in R× [0, T̃ ) and inf
x∈R

w(x, T̃ ) = −ε e2κT̃ .

In the following we use again T instead of T̃ and assume without loss of
generality w(0, T ) < −7

8ε e2κT . Consider ω(x, t) := −ε(3
4 +σz(x))e2κt where

σ > 0 and z ∈ C∞(R), z(0) = 1, limx→±∞ z(x) = 3, as well as 3 ≥ z ≥ 1,
|z′| ≤ 1 and |z′′| ≤ 1 in R. The function ω satisfies for σ ≥ 0

ω(x, t) = −ε
(

3
4 + σz(x)

)
e2κt ≤ −ε

(
3
4 + σ

)
e2κt

where the upper bound is monotone decreasing with respect to σ. Thus
there exists a σ∗ ∈ (1

8 ,
1
4 ] such that w ≥ ω in R × [0, T ], where 1

8 < σ∗ due
to the restrictions at x = 0. Moreover

lim
x→±∞

−ε(3
4 + σ∗z(x))e2κt = −ε(3

4 + 3σ∗)e2κt < −ε9
8e2κt < −ε e2κt

≤ lim inf
x→±∞

w(x, t) .

In summary, there exists σ∗ ∈ (1
8 ,

1
4 ] and (x0, t0) ∈ R × (0, T ] such that

w ≥ ω in R × [0, T ] and w(x0, t0) = ω(x0, t0). Thus w − ω ∈ Cb(R ×
[0, T ]) ∩ C2

b (R × (t0, T ]) is a non-negative function which attains its mini-
mum at (x0, t0) ∈ R × (0, T ], hence ∂tw(x0, t0) ≤ ∂tω(x0, t0), ∂xw(x0, t0) =
∂xω(x0, t0), ∂2

xw(x0, t0) ≥ ∂2
xω(x0, t0).
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First we deduce from the integral representation of Dα
θ in Proposition 2.3

the estimate Dα
θ [w(·, t0)](x0) ≥ Dα

θ [ω(·, t0)](x0). Second we deduce the
estimate

−7
4εκe2κt0 ≥ ∂tω(x0, t0) ≥ ∂tw(x0, t0)

≥ Dα
θ [w(·, t0)](x0) + k(x0, t0)w(x0, t0)

≥ Dα
θ [ω(·, t0)](x0)− sup |k| |ω(x0, t0)|

≥ −K‖ω′′‖Cb(R)
M2−α
2−α − 4K‖ω′‖Cb(R)

M1−α
α−1 − sup |k| ε(3

4 + σ∗z(x0))e2κt0

≥ −KM2−α
2−α εσ∗e2κt0 − 4KM1−α

α−1 εσ
∗e2κt0 − sup |k| ε6

4e2κt0 ,

where we use Proposition 2.4 with some positive constants M and K. Thus
if we choose κ > 0 such that

−7
4κ < −K4 M2−α

2−α −KM1−α
α−1 − 6

4 sup |k|
then we obtain a contradiction. Therefore w ≥ 0 in R× (0, T ].

(ii) For another constant K2 ∈ R, the function w2 := eK2tw satisfies
w2 ∈ Cb(R× [0, T ])∩C2

b (R× (t0, T ]) for all t0 ∈ (0, T ), w2 ≥ 0 in R× (0, T ],
and

∂tw2 ≥ Dα
θ w2 − c2(x, t)w2

with c2(x, t) := −(K2 + k(x, t)). Choosing K2 ∈ R such that c2(x, t) =
−(K2 + k(x, t)) ≤ 0 and using w2 ≥ 0 in R× (0, T ], yields

∂tw2 ≥ Dα
θ w2 − c2(x, t)w2 ≥ Dα

θ w2 .

Due to the first part,

w2(x, t) ≥ [Gαθ (·, t) ∗ w2(·, 0)](x) = eK2t[Gαθ (·, t) ∗ w(·, 0)](x) .

The assumption v(·, 0) 	 u(·, 0) implies that there exists x0 ∈ R and ε > 0
such that w(x, 0) > 0 for all x ∈ (x0− ε, x0 + ε) due to continuity of w. Mo-
reover, the nonlocal diffusion equation ∂tw = Dα

θ w generates a convolution
semigroup with a positive convolution kernel Gαθ (x, t), i.e. Gαθ (x, t) > 0 in
R× (0, T ], see Lemma 2.1. Therefore,

w2(x, t) ≥
∫

Uε(x0)
Gαθ (x− y, t)w2(y, 0) dy > 0 for all (x, t) ∈ R× (0, T ] ,

which implies w(x, t) > 0 for all (x, t) ∈ R× (0, T ].
(iii) If v(·, 0) ≥ u(·, 0) then as before

w2(x, t) ≥ [Gαθ (·, t) ∗ w2(·, 0)](x) ≥
∫ 1

0
[Gαθ (x− y, t)w2(y, 0)] dy

≥ min
y∈[0,1]

Gαθ (x− y, t)
∫ 1

0
w2(y, 0) dy ,

since Gαθ is an integrable positive smooth function, and w2(·, 0) ≥ 0 in R.
Thus

eK2t
(
v(x, t)− u(x, t)

)
≥ min

z∈[−|x|−1,|x|]
Gαθ (z, t)

∫ 1

0
w(y, 0) dy

= η̃(|x|, t)
∫ 1

0

(
v(y, 0)− u(y, 0)

)
dy ,
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where η̃(m, t) = minz∈[−m−1,m]G
α
θ (z, t), is a positive continuous function,

since Gαθ (·, t) for t > 0 is a positive smooth function. Consequently the

function η : [0,∞) × (0,∞) → (0,∞), (m, t) 7→ e−K2tη̃(|x|, t), is a positive
continuous function, and the statement follows. �

We need to investigate the behavior of solutions in the limits x→ ±∞, see
also [42, Theorem 5.2] for the case of a system of reaction-diffusion equations
with local derivatives. We consider the Cauchy problem

(24)

{
∂tu = Dα

θ u+ F (u) for (x, t) ∈ R× (0,∞) ,

u(x, 0) = u0(x) for x ∈ R ,

for some unknown function u : R × (0,∞) → R and a given bounded con-
tinuous function F : R → R, u 7→ F (u), satisfying a Lipschitz condition in
u.

Theorem 3.4. Let 1 < α ≤ 2 and |θ| ≤ min{α, 2−α}. Suppose u0 ∈ Cb(R)
and that the limits

lim
x→±∞

u0(x) = u0,±

exist. If u ∈ Cb(R× [0, T ]) ∩ C2
b (R× (t0, T ]) for all t0 ∈ (0, T ) is a solution

of the Cauchy problem (24) then the limits limx→±∞ u(x, t) = u±(t) exist
and satisfy

(25) du±
d t = F (u±) for t ∈ [0, T ] , u±(0) = u0,± .

Proof of Theorem 3.4. The result is a variation of [42, Theorem 5.2] where
the case D2

0 = ∂2
x is considered. Again, for 1 < α ≤ 2 and |θ| ≤ min{α, 2−α}

the fundamental solution Gαθ of

∂tu = Dα
θ u for (x, t) ∈ R× (0, T ]

is for all t > 0 an integrable positive smooth function Gαθ (·, t) ∈ L1(R) with
finite mean, see Lemma 2.1. Like in the proof of [42, Theorem 5.1], we
obtain the unique mild solution as the limit of an iterated sequence

u0(x, t) =

∫ +∞

−∞
Gαθ (x− y, t)u0(y) dy

uk+1(x, t) = u0(x, t) +

∫ t

0

∫ +∞

−∞
Gαθ (x− y, t− τ)F (uk(y, τ)) dy dτ

for k ∈ N. The functions uk are bounded and continuous, hence measurable.
To study the limits of a solution u, we consider the limits of the functions
uk. The dominated convergence theorem yields

u0
±(t) := lim

x→±∞
u0(x, t) = lim

x→±∞

∫ +∞

−∞
Gαθ (y, t)u0(x− y) dy

=

∫ +∞

−∞
Gαθ (y, t) lim

x→±∞
u0(x− y) dy =

∫ +∞

−∞
Gαθ (y, t)u0,± dy = u0,± .
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A mathematical induction on k ∈ N proves that the limits of uk satisfy

uk+1
± (t) : = lim

x→±∞
uk+1(x, t)

= u0,± + lim
x→±∞

∫ t

0

∫ +∞

−∞
Gαθ (x− y, t− τ)F (uk(y, τ)) dy dτ

= u0,± +

∫ t

0

∫ +∞

−∞
Gαθ (y, t− τ) lim

x→±∞
F (uk(x− y, τ)) dy dτ

= u0,± +

∫ t

0
F (uk±(τ)) dτ .

The sequence of functions uk±(t) converges uniformly for 0 < t ≤ T to some
function u±(t), by virtue of the uniform convergence of the sequence of
functions uk(x, t), k ∈ N. Passing to the limit, we obtain

u±(t) = u0,± +

∫ t

0
F (u±(τ)) dτ ,

which is equivalent to the stated differential equation. �

4. Traveling Wave Problem

We consider the traveling wave problem for the local reaction-nonlocal
diffusion equation

(26) ∂tu = Dα
θ u+ f(u) , x ∈ R , t ∈ (0,∞) ,

with 1 < α ≤ 2, |θ| ≤ min{α, 2 − α} and f ∈ C∞(R) being a bistable
function in the sense of (2). The profile U—of a traveling wave solution
u(t, x) = U(x− ct)—has to satisfy the traveling wave equation

−cU ′(ξ) = Dα
θ U + f(U)

where Dα
θ has to be understood in the sense of the singular integral in Pro-

position 2.3 which is well-defined for C2
b (R) functions due to Proposition 2.4.

4.1. Chen’s Approach and Results. In this section we briefly review
the results from [10] as they provide the basis for this work. Consider the
evolution equation

(27) ∂tu(x, t) = A[u(·, t)](x), (x, t) ∈ R× [0,∞) ,

where A is a nonlinear operator. We shall also need the Fréchet derivative
of A defined by

A′[u](v) := lim
ε→0

A[u+ εv]−A[u]

ε
.

The basic assumptions on the operator A are:

(1) (semigroup) A generates a semigroup on L∞(R),
(2) (translation invariance) A[u(· + h)](x) = A[u(·)](x + h) for all

x, h ∈ R,
(3) (bistability) there exists a function f(·) such that A[α1] = f(α)1

for all α ∈ R with

(28) f ∈ C1(R) , f(0) = 0 = f(1) , f ′(0) < 0 , f ′(1) < 0 ,
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(4) (comparison principle)

(29) if ∂tu ≥ A[u], ∂tv ≤ A[v], u(·, 0) ≥ v(·, 0), u(·, 0) 6≡ v(·, 0)

then u(·, t) > v(·, t) ∀t > 0.

Chen [10] studies the existence, uniqueness and local asymptotic stability
of traveling fronts u(x, t) = U(x−ct) for (27) connecting the two homogene-
ous stable states i.e. in a moving coordinate frame ξ = x− ct one demands

(30) lim
ξ→−∞

U(ξ) = 0 , lim
ξ→∞

U(ξ) = 1 and lim
|ξ|→∞

U ′(ξ) = 0 .

We state the three main results from [10] which will follow from the semi-
group property, several variants of the other three properties and additional
estimates for A.

Theorem 4.1. (uniqueness, [10, Thm. 2.1]) Suppose the following assump-
tions hold:

(A1) A is translation invariant and f is bistable in the sense of (28).
(A2) A satisfies the comparison principle (29).
(A3) There exists constants K1 > 0 and K2 > 0 and a probability measure

ν such that for any functions u, v with −1 ≤ u, v ≤ 2 and every x ∈ R
∣∣A′[u+ v](1)(x)−A′[u](1)(x)

∣∣

≤K1

∫

R
|v(x− y)|ν( dy) +K2‖v(x+ ·)‖C0([−1,1]).

(31)

Then monotonic traveling waves are unique up to translation. More preci-
sely, suppose (27) has a traveling wave U ∈ C1(R) with speed c satisfying

(30) and U ′(ξ) > 0 ∀ξ ∈ R, then any other traveling wave solution (Ũ , c̃)

with Ũ ∈ C0(R) and 0 ≤ Ũ ≤ 1 on R satisfies

c = c̃ and Ũ(·) = U(·+ ξ0) for some fixed ξ0 ∈ R
i.e. Ũ is a translate of the original wave U .

To obtain local asymptotic stability of the traveling wave one has to ex-
tend the assumptions (A1)–(A3).

Theorem 4.2. (local asymptotic stability, [10, Thm. 3.1]) Suppose (A1)–
(A3) hold and, in addition, we have:

(B1) There exist constants a− and a+ with 0 < a− ≤ a+ < 1 such that f
satisfies f > 0 in (−1, 0) ∪ (a+, 1) and f < 0 in (0, a−) ∪ (1, 2).

(B2) There exists a positive non-increasing function η(m) defined on [1,∞)
such that for any functions u(x, t), v(x, t) satisfying −1 ≤ u, v ≤ 2,
∂tu ≥ A[u], ∂tv ≤ A[v] and u(·, 0) ≥ v(·, 0), there holds

(32) min
x∈[−m,m]

[u(x, 1)− v(x, 1)] ≥ η(m)

∫ 1

0
[u(y, 0)− v(y, 0)] dy ∀m ≥ 1.

(B3) With K1, K2, ν, u and v as in (A3), there holds, for every x ∈ R,

(33) |A[u+ v](x)−A[u](x)| ≤ K1

∫

R
|v(x− y)| ν( dy) +K2

∥∥v′′
∥∥
C0(R)

.
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Then monotonic traveling waves are exponentially stable. More precisely,
suppose (27) has a traveling wave U ∈ C1(R) with speed c satisfying (30)
and U ′(ξ) > 0 ∀ξ ∈ R. Then there exists a constant κ such that for any
u0 ∈ L∞(R) satisfying 0 ≤ u0 ≤ 1 and

lim inf
x→∞

u0(x) > a+, lim sup
x→−∞

u0(x) < a−,

the solution u(x, t) of (27) with initial value u(·, 0) = u0(·) satisfies the
exponential stability estimate

‖u(·, t)− U(· − ct+ ξ)‖L∞(R) ≤ Ke−κt for all t ≤ 0,

where ξ and K are constants depending on u0.

The strongest set of assumptions is required to show the existence of a
traveling wave.

Theorem 4.3. (existence, [10, Thm. 4.1]) Suppose the following assumpti-
ons are satisfied:

(C1) A is translation invariant and the function f satisfies for some a ∈
(0, 1),

f(u)

{
> 0 for u ∈ (−1, 0) ∪ (a, 1),

< 0 for u ∈ (0, a) ∪ (1, 2),

where f ′(0) < 0, f ′(1) < 0, f ′(a) > 0.
(C2) There exists a positive continuous function η(x, t) defined on [0,∞)×

(0,∞) such that if u(x, t), v(x, t) satisfy −1 ≤ u, v ≤ 2, ∂tu ≥ A[u],
∂tv ≤ A[v] and u(·, 0) ≥ v(·, 0), then for all (x, t) ∈ R× (0,∞)

(34) u(x, t)− v(x, t) ≥ η(|x|, t)
∫ 1

0
[u(y, 0)− v(y, 0)] dy .

(C3) There exist positive constants K1, K2, K3, and a probability measure
ν such that for any u, v ∈ L∞(R) with −1 ≤ u, v ≤ 2, and x ∈ R we
have

|A[u+ v](x)−A[u](x)|(35)

≤K1

∫

R
|v(x− y)| ν( dy) +K2

∥∥v′′
∥∥
C0([x−1,x+1])

,

∣∣A[u+ v]−A[u]−A′[u](v)
∣∣ ≤ K3‖v‖2C0(R),(36)

∣∣A′[u+ v](1)(x)−A′[u](1)(x)
∣∣(37)

≤K1

∫

R
|v(x− y)| ν( dy) +K2 ‖v‖C0([x−1,x+1]) .

(C4) For any function u0(·) satisfying 0 ≤ u0 ≤ 1 and ‖u0‖C3(R) <∞, the
solution u(x, t) of (27) with initial condition u(·, 0) = u0(·) satisfies

sup
t∈[0,∞)

‖u(·, t)‖C2(R) < ∞ .

Then there exists a traveling wave U ∈ C1(R) with speed c satisfying (30)
and U ′(ξ) > 0 ∀ξ ∈ R.
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Observe that the assumption (Ci) for i = 1, 2, 3 implies (Ai) as well as
(Bi). Furthermore, the first assumption for each theorem prescribes the
nonlinear bistability behavior, the second one is a comparison principle and
the third assumption yields estimates on the nonlinear operator A as well
as on its linearization A′.

Chen proved Theorems 4.1–4.3 with a view towards a general class of
integro-differential evolution equations of the form

(38) ∂tu = δ∂2
xu+G(u, J1 ∗ S1(u), . . . , Jn ∗ Sn(u))

for some diffusion constant δ ≥ 0, smooth functions G and Sk, and non-
negative functions Jk ∈ C1(R) of unit mass

∫
R Jk(y) dy = 1 and bounded

total variation
∫
R |J ′k(y)| dy < ∞ where k = 1, . . . , n. In [10, Section 5]

further assumptions are specified such that the conditions (C1)–(C4) hold,
which imply the existence, uniqueness and local exponential stability of tra-
veling wave solutions for these equations. It turns out that the approach
does not apply directly when we replace the Laplacian in (38) by a more
general Riesz-Feller operator Dα

θ .

4.2. The Bistable Case with Nonlocal Diffusion. The analysis of equa-
tion (26) in the Sections 2 and 3 show that we only need a relatively mild
generalization of Chen’s results [10] which we reviewed in Section 4.1.

First we identify the operator A as A[u] := Dα
θ u + f(u) and take a look

at the assumptions (C1)–(C4).

(C1) The Riesz-Feller operators Dα
θ are translational invariant with re-

spect to the spatial variable, which follows from their integral repre-
sentation in Proposition 2.3. The nonlinearity u 7→ f(u) depends
on the spatial variable only through the function u itself, hence the
operator is again translational invariant. Consequently, the opera-
tor A is translational invariant, since it is the sum of translational
invariant operators.

Due to translational invariance, the operator A maps a constant
function to a constant function. In particular, A[c1] = Dα

θ [c1] +
f(c)1 = f(c)1 for all c ∈ R, where 1 denotes the constant function
x 7→ 1. The additional assumptions on f identify the admissible
nonlinear functions.

(C2) The property follows Lemma 3.3.
(C3’) In the following, we consider u, v ∈ L∞(R) with −1 ≤ u, v ≤ 2, see

assumption (C3). The quantity in (35) is estimated as

|A[u+ v](x)−A[u](x)| = |Dα
θ [u+ v] + f(u+ v)−Dα

θ u− f(u)|
≤ |Dα

θ v|(x) + |f(u+ v)− f(u)|(x)

≤ K2‖v′′‖Cb(R) +K4‖v′‖Cb(R) +K1|v(x)|
for some positive constants K1, K2 and K4, due to Proposition 2.4
and

|f(u+ v)− f(u)|(x) =

∣∣∣∣
∫ 1

0
f ′(u+ tv) dt v(x)

∣∣∣∣
≤ ‖f ′‖C([−2,4])|v(x)| .
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Note that the estimate involves ‖v′′‖C(R) instead of ‖v′′‖C([x−1,x+1])

due to the estimate of the Riesz-Feller operator in Proposition 2.4.
The Fréchet derivative A′[u](v) of A is A′[u](v) = Dα

θ v + f ′(u)v.
The second estimate (36) follows from

|A[u+ v]−A[u]−A′[u](v)| = |f(u+ v)− f(u)− f ′(u)v|

=

∣∣∣∣
∫ 1

0

∫ t

0
f ′′(u+ sv) ds dt v2

∣∣∣∣ ≤ ‖f ′′‖C([−2,4])|v(x)|2 .

The third estimate (37) follows from

|A′[u+ v](1)(x)−A′[u](1)(x)| = |f ′(u+ v)− f ′(u)|

=

∣∣∣∣
∫ 1

0
f ′′(u+ tv) dt v(x)

∣∣∣∣ ≤ ‖f ′′‖C([−2,4])|v(x)| .

(C4) Due to Theorem 3.2, the Cauchy problem with initial datum u0 ∈
C3(R) and 0 ≤ u0 ≤ 1 has a solution u(x, t) which satisfies the pro-
perties (DI4)–(DI7), 0 ≤ u ≤ 1 and the uniform estimates supt∈[0,∞) ‖u(·, t)‖C2(R) <
∞. We observe that a solution u of the IVP with initial datum
u0 ∈ L∞(R) and 0 ≤ u0 ≤ 1 almost everywhere becomes smooth for
positive times and its Ckb (R)-norm for any k ∈ N can be uniformly
bounded.

The modifications in the estimates in (C3’) are due to our replacement of a
second-order derivative with a Riesz-Feller operator, which demand a global
estimate see Proposition 2.4. Furthermore, we prefer to work in a Cb setting
instead of a L∞ setting.

Theorem 4.4. Theorems 4.1-4.3 still hold if each term K2‖v′′‖C0(R) is re-
placed by

K̃2‖v′‖Cb(R) +K2‖v′′‖Cb(R)

occurring in the inequalities (33) and (35).

Proof. Precise statements and details are given in Appendix A for unique-
ness, Appendix B for stability and Appendix C for existence. �

Finally we prove the main result stated in Theorem 1.1.

Proof of Theorem 1.1. Under the assumption of this theorem, we studied at
the beginning of this subsection Chen’s original conditions (C1)–(C4). We
noticed that only in condition (C3) one estimate has to be modified. This
implies that the same estimate has to be changed also in condition (B3).
However, in the Appendices we verify that his approach can be modified
to obtain the stated results on existence in Theorem C.1, uniqueness in
Theorem A.1 and stability in Theorem B.3 of traveling wave solutions of (1).

�

Appendix A. Proof - Uniqueness

The problem (1) under consideration fulfills the assumptions (A2) and (A3)
due to the discussion in Section 4. For nonlinear functions satisfying the
assumptions (A1), the uniqueness result in Theorem [10, Theorem 2.1] is
applicable. In the following, we modify the proof to incorporate Riesz-Feller
operators.
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A traveling wave solution of (1) is a solution of the form u(t, x) = U(ξ),
for some constant wave speed c ∈ R, a traveling wave variable ξ := x −
ct, and a function U connecting different endstates limξ→±∞ U(ξ) = u±.
The profile U of a traveling wave solution has to satisfy the traveling wave
equation −cU ′(ξ) = Dα

θ U + f(U) where Dα
θ has to be understood as its

extension to C2
b -functions.

Theorem A.1. Suppose (A1) holds and (U, c) is a traveling wave solution
of (1) satisfying

U ∈ C1(R) , lim
ξ→−∞

U(ξ) = 0 =: u− , lim
ξ→+∞

U(ξ) = 1 =: u+ ,

U ′(ξ) > 0 on R , lim
|ξ|→∞

U ′(ξ) = 0 .
(39)

Then, for any traveling wave solution (Ũ , c̃) of (1) with

Ũ ∈ C(R) , lim
ξ→±∞

Ũ(ξ) = u± and u− ≤ Ũ ≤ u+ on R ,

we have c̃ = c and Ũ(·) = U(·+ ξ0) for some ξ0 ∈ R.

First, we need to construct sub- and supersolutions.

Lemma A.2. Suppose (U, c) is a traveling wave solution of (1) satisfying (39).
Then, there exists a small positive constant δ∗ (which is independent of U)
and a large positive constant σ∗ (which depends on U) such that for any
δ ∈ (0, δ∗] and every ξ0 ∈ R, the functions w+ and w− defined by

(40) w±(x, t) := U
(
x− ct+ ξ0 ± σ∗δ[1− e−βt]

)
± δe−βt

with β := 1
2 min{−f ′(0),−f ′(1)} are a supersolution and a subsolution of (1),

respectively.

Proof. Let y := x−ct+ξ0 +σ∗δ[1−e−βt] and note that the function w+(x, t)
satisfies

∂tw
+ −Dα

θ w
+ − f(w+)

=U ′(y)
(
− c+ σ∗δβe−βt

)
− δβe−βt −Dα

θ w
+ − f(w+) ;

a traveling wave satisfies−cU ′ = Dα
θ U+f(U) as well as Dα

θ U(y) = Dα
θ w

+(x, t),
hence

= Dα
θ U(y) + f(U)−Dα

θ w
+(x, t)− f(w+) + U ′(y)σ∗δβe−βt − δβe−βt

=f(U)− f
(
U + δe−βt

)
+ δβe−βt

(
U ′(y)σ∗ − 1

)
.

Due to the properties (39) of U , there exists for any δ∗ ∈ (0, 1
2) a positive

constant M = M(U) such that

(41) U(ξ) > 1− δ∗ for all ξ ≥M , U(ξ) < δ∗ for all ξ ≤ −M .

We consider three cases |y| ≤M , y < −M and y > M .
In case |y| ≤M , the estimate

f(U)− f
(
U + δe−βt

)
= −δe−βt

∫ 1

0
f ′
(
U + θδe−βt

)
dθ

≥ −‖f ′‖C([−1,2]) δe
−βt
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yields

f(U)− f
(
U + δe−βt

)
+ δβe−βt

(
U ′(y)σ∗ − 1

)

≥δe−βt
(
− ‖f ′‖C([−1,2]) + β

(
U ′(y)σ∗ − 1

))
.

The last expression is non-negative, if σ∗ is chosen according to

(42) σ∗ ≥ sup
|y|≤M

‖f ′‖C([−1,2]) + β

βU ′(y)
=
‖f ′‖C([−1,2]) + β

β inf |y|≤M U ′(y)
,

where inf |y|≤M U ′(y) is positive, since U ′ is a continuous positive function

and |y| ≤M is a compact subset. For σ∗ in (42), ∂tw
+−Dα

θ w
+−f(w+) ≥ 0

for all |y| ≤M .
In case y ≥M , we have

f(U)− f
(
U + δe−βt

)
+ δβe−βt

(
U ′(y)σ∗ − 1

)

= δe−βt
(∫ 1

0
−f ′

(
U(y) + θδe−βt

)
− β dθ + βσ∗U ′(y)

)
.

The last expression is non-negative, if δ ∈ (0, δ∗] and δ∗ is chosen sufficiently
small according to

(43) min
u∈[1−δ∗,1+δ∗]

−f ′(u) ≥ β = 1
2 min{−f ′(0),−f ′(1)} ,

since βσ∗U ′(y) is non-negative anyway.
In case y ≤ −M , we have

f(U)− f
(
U + δe−βt

)
+ δβe−βt

(
U ′(y)σ∗ − 1

)

= δe−βt
(∫ 1

0
−f ′

(
U(y) + θδe−βt

)
− β dθ + βσ∗U ′(y)

)
.

The last expression is non-negative, if δ ∈ (0, δ∗] and δ∗ is chosen sufficiently
small according to

(44) min
u∈[0,2δ∗]

−f ′(u) ≥ β = 1
2 min{−f ′(0),−f ′(1)} ,

since βσ∗U ′(y) is non-negative anyway.
Choosing δ∗ sufficiently small such that (43) and (44), then M sufficiently

large such that (41) and finally σ∗ sufficiently large such that (42) are satis-
fied, respectively, we deduce that

∂tw
+ −Dα

θ w
+ − f(w+) ≥ 0 .

In contrast, to prove that w− is a subsolution, i.e.

∂tw
− −Dα

θ w
− − f(w−) ≤ 0 ,

we have to choose δ∗ sufficiently small such that

min
u∈[−δ∗,δ∗]∪[1−2δ∗,1]

−f ′(u) ≥ β = 1
2 min{−f ′(0),−f ′(1)}.

then M sufficiently large such that (41) and finally σ∗ sufficiently large such
that (42) are satisfied, respectively.

Together, the result follows if we choose δ∗ sufficiently small such that

min
u∈[−δ∗,2δ∗]∪[1−2δ∗,1+δ∗]

−f ′(u) ≥ β = 1
2 min{−f ′(0),−f ′(1)}.
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then M sufficiently large such that (41) and finally σ∗ sufficiently large such
that (42) are satisfied, respectively. �

Proof of Theorem A.1. The proof is based upon [10, Proof of Theorem
2.1], and we highlight the necessary modifications. The problem (1) under
consideration fulfills the assumptions (A2) and (A3) due to the discussion
in Section 4.

Step 1. Since U(ξ) and Ũ(ξ) have the same limits as ξ → ±∞, there exist
ξ1 ∈ R and h� 1 such that

(45) U(·+ ξ1)− δ∗ < Ũ(·) < U(·+ ξ1 + h) + δ∗ on R ,

where δ∗ is taken from Lemma A.2. Considering the translated profile U(·+
ξ1) instead of U , we can set ξ1 = 0 without loss of generality. Comparing

Ũ(x− c̃t) with w± in (40) (with ξ0 = 0 for w− and ξ0 = h for w+), we obtain
from inequality (45), Lemma A.2 and Lemma 3.3

(46) U
(
x− ct− σ∗δ∗[1− e−βt]

)
− δ∗e−βt

< Ũ(x− c̃t) < U
(
x− ct+ h+ σ∗δ∗[1− e−βt]

)
+ δ∗e−βt

for all x ∈ R and t > 0. Keeping ξ := x− c̃t fixed, sending t→∞, and using
limξ→±∞ U(ξ) = limξ→±∞ Ũ(ξ) = u±, we obtain from the first inequality
in (46) that c ≥ c̃ and from the second inequality in (46) that c ≤ c̃, so that
c = c̃. In addition,

(47) U(ξ − σ∗δ∗) < Ũ(ξ) < U(ξ + h+ σ∗δ∗) ∀ξ ∈ R .
Step 2. Due to (47), the shifts

ξ∗ := inf{ ξ ∈ R | Ũ(·) ≤ U(·+ ξ) } ≥ −σ∗δ∗
and

ξ∗ := sup{ ξ ∈ R | Ũ(·) ≥ U(·+ ξ) } ≤ h+ σ∗δ∗
are well-defined and satisfy ξ∗ ≤ ξ∗. To finish the proof, it suffices to show
that ξ∗ = ξ∗. To do this, we use a contradiction argument. Hence, we
assume that ξ∗ < ξ∗ and Ũ(·) 6≡ U(·+ ξ∗).

Since we assume lim|ξ|→∞ U ′(ξ) = 0, there exists a large positive constant
M2 = M2(U) such that

(48) 2σ∗U ′(ξ) ≤ 1 if |ξ| ≥M2 .

The definition of ξ∗ implies Ũ(·) ≤ U(·+ ξ∗). The functions Ũ(·) and U(·+
ξ∗) are stationary solutions of (1) and Ũ(·) − U(· + ξ∗) ∈ C([0, T ];C0(R)).

Thus the comparison result in Lemma 3.3 implies Ũ(·) < U(· + ξ∗) on R.

Consequently, by the continuity of U and Ũ , there exists a small constant
ĥ ∈ (0, 1

2σ∗ ] such that

(49) Ũ(ξ) < U(ξ + ξ∗ − 2σ∗ĥ) ∀ξ with |ξ + ξ∗| ≤M2 + 1 .

When |ξ + ξ∗| ≥M2 + 1, then for some θ ∈ [0, 1]

U(ξ + ξ∗ − 2σ∗ĥ)− Ũ(ξ) > U(ξ + ξ∗ − 2σ∗ĥ)− U(ξ + ξ∗)

= −2σ∗ĥU ′(ξ + ξ∗ − 2θσ∗ĥ) > −ĥ
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by the definition of M2. Hence, in conjunction with (49), U(ξ+ξ∗−2σ∗ĥ)+

ĥ > Ũ(ξ) on R. Due to Lemma A.2 and Lemma 3.3, for all x ∈ R and t > 0,

(50) U
(
x− ct+ ξ∗ − 2σ∗ĥ+ σ∗ĥ[1− e−βt]

)
+ ĥe−βt > Ũ(x− ct).

Keeping ξ := x− ct fixed and sending t→∞, we obtain U
(
ξ + ξ∗− σ∗ĥ

)
≥

Ũ(ξ) for all ξ ∈ R. But this contradicts the definition of ξ∗. Hence, ξ∗ = ξ∗,
which completes the proof of the theorem.

Appendix B. Proof - Stability

We follow the proof of Chen in [10, Section 3]. In Section 4 we studied
the properties (C1)–(C4) in case of A[u] := Dα

θ u + f(u). Indeed the pro-
perties (C1), (C2) and (C4) are satisfied, whereas one estimate in (C3) has
to be modified. This implies that the properties (A1)–(A3) and (B1)–(B2)
hold, whereas the estimate in property (B3) has to be modified.

First, we construct sub- and supersolutions of (1). In the sequel, ζ ∈
C∞(R) is a fixed function having the following properties:

(51)





ζ(s) = 0 if s ≤ 0 ,

ζ(s) = 1 if s ≥ 4 ,

0 < ζ ′(s) < 1 and |ζ ′′(s)| ≤ 1 if s ∈ (0, 4) .

Lemma B.1. Assume that (B1) holds. Then, for every δ ∈ (0 ,min{a−/2 , (1−
a+)/2}], there exists a small positive constant ε = ε(δ) and a large positive
constant K = K(δ) such that, for every ξ ∈ R, the function w+(x, t) and
w−(x, t) defined by

w+(x, t) := (1 + δ)− [1− (a− − 2δ)e−εt]ζ(−ε(x− ξ +Kt)) ,
w−(x, t) := −δ + [1− (1− a+ − 2δ)e−εt]ζ(ε(x− ξ −Kt)) ,

are respectively a supersolution and a subsolution of (1) in R× (0,∞).

Proof. We only prove the assertion of the lemma for w−. The proof for
w+ is analogous and is omitted. By translational invariance, we need only
consider the case ξ = 0. We want to estimate the right-hand side of

∂tw
−(x, t)−A[w−(·, t)](x) = ∂tw

−(x, t)−Dα
θ [w−(·, t)](x)− f(w−(x, t)) .

On the one hand

∂tw
−(x, t) = −Kε[1−(1−a+−2δ)e−εt]ζ ′+ε(1−a+−2δ)e−εtζ ≤ −Kεa+ζ ′+ε ,

due to the assumptions on ζ and δ. On the other hand,

|Dα
θ [w−(·, t)](x)| ≤ K

[
‖∂2

xw
−‖Cb(R×[0,T ]) + ‖∂xw−‖Cb(R×[0,T ])

]
≤ Kε ,

due to Proposition 2.4, the assumptions on ζ and

∂xw
− = ε[1− (1− a+ − 2δ)e−εt]ζ ′(ε(x− ξ +Kt))

as well as ∂2
xw
− = ε2[1− (1− a+ − 2δ)e−εt]ζ ′′(ε(x− ξ +Kt)). Consequently,

the estimate

(52) ∂tw
−(x, t)−A[w−(·, t)](x) ≤ −K1εa

+ζ ′ − f(w−) +K2ε

for some positive constants K1 and K2 follows. To show that w− is a sub-
solution, we have to find ε and K1 such that the right-hand side of (52) is
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negative. This is possible by the same arguments as in [10, Proof of Lemma
3.2]. �

Second, we investigate estimates on a solution of (1) as time evolves.

Lemma B.2. Assume that the hypothesis of Theorem B.3 hold and the
constants δ∗ and σ∗ are taken from Lemma A.2. Then, there exist a small
positive constant ε∗ (independent of u0) such that if, for some τ ≥ 0, ξ ∈ R,
δ ∈ (0,min{1, 1/σ∗}δ∗/2], and h > 0, there holds

(53) U(x− cτ + ξ)− δ ≤ u(x, τ) ≤ U(x− cτ + ξ + h) + δ ∀x ∈ R ,

then for every t > τ + 1, there exist ξ̂(t), δ̂(t), and ĥ(t) satisfying

ξ̂(t) ∈ [ξ − σ∗δ , ξ + h+ σ∗δ] ,

δ̂(t) ≤ e−β(t−τ−1)[δ + ε∗min{h , 1}] ,
ĥ(t) ≤ [h− σ∗ε∗min{h , 1}] + 2σ∗δ ,

such that (53) holds with (τ, ξ, δ, h) replaced by (t, ξ̂(t), δ̂(t), ĥ(t)).

Proof. Equation (1) is invariant with respect to spatial translations and time
shifts. Thus we set ξ = 0 and τ = 0 without loss of generality and obtain

U(x)− δ ≤ u(x, 0) ≤ U(x+ h) + δ ∀x ∈ R .
We want to deduce
(54)

U
(
x−ct−σ∗δ[1−e−βt]

)
−δe−βt ≤ u(x, t) ≤ U

(
x−ct+h+σ∗δ[1−e−βt]

)
+δe−βt ,

with the help of Lemma 3.3. First, the functions
(55)

w−(x, t) := U
(
x− ct− σ∗δ[1− e−βt]

)
− δe−βt with w−(x, 0) = U(x)− δ ,

and
(56)

w+(x, t) := U
(
x−ct+h+σ∗δ[1−e−βt]

)
+δe−βt with w+(x, 0) = U(x+h)+δ ,

are a subsolution and a supersolution of (1), respectively, due to Lemma A.2.
Second, a solution u(x, t) of (1) with initial datum u(·, 0) = u0(·) ∈ Cb(R)
and 0 ≤ u0 ≤ 1 satisfies 0 ≤ u(x, t) ≤ 1 for all (x, t) ∈ R × (0, T ], due to
Theorem 3.2. Finally, inequality (54) follows from the comparison principle
in Lemma 3.3.

Define h := min{h, 1} and ε1 := 1
2 minξ∈[0,2] U

′(ξ), then
∫ 1

0 U(y + h)− U(y) dy ≥
2ε1h. Due to (54), at least one of the estimates

∫ 1

0
u(y, 0)− U(y) + δ dy ≥ ε1h+ δ

or

∫ 1

0
U(y + h) + δ − u(y, 0) dy ≥ ε1h+ δ

is true. Here the first case is considered, whereas the second case is similar
and omitted. Comparing u with w− in (55) and using property (B2)—see
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also Lemma 3.3—yields

(57) min
x∈[−M2−2−|c| ,M2+2+|c|]

u(x, 1)−
[
U
(
x− c− σ∗δ[1− e−β]

)
− δe−β

]

≥ η(M2 + 2 + |c|)
∫ 1

0
u(y, 0)− (U(y)− δ) dy ≥ ηε1h+ ηδ

with η := η(M2 + 2 + |c|). Defining ξ1 := c+ σ∗δ[1− e−β], which satisfies

−|c| ≤ ξ1 = c+ σ∗δ[1− e−β] ≤ |c|+ σ∗min{1, 1/σ∗}δ∗/2 ≤ |c|+ 1 ,

and

(58) ε∗ := min

{
δ∗
2
,

1

2σ∗
, min
x∈[−M2−2−2|c| ,M2+2+2|c|]

ηε1 + ηδ/h

2σ∗U ′(x)

}

yields

U(x− ξ1 + 2σ∗ε∗h)− U(x− ξ1) = U ′(θ)2σ∗ε∗h ≤ ηε1h+ ηδ

for all x ∈ [−M2−1−|c| ,M2 +1+ |c|] and some θ ∈ [x−ξ1 , x−ξ1 +2σ∗ε∗h].
Consequently, together with (57),

u(x, 1) ≥ U(x− ξ1 + 2σ∗ε∗h)− δe−β ∀x ∈ [−M2 − 1− |c| ,M2 + 1 + |c|] .
In contrast, for |x| ≥ M2 + 1 + |c|, the definition of M2 in (48) yields
U(x− ξ1) ≥ U(x− ξ1 + 2σ∗ε∗h)− ε∗h. Together with (54) for t = 1 and the
previous estimate, we obtain

u(x, 1) ≥ U(x− ξ1)− δe−β ≥ U(x− ξ1 + 2σ∗ε∗h)−
(
δe−β + ε∗h

)
∀x ∈ R .

Next, we want to show

u(x, 1 + τ) ≥ U(x− cτ − ξ1 + 2σ∗ε∗h− σ∗q(1− e−βτ ))− qe−βτ =: w−2 (x, τ)

for q := δe−β + ε∗h and all τ ≥ 0. The estimate q = δe−β + ε∗h ≤ δ∗ and
Lemma A.2 imply that

w−2 (x, τ) with w−2 (x, 0) := U(x− ξ1 + 2σ∗ε∗h)− q
is a subsolution of (1). Thus we deduce from Lemma 3.3, u(x, 1 + τ) ≥
w−2 (x, τ) for all τ ≥ 0. Furthermore, we conclude

u(x, 1 + τ) ≥ w−2 (x, τ) = U(x− cτ − ξ1 + 2σ∗ε∗h− σ∗q(1− e−βτ ))− qe−βτ

≥ U(x− cτ − c+ σ∗ε∗h− σ∗δ)− e−βτ
(
δ + ε∗h

)
,

using the definitions of ξ1 and q, and the monotonicity of U . Hence, setting
t = 1 + τ , ξ̂(t) := σ∗ε∗h − σ∗δ, and δ̂(t) = e−β(t−1)(δ + ε∗h), we obtain
from the last inequality the lower bound. Whereas, estimate (54) with

ĥ(t) := [h + σ∗δ(1 − e−βt)] − ξ̂(t) = h − σ∗ε∗h + σ∗δ[2 − e−βτ ], implies the
upper bound. �

Finally, we show local asymptotic stability of traveling wave solutions
of (1)

Theorem B.3. Assume that (A1)–(A3), (B1)–(B2) and (C3’) hold. Also
assume that (1) has a traveling wave solution (U, c) satisfying (39), and

(59) 0 < δ ≤ min

{
min{1, 1/σ∗}δ∗

2
,
a−

2
,
1− a+

2

}
,
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where σ∗ and δ∗ are the positive constants in Lemma A.2. Then, there exists
a positive constant κ such that for any u0 ∈ Cb(R) satisfying 0 ≤ u0 ≤ 1
and

(60) lim inf
x→+∞

u0(x) > 1− δ > a+ , lim sup
x→−∞

u0(x) < δ < a− ,

the solution u(x, t) of (1) with initial condition u(·, 0) = u0(·) has the pro-
perty that

‖u(·, t)− U(· − ct+ ξ)‖L∞(R) ≤ Ke−κt ∀t ≥ 0 ,

where ξ ∈ R and K > 0 are constants depending on u0.

Proof. We follow the four step procedure in [10, Proof of Theorem 3.1].
Step 1. We prove that for any admissible δ > 0, there exist large positive

constants T and H such that

(61) U(x− cT −H/2)− δ ≤ u(x, T ) ≤ U(x− cT +H/2) + δ ∀x ∈ R .
First, auxiliary smooth functions w±(x, t) are introduced as in Lemma B.1
which are constant except on a bounded interval. The functions

w+(x, t) = (1 + δ)− [1− (a− − 2δ)e−εt]ζ(−ε(x− ξ+ +Kt))
w−(x, t) = −δ + [1− (1− a+ − 2δ)e−εt]ζ(ε(x− ξ− −Kt))

are a supersolution and a subsolution of (1), respectively, for any

0 < δ ≤ min{a−2 , 1−a+
2 } ,

ξ± ∈ R, and appropriate constants ε = ε(δ) and K = K(δ). If, for a suitable
choice of the parameters ξ±, the inequality

(62) w−(x, 0) ≤ u(x, 0) = u0(x) ≤ w+(x, 0) ∀x ∈ R
holds, then

(63) w−(x, T ) ≤ u(x, T ) ≤ w+(x, T ) ∀x ∈ R
will follow from Lemma 3.3. Thus, we determine suitable parameters ξ±

to satisfy (62). Due to assumption (60), the biggest x∗ ∈ R such that
u0(x∗) = 1 − δ > a+ is a finite number. Moreover, w−(x, 0) ≤ a+ + δ for
all x ∈ R where assumption (59) implies a+ + δ ≤ 1 − δ. Thus the choice
ξ− = x∗ implies the estimate

w−(x, 0) ≤
{
−δ for all x ≤ x∗ ,
a+ + δ for all x ≥ x∗ ,

hence w−(x, 0) ≤ u0(x) for all x ∈ R.
Again, due to assumption (60), the smallest x∗ ∈ R such that u0(x∗) = δ

is a finite number. Moreover, w+(x, 0) ≥ a− − δ for all x ∈ R where
assumption (59) implies δ ≤ a− − δ. Thus the choice ξ+ = x∗ implies
the estimate

w+(x, 0) ≥
{
a− − δ for all x ≤ x∗ ,
1 + δ for all x ≥ x∗ ,

hence u0(x) ≤ w+(x, 0) for all x ∈ R. Consequently, for our choice of
parameters ξ±, Lemma 3.3 implies estimate (63) for all T > 0.
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Additionally, for δU > 0 satisfying (59), we determine T > 0 and H > 0
such that

U(x−cT−H/2)−δU ≤ w−(x, T ) and w+(x, T ) ≤ U(x+cT+H/2)+δU

for all x ∈ R. The functions U(·) and w± are continuous differentiable and
monotone increasing. Moreover, w−(x, t) = −δ+[1−(1−a+−2δ)e−εt]ζ(ε(x−
ξ− −Kt)) satisfies

w−(x, T )

{
= 1− δ − (1− a+ − 2δ)e−εT ≥ a+ + δ for all x ≥ ξ− +KT + 4

ε ,

≥ −δ everywhere.

Given an admissible δU , we choose 0 < δ < δU and H− > 0 such that

U(x− cT −H−/2)− δU = −δ for x = ξ− +KT +
4

ε
.

Then, U(x− cT −H−/2)− δU ≤ w−(x, T ) for all x ∈ R, if

lim
x→−∞

U(x− cT −H−/2)− δU = −δU < −δ ,
(64)

lim
x→+∞

U(x− cT −H−/2)− δU = 1− δU ≤ 1− δ − (1− a+ − 2δ)e−εT .
(65)

Similarly, we find that w+(x, t) = (1+δ)−[1−(a−−2δ)e−εt]ζ(−ε(x−ξ++Kt))
satisfies

w+(x, T )

{
= δ + (a− − 2δ)e−εT for all x ≤ ξ+ −KT − 4

ε ,

≤ 1 + δ everywhere.

Given 0 < δ < δU , we choose H+ > 0 such that

U(x− cT +H+/2) + δU = 1 + δ for x = ξ+ −KT − 4

ε
.

Then, U(x− cT +H+/2) + δU ≥ w+(x, T ) for all x ∈ R, if

lim
x→−∞

U(x− cT +H+/2) + δU = δU ≥ δ + (a− − 2δ)e−εT ,(66)

lim
x→+∞

U(x− cT +H+/2) + δU = 1 + δU > 1 + δ .(67)

The Conditions (64) and (67) are equivalent to δU > δ. We consider d :=
δU − δ > 0. To fulfill the Conditions (65) and (66), we need d ≥ max{a− −
2δ , 1 − a+ − 2δ}e−εT > 0. In particular, we choose d = max{a− − 2δ , 1 −
a+−2δ}e−εT for some T > 0 sufficiently large, such that δ = δU −d and δ ∈
(0 ,min{a−/2 , (1−a+)/2}], which is an assumption in Lemma B.1. Finally,
due to the monotonicity of the functions U(·) and w±, inequality (61) will
hold for the choice H = max{H− , H+}.

Step 2. First, define

δ∗ := min
{
δ∗
2 ,

ε∗
4

}
and κ∗ := σ∗ε∗ − 2σ∗δ∗ ≥ σ∗ε∗

2 > 0 ,

then fix t∗ ≥ 2 such that

0 ≤ e−β(t∗−1)
(
1 + ε∗

δ∗
)
≤ 1− κ∗ < 1 .

Due to Step 1, for δ = δ∗, there exist positive constants T and H such
that (61) holds. In particular, we can assume without loss of generality that
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0 < H < 1. Otherwise (61) and Lemma B.2 imply that (53) holds with
τ = T + t∗, some ξ ∈

[
− H

2 −σ∗δ∗, H2 +σ∗δ∗
]
, δ = δ∗ and h = H −κ∗, since

δ̂(T + t∗) ≤ e−β(t∗−1)[δ∗ + ε∗] ≤ δ∗ ,
and

ĥ(T + t∗) ≤ H − σ∗ε∗ + 2σ∗δ∗ ≤ H − κ∗ ,
due to the definition of t∗ and κ∗. Repeating the procedure shows that (53)
holds for τ = T + Nt∗, δ = δ∗ and h = H −Nκ∗ for all N ∈ N0 such that
H − (N − 1)κ∗ ≥ 1. Hence there exists a finite time T1 ≥ T such that (53)
holds for τ = T1, δ = δ∗ and h = 1 and some ξ ∈ R (which will be denoted
by ξ0).

Step 3. A mathematical induction on k ∈ N0 shows that (53) holds for
some ξ = ξk ∈ R, and

τ = T k := T1 + kt∗ , δ = δk := (1− κ∗)kδ∗ and h = hk := (1− κ∗)k .
Induction start: For k = 0, the assertion holds due to Step 2. Induction
step: Assuming the assertion for k = l ∈ N0 (induction hypothesis), we
prove the assertion for k = l + 1. The induction hypothesis for k = l ∈ N0

is equivalent to (53) for (τ, ξ, δ, h) = (T l, ξl, δl, hl). Lemma B.2 implies that

estimate (53) holds for (τ, ξ, δ, h) = (T l+1, ξ̂, δ̂, ĥ) satisfying

ξ̂ ∈ [ξl − σ∗δl , ξl + hl + σ∗δl] ,

δ̂ ≤ e−β(t∗−1)(δl + ε∗hl) = (1− κ∗)lδ∗e−β(t∗−1)
(
1 + ε∗

δ∗
)
≤ (1− κ∗)l+1δ∗ ,

ĥ ≤ hl − σ∗ε∗hl + 2σ∗δl = (1− κ∗)l(1− σ∗ε∗ + 2σ∗δ∗) = (1− κ∗)l+1 ,

due to the definition of δ∗, κ∗ and t∗. Consequently, (53) holds for τ =
T l+1, some ξ = ξl+1 ∈ [ξl − σ∗δl , ξl + hl + σ∗δl], δ = (1 − κ∗)l+1δ∗ and
h = (1−κ∗)l+1. This finishes the proof of the induction step, and—hence—
the proof of the mathematical induction.

Step 4. Step 3 shows that (53) holds for (τ, ξ, δ, h) = (T k, ξk, δk, hk) for
all k ∈ N0, i.e. at discrete times τ = T k. Like in Step 1, it follows that (53)
holds for all τ ≥ T k, δ = δk, h = hk + 2σ∗δk, ξ = ξk − σ∗δk and k ∈ N0. To
deduce the (best) estimate for t ≥ T1, we define δ(t) = δk, ξ(t) = ξk − σ∗δk,
h(t) = hk + 2σ∗δk on each interval t ∈ [T k, T k+1) for all k ∈ N0. Then,

U(x− ct+ ξ(t))− δ(t) ≤ u(x, t) ≤ U(x− ct+ ξ(t) + h(t)) + δ(t)

for all t ≥ T1, x ∈ R. Recalling T k = T1 + kt∗ for k ∈ N0, we conclude that
T k ≤ t < T k+1 is equivalent to k ≤ t−T1

t∗ < k+ 1. Thus using the definitions
of κ∗, δ(t) and h(t), we deduce ln(1− κ∗) < 0,

δ(t) ≤ δ∗ exp
{(

t−T1
t∗ − 1

)
ln(1− κ∗)

}
,

h(t) ≤ (1 + 2σ∗δ∗) exp
{(

t−T1
t∗ − 1

)
ln(1− κ∗)

}

for all t ≥ T1. Consequently, ξ(t) ∈ [ξ(τ)− σ∗δ(τ) , ξ(τ) + h(τ) + σ∗δ(τ)] for
any t ≥ τ ≥ T1 implies that

|ξ(t)− ξ(τ)| ≤ h(τ) + 2σ∗δ(τ) ≤ (1 + 4σ∗δ∗) exp
{(

τ−T1
t∗ − 1

)
ln(1− κ∗)

}
.
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Therefore, the limit ξ∞ = limt→∞ ξ(t) exists and

|ξ∞ − ξ(τ)| ≤ h(τ) + 2σ∗δ(τ) ≤ (1 + 4σ∗δ∗) exp
{(

τ−T1
t∗ − 1

)
ln(1− κ∗)

}

for all τ ≥ T1. The estimates imply the statement of Theorem B.3 for the
choice κ = − 1

t∗ ln(1− κ∗). �

Following the proof of [10, Theorem 3.5], we determine bounds on the
traveling wave speed c.

Theorem B.4. Assume that (B1), (A2) and (C3’) hold. Then, for any
traveling wave solution (U, c) of (1), the wave speed c satisfies

(68) |c| ≤ C̄ :=
‖f‖C([0,1])

ε̄

3 + ā

ā

where ā := min{a−, 1−a+} and ε̄ is a positive constant defined implicitly by

ρ(ε̄) := K
[

2
√

3
9 ε̄2 + 1

2 ε̄
]

= min{ |f(s)| | s ∈ [ ā3 ,
2ā
3 ] ∪ [1− 2ā

3 , 1− ā
3 ] }

with the constant K determined in Proposition 2.4.

Proof. Estimate (68) will be proven with the help of explicit sub- and super-
solutions in traveling wave form. Due to assumption (B1), 0 < ā ≤ 1

2 and

min{ |f(s)| | s ∈ [ ā3 ,
2ā
3 ] ∪ [1− 2ā

3 , 1− ā
3 ] } > 0. The traveling wave U takes

only values in [0, 1], hence we can modify f without loss of generality such
that ‖f‖C([0,1]) = ‖f‖C([1,2]) as well as f(u) = −f( ā3 ) > 0 for u ∈ [−1,− ā

3 ]

and f(u) = −f(1− ā
3 ) < 0 for u ∈ [1 + ā

3 , 2].

To prove the upper bound c ≤ C̄, we will use a subsolution w−(x, t). We
recall the definition of ε̄ and C̄ in the statement of Theorem B.4 and define
ζ(s) := 1

2 [1 + tanh(s)], δ = ā
3 , w−(x, t) := −2δ + (1 + δ)ζ(ε̄(x − C̄t)). A

direct calculation like in the proof of Lemma B.1 yields

∂tw
−(x, t)−A[w−(·, t)](x) = ∂tw

−(x, t)−Dα
θ [w−(·, t)](x)− f(w−(x, t))

≤ −ε̄C̄(1 + δ)ζ ′(ε̄(x− C̄t)) + ρ(ε̄)− f(w−(x, t))(69)

where

|Dα
θ [w−(·, t)](x)| ≤ K

[
‖∂2

xw
−‖Cb(R×[0,T ]) + ‖∂xw−‖Cb(R×[0,T ])

]

≤ K
[
ε̄2‖ζ ′′‖Cb(R) + ε̄‖ζ ′‖Cb(R)

]
=: ρ(ε̄) ,

due to Proposition 2.4. To show that w−(x, t) is a subsolution, i.e. ∂tw
−(x, t)−

A[w−(·, t)](x) ≤ 0 for all (x, t) ∈ R × (0,∞), we consider three subcases
ζ ∈ (0, δ

1+δ ], ζ ∈ ( δ
1+δ ,

1
1+δ ) and ζ ∈ [ 1

1+δ , 1). First, ζ ∈ (0, δ
1+δ ] implies that

w−(x, t) = −2δ + (1 + δ)ζ(ε̄(x − C̄t)) ∈ (−2δ,−δ] hence f(w−(x, t)) =
−f( ā3 ) > 0 and f(w−(x, t)) ≥ ρ(ε̄). In this case the right hand side

of (69) is nonpositive. Second, ζ ∈ ( δ
1+δ ,

1
1+δ ) implies that w−(x, t) =

−2δ + (1 + δ)ζ(ε̄(x − C̄t)) ∈ (−δ, 1 − 2δ) hence f(w−(x, t)) has no definite
sign. However, we have

min

{
ζ ′(s)

∣∣∣∣ ζ(s) ∈
(

δ
1+δ ,

1
1+δ

)}
=

2δ

(1 + δ)2
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due to ζ ′(s) = 1
2(1 − tanh2(s)) = 1

2(1 − (2ζ(s) − 1)2) = −2ζ(s) (ζ(s) − 1).

Thus, for our choice of ε̄ and C̄, the right hand side of (69) satisfies

−ε̄C̄(1+δ)ζ ′(ε̄(x−C̄t))+ρ(ε̄)−f(w−(x, t)) ≤ −ε̄C̄(1+δ) 2δ
(1+δ)2

+2‖f‖C([0,1]) ≤ 0

Third, ζ ∈ [ 1
1+δ , 1) implies w−(x, t) = −2δ+(1+δ)ζ(ε̄(x−C̄t)) ∈ [1−2δ, 1−δ)

hence f(w−(x, t)) > 0 and f(w−(x, t)) ≥ ρ(ε̄). In this case the right hand
side of (69) is nonpositive. Therefore ∂tw

−(x, t)−A[w−(·, t)](x) ≤ 0 for all
(x, t) ∈ R× (0,∞), hence w−(x, t) is a subsolution.

Like in the first step of the proof of Theorem B.3, we can find X � 1
such that U(·) ≥ w−(· − X, 0) and deduce U(x − ct) ≥ w−(x − X, t) =
w−(x − C̄t − X, 0) for all (x, t) ∈ R × (0,∞) from Lemma 3.3. Setting
ξ = x− ct yields U(ξ) ≥ w−(ξ + (c− C̄)t−X, 0) for all (ξ, t) ∈ R× (0,∞).
In case of c ≥ C̄ taking the limit t→∞ would lead to a contradiction with
U(·) ≥ w−(· −X, 0), hence the estimate c ≤ C̄ follows.

To prove the lower bound −C̄ ≤ c, we use a supersolution w+(x, t) :=
δ + (1 + δ)ζ(ε̄(x+ C̄t)). �

Appendix C. Proof - Existence

Theorem C.1. Assume that the assumptions (C1), (C2), (C3’) and (C4)
hold. There exists a traveling wave solution (U, c) of (1) that satisfies (39).

Proof. Consider the IVP

(70)

{
∂tv = A[v] in R× (0,∞) ,

v(·, 0) = ζ(·) in R ,

where the function ζ is defined in (51). The idea is to show that, for some
diverging sequence (tj)j∈N with tj →∞, the sequence (v(·+ ξ(tj), tj))j∈N—
where v(ξ(t), t) = a for all t ≥ 0—has a pointwise limit U(·) which is the
profile of a traveling wave solution of (1).

The IVP (70) has a unique solution v ∈ C∞b (R × (t0,∞)) for any t0 > 0
due to Theorem 3.2, which satisfies
(71)
0 ≤ v(·, t) ≤ 1 , lim

x→−∞
v(x, t) = 0 and lim

x→+∞
v(x, t) = 1 for all t ≥ 0

due to Theorem 3.4. The function v is monotone increasing in x, since
v(x, 0) = ζ(x) ≤ ζ(x+ h) = v(x+ h, 0) and the comparison principle (C2).
The function v is smooth for positive times, hence vx(x, t) > 0 for all (x, t) ∈
R × (0,∞); actually vx(x, t) ≥ η(|x|, t)ζ(1) > 0 for all (x, t) ∈ R × (0,∞)

follows from studying the difference quotients v(x+h,t)−v(x,t)
h with the help

of (C2). Then the implicit function theorem implies the existence of a
smooth function z : (0, 1) × (0,∞) → R, such that v(z(ã, t), t) = ã for
all (ã, t) ∈ (0, 1)× (0,∞). The following three lemmas can be proved in the
same way as in Step 2 of the proof of [10, Theorem 4.1].

Lemma C.2. Under the assumptions of Theorem C.1, there exist a small
positive constant δ1 and a function m1 : (0, δ1/2]→ (0,∞) such that for all
δ ∈ (0, δ1/2] the function z : (0, 1)× (0,∞)→ R satisfies

(72) z(1− δ, t)− z(δ, t) ≤ m1(δ) ∀t ≥ 0 .
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Lemma C.3. Under the assumptions of Theorem C.1, for every M > 0
there exists a constant η̂(M) > 0 such that

(73) ∂xv(x+ z(a, t), t) ≥ η̂(M) ∀t ≥ 1 , x ∈ [−M,M ] .

Similar to Lemma A.2 sub- and supersolutions of (1) are constructed.

Lemma C.4. Under the assumptions of Theorem C.1, there exists a small
positive constant δ0 and a large positive constant σ2 such that for any δ ∈
(0, δ0] and every ξ ∈ R, the functions W+ and W− defined by

(74) W±(x, t) := v
(
x+ ξ ± σ2δ[1− e−βt]

)
± δe−βt

with β := 1
2 min{−f ′(0),−f ′(1)} are a supersolution and a subsolution of (1),

respectively.

Lemma C.5. Under the assumptions of Theorem C.1, there exists a se-
quence (tj)j∈N and a non-decreasing function U : R → (0, 1), such that
(tj)j∈N diverges to +∞ as j → +∞ and

lim
j→∞

v(ξ + z(a, tj), tj) = U(ξ) for all ξ ∈ R .

Moreover, U satisfies limξ→−∞ U(ξ) = 0 and limξ→+∞ U(ξ) = 1.

Proof of Lemma C.5. The sequence {fk(·) := v(· + z(a, k), k)}k∈N of real-
valued functions on R consists of bounded functions which are uniformly
equicontinuous. Due to the Arzelà-Ascoli theorem, there exists a subse-
quence {kj}j∈N and a bounded continuous function U ∈ Cb(R) such that
fkj (·) = v(·+ z(a, kj), kj)→ U(·) for j →∞ uniformly on compact subsets
of R. Obviously, the function U inherits from the function v the proper-
ties U(0) = a, 0 ≤ U ≤ 1, and to be non-decreasing in x. For sufficiently
small positive δ estimate (72) implies U(−m1(δ)) ≤ δ and U(m1(δ)) ≥ 1− δ
consequently limξ→−∞ U(ξ) = 0 and limξ→∞ U(ξ) = 1.

First, we show U(ξ) ≤ δ for all ξ ≤ −m1(δ): Estimate (73) implies
U(ξ+ h)−U(ξ) ≥ η̂(|ξ|+ 1)h ≥ 0 for all h ∈ [0, 1] and all ξ ∈ R. Therefore,
we only need to show U(−m1(δ)) ≤ δ, where v(−m1(δ) + z(a, kj), kj) →
U(−m1(δ)) for j → ∞. The function v(x, t) is monotone increasing in the
first argument, hence the function z(ã, t) is monotone increasing in its first
argument as well. Due to Lemma C.2 for δ ∈ (0, δ1/2] with δ < a < 1 − δ,
we deduce z(δ, t) < z(a, t) < z(1− δ, t),

−m1(δ) + z(a, t) ≤ −z(1− δ, t) + z(δ, t) + z(a, t) < z(δ, t) ,

v(−m1(δ) + z(a, kj), kj) < v(z(δ, t), t) = δ and finally

v(−m1(δ) + z(a, kj), kj)→ U(−m1(δ)) ≤ δ for j →∞ .

In a similar way, we show v(ξ+ z(a, t)) > 1− δ for all ξ > m1(δ) and deduce
U(ξ) ≥ 1− δ for all ξ > m1(δ).

Moreover, the convergence limj→∞ v(ξ+z(a, tj), tj) = U(ξ) is uniform on
R: For sufficiently small δ > 0 we deduce for all j ∈ N that

|U(ξ)−v(ξ+z(a, tj), tj)| ≤ |U(ξ)|+|v(ξ+z(a, tj), tj)| ≤ δ ∀ξ ≤ −m1(δ/2)

and |U(ξ)− v(ξ + z(a, tj), tj)| ≤ |1− U(ξ)|+ |1− v(ξ + z(a, tj), tj)| ≤ δ for
all ξ ≥ m1(δ/2). Due to the uniform convergence on compact intervals, we
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can choose J(δ) sufficiently large such that

|U(ξ)−v(ξ+z(a, tj), tj)| ≤ δ ∀ξ ∈ [−m1(δ/2),m1(δ/2)] and ∀j ≥ J(δ)

hence—using the short hand notation w(ξ, tj) := U(ξ)−v(ξ+z(a, tj), tj)—it
follows that

sup
ξ∈R
|w(ξ, tj)| = max{sup

ξ∈I1
|w(ξ, tj)|, sup

ξ∈I2
|w(ξ, tj)|, sup

ξ∈I3
|w(ξ, tj)|} ≤ δ

for I1 := (−∞,−m1( δ2)), I2 := [−m1( δ2),m1( δ2)], I3 := (m1( δ2),∞), and all
j ≥ J(δ).

More precisely, the solution v is a smooth function for positive times
and has uniformly bounded derivatives due to Theorem 3.2. Therefore, an
iterated application of the Arzelà-Ascoli Theorem implies that U ∈ Cmb (R)
of any order m ∈ N and the existence of a diverging sequence {kj}j∈N such
that fkj (·) = v(· + z(a, kj), kj) → U(·) for j → ∞ uniformly w.r.t. the
Cm norm on compact subsets of R. Moreover, the function v converges
to constant endstates, and its spatial derivative of any order converge to
zero in the limits x→ ±∞. These properties are passed on to the function
U and —as before with the help of Lemma C.2—the convergence fkj (·) =
v(·+ z(a, kj), kj)→ U(·) for j →∞ turns out to be uniform on R. �

Finally, we prove that the function U is the profile of a traveling wave
solution of (1) and satisfies (39). The IVP

(75)

{
∂tŨ = A[Ũ ] in R× (0,∞) ,

Ũ(·, 0) = U(·) in R ,

has a unique solution Ũ ∈ C∞b (R × (t0,∞)) for any t0 > 0 due to Theo-
rem 3.2. First, we need to establish

(76) lim
j→∞

v(ξ + z(a, tj), tj + t) = Ũ(ξ, t) for all (ξ, t) ∈ R× (0,∞) .

For any ε̂ > 0 there exists J(ε̂) such that if j > J(ε̂) then

v(· − ε̂+ z(a, tj), tj)− ε̂ < U(·) < v(·+ ε̂+ z(a, tj), tj) + ε̂ .

Considering these functions as the initial data of the IVP (75), we obtain
from Lemma C.4 the estimate

v(· − ε̂+ z(a, tj)− σ2ε̂[1− e−βt], tj + t)− ε̂e−βt ≤ Ũ(·, t)
≤ v(· − ε̂+ z(a, tj) + σ2ε̂[1− e−βt], tj + t) + ε̂e−βt .

Noticing that Ũ is smooth and taking the limit ε̂ → 0 and then j → ∞
yields statement (76). More precisely, the first estimate is rewritten as

v(·+ z(a, tj), tj + t)− ε̂e−βt ≤ Ũ(·+ ε̂+ σ2ε̂[1− e−βt], t)

taking the limits yields

lim sup
j→∞

v(·+ z(a, tj), tj + t) ≤ Ũ(·, t) .

Using the second estimate yields lim infj→∞ v(· + z(a, tj), tj + t) ≥ Ũ(·, t).
Taken together

Ũ(·, t) ≤ lim inf
j→∞

v(·+ z(a, tj), tj + t) ≤ lim sup
j→∞

v(·+ z(a, tj), tj + t) ≤ Ũ(·, t) ,
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we deduce statement (76). The monotonicity of v w.r.t. to x and its limiting
behavior allow to find a large positive constant m0 such that v(· −m0, 1)−
δ0 ≤ v(·, 0) ≤ v(·+m0, 1)+δ0. Again a comparison principle and Lemma C.4
imply

v(· −m0 − σ2δ0(1− e−βt), t+ 1)− δ0e−βt

≤v(·, t)
≤v(·+m0 + σ2δ0(1− e−βt), t+ 1) + δ0e−βt

consequently evaluating at ξ + z(a, t), setting t = tj and taking the limit
j →∞ yields

(77) Ũ(ξ −m0 − σ2δ0, 1) ≤ U(ξ) ≤ Ũ(ξ +m0 + σ2δ0, 1) for all ξ ∈ R .
To prove that the function U is the profile of a traveling wave solution
of (1), we show that Ũ(·, t) = U(· − ct) for some c ∈ R and all t. Due to
estimate (77) the numbers

ξ∗ := sup{ ξ ∈ R | Ũ(·+ ξ, 1) ≤ U(·) } ,
ξ∗ := inf{ ξ ∈ R |U(·) ≤ Ũ(·+ ξ, 1) } ,

are well-defined and satisfy −m0 − σ2δ0 ≤ ξ∗ ≤ ξ∗ ≤ m0 + σ2δ0. However
ξ∗ = ξ∗ arguing as in the proof of Theorem A.1. In particular we noted
that U ∈ C∞b (R) and for some diverging sequence {kj}j∈N the convergence
v(· + z(a, kj), kj) → U(·) for j → ∞ is uniform w.r.t. the Cmb (R)-norm for

any order m ∈ N. In a similar way we can establish that limx→±∞ Ũx(x, t) =

0 for all t ≥ 0 and the uniform convergence v(· + z(a, tj), tj + t) → Ũ(·, t)
w.r.t. the C1

b (R)-norm for all t > 0.

Comparing Ũ(·, t) with U(·) for t ∈ (1, 2] in the same way one obtains the

existence of a function c : [1, 2]→ R with c(1) = ξ∗ = ξ∗ such that Ũ(·, t) =

U(·−c(t)). The function c is differentiable and equation ∂tŨ = A[Ũ ] implies
−c′(t)U ′(ξ) = A[U ](ξ). The right-hand side of the identity does not depend
on t explicitly (only through ξ), hence c′(t) is constant for all t and (U, c′)
is a traveling wave solution of (1). To establish the properties of U ′ in (39),

we notice that Ũ and hence U are bounded smooth functions approaching
constant endstates in the limits ξ → ±∞. �
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(ÖAW). Furthermore, we would like to thank an anonymous referee, whose
comments helped to improve the manuscript.

References

[1] S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and
its application to antiphase domain coarsening, Acta Metallurgica 27 (1979), no. 6,
1085–1095.

3. REACTION-DIFFUSION EQUATIONS 155

appeared as: F. Achleitner and C. Kuehn. “Traveling waves for a bistable
equation with nonlocal diffusion”. In: Adv. Differential Equations 20.9-10
(2015), pp. 887–936



39

[2] D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics,
combustion, and nerve pulse propagation, Partial differential equations and related
topics (Program, Tulane Univ., New Orleans, La., 1974), Springer, Berlin, 1975,
pp. 5–49. Lecture Notes in Math., Vol. 446.
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KPP avec diffusion fractionnaire, C. R. Math. Acad. Sci. Paris 347 (2009), no. 23-24,
1361–1366.
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[8] X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians II: Existence,
uniqueness, and qualitative properties of solutions, Trans. Amer. Math. Soc. 367
(2015), no. 2, 911–941.

[9] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,
Comm. Partial Differential Equations 32 (2007), no. 7-9, 1245–1260.

[10] X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal
evolution equations, Adv. Differential Equations 2 (1997), no. 1, 125–160.

[11] A. Chmaj, Existence of traveling waves in the fractional bistable equation, Archiv der
Mathematik 100 (2013), no. 5, 473–480.

[12] L. Debbi and M. Dozzi, On the solutions of nonlinear stochastic fractional partial
differential equations in one spatial dimension, Stochastic Process. Appl. 115 (2005),
no. 11, 1764–1781.

[13] D. Del Castillo-Negrete, Asymmetric transport and non-Gaussian statistics of passive
scalars in vortices in shear, Physics of Fluids 10 (1998), no. 3, 576.

[14] D. Del Castillo-Negrete, B. A. Carreras, and V. E. Lynch, Front dynamics in reaction-
diffusion systems with Levy flights: A fractional diffusion approach, Phys. Rev. Lett.
91 (2003), 018302.

[15] J. Droniou and C. Imbert, Fractal first-order partial differential equations, Arch.
Ration. Mech. Anal. 182 (2006), no. 2, 299–331.

[16] H. Engler, On the speed of spread for fractional reaction-diffusion equations, Int. J.
Differ. Equ. (2010), Art. ID 315421, 16.

[17] W. Feller, An introduction to probability theory and its applications, 2nd ed., vol. 2,
Wiley, 1972.

[18] P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equati-
ons to travelling front solutions, Arch. Ration. Mech. Anal. 65 (1977), no. 4, 335–361.

[19] P. C. Fife and J. B. McLeod, A phase plane discussion of convergence to travelling
fronts for nonlinear diffusion, Arch. Rational Mech. Anal. 75 (1980/81), no. 4, 281–
314.

[20] R. Gorenflo and F. Mainardi, Random walk models for space-fractional diffusion pro-
cesses, Fract. Calc. Appl. Anal. 1 (1998), no. 2, 167–191.

[21] C. Gui and M. Zhao, Traveling wave solutions of Allen-Cahn equation with a fractional
Laplacian, Annales de l’Institut Henri Poincare (C) Non Linear Analysis (2014), in
press.

[22] E. Hanert, E. Schumacher, and E. Deleersnijder, Front dynamics in fractional-order
epidemic models, Journal of theoretical biology 279 (2011), no. 1, 9–16.

[23] N. Jacob, Pseudo differential operators and Markov processes. Vol. I, Imperial College
Press, London, 2001, Fourier analysis and semigroups.

[24] T. Komatsu, On the martingale problem for generators of stable processes with per-
turbations, Osaka J. Math. 21 (1984), no. 1, 113–132.

156 3. REACTION-DIFFUSION EQUATIONS

appeared as: F. Achleitner and C. Kuehn. “Traveling waves for a bistable
equation with nonlocal diffusion”. In: Adv. Differential Equations 20.9-10
(2015), pp. 887–936



40 FRANZ ACHLEITNER AND CHRISTIAN KUEHN

[25] M. S. Levine, A. A. Golovin, and V. A. Volpert, Step-flow growth of a crystal surface
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Physical Review E 55 (1997), no. 1, 1181–1184.

[46] M. Zhao, Traveling Wave Solutions To The Allen-Cahn Equations With Fractional
Laplacians, Doctoral dissertation, University of Connecticut, 2014.

[47] V. M. Zolotarev, One-dimensional stable distributions, Translations of Mathematical
Monographs, vol. 65, American Mathematical Society, Providence, RI, 1986, Trans-
lated from the Russian by H. H. McFaden, Translation edited by Ben Silver.

3. REACTION-DIFFUSION EQUATIONS 157

appeared as: F. Achleitner and C. Kuehn. “Traveling waves for a bistable
equation with nonlocal diffusion”. In: Adv. Differential Equations 20.9-10
(2015), pp. 887–936



41

TU Wien, Institute for Analysis and Scientific Computing, Wiedner Hau-
ptstrasse 8-10, 1040 Wien, Austria

E-mail address: franz.achleitner@tuwien.ac.at

TU Wien, Institute for Analysis and Scientific Computing, Wiedner Hau-
ptstrasse 8-10, 1040 Wien, Austria

E-mail address: ck274@cornell.edu

158 3. REACTION-DIFFUSION EQUATIONS

appeared as: F. Achleitner and C. Kuehn. “Traveling waves for a bistable
equation with nonlocal diffusion”. In: Adv. Differential Equations 20.9-10
(2015), pp. 887–936



ANALYSIS AND NUMERICS OF TRAVELING WAVES

FOR ASYMMETRIC FRACTIONAL

REACTION-DIFFUSION EQUATIONS

FRANZ ACHLEITNER AND CHRISTIAN KUEHN

Abstract. We consider a scalar reaction-diffusion equation in one spa-
tial dimension with bistable nonlinearity and a nonlocal space-fractional
diffusion operator of Riesz-Feller type. We present our analytical results
on the existence, uniqueness (up to translations) and stability of a trav-
eling wave solution connecting two stable homogeneous steady states.
Moreover, we review numerical methods for the case of reaction-diffusion
equations with fractional Laplacian and discuss possible extensions to
our reaction-diffusion equations with Riesz-Feller operators. In particu-
lar, we present a direct method using integral operator discretization in
combination with projection boundary conditions to visualize our ana-
lytical results about traveling waves.

1. Introduction.

A scalar reaction-diffusion equation is a partial differential equation

(1) ∂u
∂t = ∂2u

∂x2
+ f(u) for (x, t) ∈ R× (0, T ] ,

where the spatial derivative models diffusion and (a nonlinear) function f
models reaction of some quantity u = u(x, t) over time. The application and
analysis of reaction-diffusion equations has a long history [6, 58, 61].

In the following, we consider equation (1) with a bistable nonlinear func-
tion f ∈ C1(R) such that

(2) ∃u− < a < u+ in R : f(u)





= 0 for u ∈ {u− , a , u+} ,
< 0 for u ∈ (u−, a) ,

> 0 for u ∈ (a, u+) ,

f ′(u−) < 0 , f ′(u+) < 0 .

This kind of reaction-diffusion equation is known as Nagumo’s equation
to model propagation of signals [43, 46], as one-dimensional real Ginzburg-
Landau equation (RGLE) to model long-wave amplitudes e.g. in case of
convection in binary mixtures near the onset of instability [48, 55], as well
as Allen-Cahn equation to model phase transitions in solids [5].

Following Allen and Cahn, a stable stationary state - such as u− and u+ -
represents a phase of the system, whereas a traveling wave solution u(x, t) =

2010 Mathematics Subject Classification. 35A01, 35A09, 35B51, 35R09, 47G20.
Key words and phrases. Traveling wave, Nagumo equation, real Ginzburg-Landau

equation, Allen-Cahn type equation, Riesz-Feller operator, nonlocal diffusion, fractional
derivative, comparison principle, quadrature, projection boundary conditions.
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2 FRANZ ACHLEITNER AND CHRISTIAN KUEHN

U(x− ct) with limξ→±∞ U(ξ) = u± represents a phase transition. Each sta-
tionary state u∗ has an associated potential F (u∗) = F (u−) +

∫ u∗
u−

f(v) dv .

One distinguishes between the balanced case, i.e. the stable states u− and u+

have the same potential F (u−) = F (u+), and the unbalanced case, where
the stable state with lesser potential value F (u) is called the metastable
state. Then a traveling wave solution u(x, t) = U(x − ct) connecting the
stable states u− and u+ will be stationary (c = 0) in the balanced case and
moving in the direction of the metastable state in the unbalanced case.

In some applications it is important to include nonlocal effects. For ex-
ample, Bates et al. [8] proposed a non-local model

(3) ∂u
∂t = J ∗ u− u+ f(u) for (x, t) ∈ R× (0, T ] ,

for even, non-negative functions J ∈ C1(R) with
∫

R
J(y) dy = 1 ,

∫

R
|y|J(y) dy <∞ , J ′ ∈ L1(R) ,

and bistable functions f . The assumptions on J ensure that the problem
exhibits a maximum principle and a variational formulation. The existence
of traveling wave solutions u(x, t) = U(x−ct) is concluded from a homotopy
of (3) to a classical reaction-diffusion model (1). Moreover the traveling
wave again will move depending on the balance of the potential values of
the stable states. In contrast, the asymptotic stability is established only
for stationary traveling wave solutions, i.e. in the balanced case, where an
additional variational structure is available.

Chen established a unified approach [15] to prove the existence, unique-
ness and asymptotic stability with exponential decay of traveling wave solu-
tions for the previous reaction-diffusion equations and many more examples
from the literature. He considers general nonlinear nonlocal evolution equa-
tions in the form

∂u
∂t (x, t) = A[u(·, t)](x) for (x, t) ∈ R× (0, T ] ,

where the nonlinear operator A is assumed to

(1) be independent of t;
(2) generate a L∞ semigroup;
(3) be translational invariant, i.e. A satisfies for all u ∈ domA the

identity

A[u(·+ h)](x) = A[u(·)](x+ h) ∀x , h ∈ R .
Consequently, there exists a function f : R → R which is defined
by A[α1] = f(α)1 for α ∈ R and the constant function 1 : R → R,
x 7→ 1. This function f is assumed to be bistable (2);

(4) satisfy a comparison principle
If ∂u

∂t ≥ A[u], ∂v
∂t ≤ A[v] and u(·, 0) 
 v(·, 0), then u(·, t) >

v(·, t) for all t > 0.

Chen’s approach relies on the comparison principle and the construction of
sub- and supersolutions for any given traveling wave solution. Importantly,
the method does not depend on the balance of the potential.

At the same time, Zanette [67] proposed a model

(4) ∂u
∂t = Dα

0 u+ f(u) for (x, t) ∈ R× (0, T ] ,
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with a fractional Laplacian Dα
0 for some α ∈ (0, 2) and an explicit bistable

function f . This model exhibits monotone traveling wave solutions hav-
ing an explicit integral representation, hence the asymptotic behavior of
front tails and the front width can be studied directly. Subsequently, the
reaction-diffusion equation (4) with fractional Laplacian and general bistable
function f has been studied in the literature [67, 47, 62, 11, 12, 49, 32, 17].

Engler [20] was one of the first to consider the scalar partial integro-
differential equations

(5) ∂u
∂t = Dα

θ u+ f(u) for (x, t) ∈ R× (0, T ] ,

where u = u(x, t), f ∈ C1(R) is a (bistable) nonlinear function, and Dα
θ

is a Riesz-Feller operator with 1 < α ≤ 2 and |θ| ≤ min{α, 2 − α}. A
Riesz-Feller operator Dα

θ of order α and skewness θ can be defined as a
Fourier multiplier operator, see also the exposition of Mainardi, Luchko and
Pagnini [41]. Starting from the fundamental solution of ∂u

∂t = Dα
θ u, Engler

constructs traveling wave solutions for some appropriate bistable function f .
Assuming the existence of traveling wave solutions for general functions f ,
Engler studies the finiteness of the wave speed. The existence, uniqueness
(up to translations), and stability of traveling wave solutions for general
bistable functions is left open.

1.1. Main analytical result. Our main result is summarized in the fol-
lowing theorem.

Theorem 1 ([1]). Suppose 1 < α ≤ 2, |θ| ≤ min{α, 2− α} and f ∈ C∞(R)
satisfies (2). Then equation (5) admits a traveling wave solution u(x, t) =
U(x− ct) satisfying

(6) lim
ξ→±∞

U(ξ) = u± and U ′(ξ) > 0 for all ξ ∈ R .

In addition, a traveling wave solution of (5) is unique up to translations.
Furthermore, traveling wave solutions are globally asymptotically stable in
the sense that there exists a positive constant κ such that if u(x, t) is a
solution of (5) with initial datum u0 ∈ Cb(R) satisfying 0 ≤ u0 ≤ 1 and

(7) lim inf
x→∞

u0(x) > a , lim sup
x→−∞

u0(x) < a ,

then, for some constants ξ and K depending on u0,

‖u(·, t)− U(· − ct+ ξ)‖L∞(R) ≤ Ke−κt ∀t ≥ 0 .

1.2. Discussion. To our knowledge, we established the first result [1] on
existence, uniqueness (up to translations) and stability of traveling wave
solutions of (5) with Riesz-Feller operators Dα

θ for 1 < α < 2 and |θ| ≤
min{α, 2− α} and bistable functions f satisfying (2). The technical details
of the proof are contained in [1], whereas in this paper we give a concise
overview of the proof strategy and visualize the results also numerically.

To prove Theorem 1, we follow - up to some modifications - the approach
of Chen [15]. His approach relies on the comparison principle and the con-
struction of sub- and supersolutions for any given traveling wave solution.
It allows to cover all bistable functions f satisfying (2) regardless of the
balance of the potential and all Riesz-Feller operators Dα

θ for 1 < α < 2
regardless of |θ| ≤ min{α, 2− α}.
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Next, we quickly review different methods to study the traveling wave
problem of a reaction-diffusion equation. In case of a classical reaction-
local diffusion equation (1), the existence of traveling wave solutions can
be studied via phase-plane analysis [6, 26]. This method has no obvious
generalization to our traveling wave problem for (5), since its traveling wave
equation is an integro-differential equation.

The variational approach has been focused - so far - on symmetric dif-
fusion operators such as fractional Laplacians and on balanced potentials,
hence covering only stationary traveling waves [13, 11, 12, 49]. The ho-
motopy to a simpler traveling wave problem has been used to prove the
existence of traveling wave solutions in case of (3), and (4) with unbalanced
potential [32].

Chmaj [17] also considers the traveling wave problem for (4) with general
bistable functions f . He approximates a given fractional Laplacian by a
family of operators Jε ∗ u− (

∫
Jε)u such that limε→0 Jε ∗ u− (

∫
Jε)u = Dα

0 u
in an appropriate sense. This allows him to obtain a traveling wave solution
of (4) with general bistable function f as the limit of the traveling wave
solutions uε of (3) associated to (Jε)ε≥0. It might be possible to modify
Chmaj’s approach to study also our reaction-diffusion equation (5) with
Riesz-Feller operators. This would give an alternative existence proof of a
traveling wave solutions.

However, Chen’s approach allows to establish uniqueness (up to transla-
tions) and stability of traveling wave solutions as well. It remains an open
problem to extend Chen’s approach, if this is possible, to the general case
of Riesz-Feller operators with 0 < α ≤ 1 and |θ| ≤ min{α, 2− α}.

1.3. Outline. Our article is structured as follows. In Section 2, we give
a non-technical review of our analytical results in a companion article [1].
We introduce the Riesz-Feller operators as Fourier multiplier operators on
Schwartz functions, and extend the Riesz-Feller operators in form of singular
integrals to functions in C2

b (R). The Riesz-Feller operators Dα
θ generate a

convolution semigroup which we deduce from the theory of Lévy processes.
Then we present the analysis of the Cauchy problem for (5) with initial

datum u0 ∈ Cb(R) such that 0 ≤ u0 ≤ 1. The proof follows a standard ap-
proach, to consider the Cauchy problem in its mild formulation and to prove
the existence of a mild solution. The Cauchy problem generates a nonlin-
ear semigroup which allows to prove uniform Ckb estimates via a bootstrap
argument and to conclude that mild solutions are also classical solutions.

A comparison principle is essential to prove our result on the existence,
uniqueness and stability of traveling wave solutions and to allow for a larger
class of admissible functions f in the result for the Cauchy problem.

Finally, we consider the traveling wave problem for (5). In [1] we consider
a general approach by Chen [15]. There we study his necessary assumptions
and notice that some estimates are not of the required form. However Chen’s
approach can be extended, which we prove in [1, Appendices A–C]. We
sketch the proof of Theorem 1 in Section 2, and refer to [1, Subsection 4.2]
for more details.

In Section 3, we review numerical methods for reaction-diffusion equations
with fractional Laplacian and discuss the (im-)possibility of extensions to our
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reaction-diffusion equations with Riesz-Feller operators. Then we present a
direct method using integral operator discretization based on quadrature in
combination with projection boundary conditions. Furthermore, we visual-
ize the analytical results from Section 2 and outline several challenges for
the numerical analysis of asymmetric Riesz-Feller operators.

2. Traveling wave solutions.

A Riesz-Feller operator of order α and skewness θ can be defined as a
Fourier multiplier operator,

(8) F [Dα
θ f ](ξ) = ψαθ (ξ)F [f ](ξ) , ξ ∈ R ,

with symbol

(9) ψαθ (ξ) = −|ξ|α exp
[
i(sgn(ξ))θ π2

]
,

for some 0 < α ≤ 2 and |θ| ≤ min{α, 2 − α}. The symbol ψαθ (ξ) is the
logarithm of the characteristic function of a Lévy strictly stable probability
density with index of stability α and asymmetry parameter θ according to
Feller’s parameterization [25, 29].

Remark 1. We follow the convention in probability theory and define the
Fourier transform of f in the Schwartz space S(R) as

F [f ](ξ) :=

∫

R
e+iξxf(x) dx , ξ ∈ R ,

and the inverse Fourier transform as

F−1[f ](x) := 1
2π

∫

R
e−iξxf(ξ) dξ , x ∈ R .

Moreover, F and F−1 will denote also their respective extensions to L2(R).

To analyze the Cauchy problem for the reaction diffusion equation (5) we
need to investigate the linear space-fractional diffusion equation

(10) ∂u
∂t (x, t) = Dα

θ [u(·, t)](x) for (x, t) ∈ R× (0,∞) ,

0 < α ≤ 2 and |θ| ≤ min{α, 2 − α}. A formal Fourier transform of the
associated Cauchy problem yields

∂
∂tF [u](ξ, t) = ψαθ (ξ)F [u](ξ, t) , F [u](ξ, 0) = F [u0](ξ) ,

which has a solution F [u](ξ, t) = etψ
α
θ (ξ)F [u0](ξ). Hence, a formal solution

of the Cauchy problem is given by

(11) u(x, t) = (Gαθ (·, t) ∗ u0)(x)

with kernel (or Green’s function) Gαθ (x, t) := F−1 [exp(tψαθ (·))] (x).

Due to Theorem [51, Theorem 14.19], the function etψ
α
θ (ξ) is the character-

istic function of a random variable with Lévy strictly α-stable distribution.
Thus Gαθ is the scaled probability measure of a Lévy strictly α-stable dis-
tribution. In case of (α, θ) ∈ {(0, 0), (1, 1), (1,−1)}, the probability measure
Gαθ is a delta distribution

G0
0(x, t) = δx , G1

1(x, t) = δx+t , G1
−1(x, t) = δx−t
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and called trivial [51, Definition 13.6]. In all other (non-trivial) cases,
the probability measure Gαθ is absolutely continuous with respect to the
Lebesgue measure and has a continuous probability density [51, Proposition
28.1], which we will denote again by Gαθ . For every infinitely divisible distri-

bution µ on Rd, such as Gαθ , there exists an associated Lévy process (Xt)t≥0.
In particular, every Lévy process exhibits an associated strongly continuous
semigroup on C0(Rd), see also [51, Theorem 31.5].

The infinitesimal generator of our Lévy process has the following represen-
tation, which allows to extend the Riesz-Feller operator to C2

b (R)-functions.

Theorem 2. If 0 < α < 1 or 1 < α < 2 and |θ| ≤ min{α, 2− α}, then for
all f ∈ S(R) and x ∈ R

(12) Dα
θ f(x) = c1−c2

1−α f
′(x) + c1

∫ ∞

0

f(x+ξ)−f(x)−f ′(x) ξ1(−1,1)(ξ)

ξ1+α
dξ

+ c2

∫ ∞

0

f(x−ξ)−f(x)+f ′(x) ξ1(−1,1)(ξ)

ξ1+α
dξ

where 1(−1,1)(·) is an indicator function and some constants c1, c2 ≥ 0 with
c1 + c2 > 0.

Proof. The result follows from [51, Theorem 31.7] see also [1, Theorem 2.4].
�

In the analysis of the traveling wave problem, we are mostly interested in
the evolution of initial data in Cb. Therefore, it is important to notice the
following proposition.

Proposition 3 ([1, Corollary 2.10]). For 1 < α < 2 and |θ| ≤ min{α, 2 −
α}, the Riesz-Feller operator Dα

θ generates a convolution semigroup St :
Cb(R)→ Cb(R), u0 7→ Stu0 = Gαθ (·, t) ∗ u0, with kernel Gαθ (x, t). Moreover,
the convolution semigroup with u(x, t) := Stu0 satisfies

(1) u ∈ C∞(R× (t0,∞)) for all t0 > 0;
(2) ∂u

∂t = Dα
θ u for all (x, t) ∈ R× (t0,∞) and any t0 > 0;

(3) If u0 ∈ Cb(R) then u ∈ Cb(R× [0, T ]) for any T > 0.

This result states that Riesz-Feller operators Dα
θ for 0 < α ≤ 2 and

|θ| ≤ min{α, 2 − α} generate conservative Cb-Feller semigroups. This can
be deduced from a criterion on the symbol of Fourier multiplier operators
in [54].

It is important to notice that St : Cb(R) → Cb(R) is not a strongly
continuous semigroup. Thus the C2

b -extension of Dα
θ are not the infinitesimal

generators of the Cb-extension of the strongly continuous semigroup (St)t≥0

on C0(R) in the usual sense.

2.1. Cauchy problem. We consider the Cauchy problem

(13)

{
∂u
∂t = Dα

θ u+ f(u) for (x, t) ∈ R× (0,∞) ,

u(x, 0) = u0(x) for x ∈ R ,
for 1 < α ≤ 2, |θ| ≤ min{α, 2−α} and f ∈ C∞(R) satisfying (2). We follow a
standard approach, and consider the Cauchy problem in its mild formulation
to prove the existence of a mild solution. The Cauchy problem generates
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a nonlinear semigroup which allows to prove uniform Ckb estimates via a
bootstrap argument and to conclude that mild solutions are also classical
solutions.

Theorem 4 ([1, Theorem 3.3]). Suppose 1 < α ≤ 2, |θ| ≤ min{α, 2 − α}
and f ∈ C∞(R) satisfies (2). The Cauchy problem (5) with initial condition
u(·, 0) = u0 ∈ Cb(R) and 0 ≤ u0 ≤ 1 has a solution u(x, t) in the following
sense: for all T > 0

(1) u ∈ Cb(R× (0, T )) and u ∈ C∞b (R× (t0, T )) for all t0 ∈ (0, T );
(2) u satisfies (5) on R× (0, T );
(3) If u0 ∈ Cb(R) then u(·, t)→ u0 uniformly as t→ 0;
(4) 0 ≤ u(x, t) ≤ 1 for all (x, t) ∈ R× (0,∞);
(5) ∀k ∈ N ∀t0 > 0 ∃C > 0 such that ‖u(·, t)‖Ckb (R) ≤ C ∀0 < t0 < t.

The following comparison principle is essential to prove our result on the
existence, uniqueness and stability of traveling wave solutions and to allow
for a larger class of admissible functions f in the result for the Cauchy
problem.

Lemma 5 ([1, Lemma 3.4]). Assume 1 < α ≤ 2, |θ| ≤ min{α, 2−α}, T > 0
and u, v ∈ Cb(R× [0, T ]) ∩ C2

b (R× (t0, T ]) for all t0 ∈ (0, T ) such that

∂u
∂t ≤ Dα

θ u+ f(u) and ∂v
∂t ≥ Dα

θ v + f(v) in R× (0, T ] .

(1) If v(·, 0) ≥ u(·, 0) then v(x, t) ≥ u(x, t) for all (x, t) ∈ R× (0, T ].
(2) If v(·, 0) 	 u(·, 0) then v(x, t) > u(x, t) for all (x, t) ∈ R× (0, T ].
(3) Moreover, there exists a positive continuous function

η : [0,∞)× (0,∞)→ (0,∞) , (m, t) 7→ η(m, t) ,

such that if v(·, 0) ≥ u(·, 0) then for all (x, t) ∈ R× (0, T )

v(x, t)− u(x, t) ≥ η(|x|, t)
∫ 1

0
v(y, 0)− u(y, 0) dy .

Sketch of the proof of Theorem 1. We present here a sketch of the proof of
Theorem 1 and refer to our article [1] for more details. To prove existence
of traveling wave solutions satisfying (6), we consider the Cauchy problem
for (5) with some smooth initial datum u0 ∈ Cb(R) satisfying (6). Due to
Theorem 4 there exists a classical solution u(x, t). We consider a diverging
sequence {tj}j∈N such that limj→∞ tj = ∞ and the associated sequence
{u(·, tj)}j∈N in Cb(R). Then, due to Arzela-Ascoli Theorem, there exists
a subsequence and a limiting function ũ such that limk→∞ u(·, tjk) = ũ(·).
The final and most important step is to verify that ũ is a traveling wave
solution of (5) satisfying (6).

To prove uniqueness (up to translations) of a traveling wave solution,
sub- and super-solutions of (5) are constructed from any given traveling
wave solution. Assuming the existence of two traveling wave solutions, one
traveling wave solution is bounded from below and from above by suitable
sub- and super-solutions associated to the other traveling wave solution,
respectively. The comparison principle in Lemma 5 allows to show that one
traveling wave solution is a translated version of the other traveling wave
solution.
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To prove stability of a traveling wave solution, considering the Cauchy
problem for (5) with initial datum u0 satisfying (7), then the associated
solution v can be bounded from below and from above by suitable sub- and
super-solutions associated to the traveling wave solution, respectively. The
comparison principle and the evolution of sub- and super-solutions show that
these bounds on the solution v get tighter and allow to prove the exponential
convergence to (a translated version of) the traveling wave solution.

For more details see the proof of [1, Theorem 4.6]. �

3. Numerical methods.

In this section, we illustrate our results from Theorem 1 and discuss nu-
merical methods for (5). The case θ = 0 yields the fractional Laplacian

Dα
0 = −(−∆)α/2 which has been discussed frequently from a numerical per-

spective in the literature. Hence, there is a notational convention to write
(5) for θ = 0 as

∂u

∂t
+ (−∆)α/2 = f(u) or

∂u

∂t
= −(−∆)α/2 + f(u).

However, we shall adhere to the convention Dα
0 as introduced previously.

First, we review some of the available numerical schemes for this case. We
restrict the computational domain from x ∈ R to x ∈ [−b, b] =: Ω for
some (sufficiently large) b > 0 and with Neumann or Dirichlet boundary
conditions. A numerical comparison of various methods for the case Dα

0

has already been carried out in [59, 63] so we shall focus our small survey
in Sections 3.1-3.4 on the difficulties in the numerical generalization from
θ = 0 to θ 6= 0 for space-fractional equations. Furthermore, we only cover
spatial grid bases schemes and do not discuss stochastic particle methods.

The main novel results are our direct method using integral operator
discretization in combination with projection boundary conditions in Section
3.5 and the numerical results in Section 3.6 for (5).

3.1. Spectral methods. One idea is to generalize spectral methods to the
fractional Laplacian case [9]. Let λj denote the Laplacian eigenvalues and
φj the corresponding eigenfunctions for D2

0φl = λlφl with l ∈ N0 = N∪ {0}.
Consider L2(Ω) then we may write v ∈ L2(Ω) as a series expansion

(14) v =
∞∑

l=0

v̂lφl, v̂l := 〈v, φl〉

where 〈·, ·〉 denotes the L2(Ω) inner product. Fix some α with 1 < α ≤ 2
and consider

(15) Hα/2(Ω) :=

{
v ∈ L2(Ω) :

∞∑

l=0

|v̂l|2|λl|α/2 <∞
}
.

The spectral decomposition of the fractional Laplacian implies [7] that−(−λl)α/2
are eigenvalues with eigenfunctions φl for Dα

0 and for any v ∈ Hα/2(Ω) we
have

(16) Dα
0 v = −

∞∑

l=0

(−λl)α/2v̂lφl.
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As a remark, we note that all the minus signs on the right-hand side in
(16) disappear if we would write (−∆)α/2u on the left-hand side instead
and would let λl denote the eigenvalues of the negative Laplacian. It is
suggested in [9] to apply a backward Euler-type time discretization on a
mesh

(17) 0 = t0 < t1 < · · · < tm < tm+1 < · · · < T

for (5) where we set tm+1 − tm =: (δt)m. Denote by um := u(x, tm) the
solution at time tm. For the time step tm to tm+1 one may consider the
semi-implicit backward Euler scheme

(18)
um+1 − um

(δt)m
= Dα

0 u
m+1 + f(um).

Making the Fourier spectral ansatz

u(x, t) =

∞∑

l=0

ûl(t)φl(x) ≈
L∑

l=0

ûl(t)φl(x)

in (18), using the orthogonality of the basis functions φl and employing (16)
leads to the numerical method

(19) ûm+1
l =

1

1 + (−λl)α/2(δt)m

(
ûml + (δt)mf̂l(u

m)
)

where f̂l is the l-th Fourier coefficient of f . In particular, the L+ 1 Fourier
modes in (19) are decoupled and relatively easy to solve for. Further imple-
mentation details of (19) can be found in [9, Code 4, p.10]. However, the
generalization of (19) from the fractional Laplacian case Dα

0 to the asym-
metric case Dα

θ with θ 6= 0 is not straightforward. In fact, in the asymmetric
case one generically obtains complex eigenvalues and a continuous spectrum
[3]. This means that (16) is no longer valid for θ 6= 0. For another approach
using transform/Fourier-type techniques we refer to [52].

3.2. Finite difference methods. A second possible approach to solve (5)
is to use a finite difference method (FDM) [45] combined with the Grünwald-
Letnikov representation of the space fractional derivative. Let us consider a
spatial discretization of Ω = [−b, b] as follows

(20) −b = x1 < x2 < · · · < xN = b.

We still use the temporal discretization (17). For Dα
0 the Grünwald-Letnikov

representation of Dα
0 is given by

(Dα
0 u)(x, t) = lim

N→∞
1

hα+

N∑

r=0

Γ(r − α)

Γ(−α)Γ(r + 1)
u(x− rh+, t)

+ lim
N→∞

1

hα−

N∑

r=0

Γ(r − α)

Γ(−α)Γ(r + 1)
u(x+ rh+, t),(21)

where h+ = (x + b)/N and h− = (b − x)/N . Let us assume for simplicity
that the spatial grid is equidistant and let h := 2b/N . Furthermore, we let

umn := u(xn, tm).
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Then one possible finite-difference discretization of (5) is given by [45, 59]

um+1
n − umn

(δt)m
=

1

hα

[
n+1∑

r=0

gru
m+1
n−r+1 +

N−n+1∑

r=0

gru
m+1
n+r−1

]
+ f(um+1

n ),

with gr := Γ(r−α)
Γ(−α)Γ(r+1) . For a similar approach using the Grünwald-Letnikov

representation to obtain finite-difference schemes we also refer to [14, 28, 39,
40, 44, 53, 60, 68]. For even more details on finite-difference methods for
space-fractional diffusion equations consider [38, 57, 66]. In some sense, our
scheme in Section 3.5 has an analogous starting point. However, instead
of the Grünwald-Letnikov representation we use the integral representation
formula which we also employed in the existence-uniqueness-stability proof
of Theorem 1; see also Section 3.5.

3.3. Finite element methods. Another quite natural possibility is to fol-
low the classical finite element method (FEM) variational approach. We

follow [22, 36] in our exposition for the case θ = 0. Let X := H
α/2
0 (Ω)

denote the usual fractional Sobolev space obtained as a closure of C∞0 (Ω) in

Hα/2(Ω) and define

(22) A(v, w) := −〈Dα/2
0 v,D

α/2
0 w〉 ,

where representation (16) is used. Then one may check that A is coercive and
continuous. Consider the space Xh of piecewise linear continuous functions
in X with compact support given by

Xh := {v ∈ C0(Ω) : v is linear over [xn, xn+1], n = 1, 2, . . . , N − 1}.
Then we may define a discrete operator Ah : Xh → Xh associated to A via

〈Ahvh, wh〉 = A(vh, wh) ∀vh, wh ∈ Xh.

A semi-discrete Galerkin FEM scheme for (5) is to find uh = uh(t) ∈ Xh

such that

(23)

〈
∂uh
∂t

(t), vh

〉
= 〈Ahuh(t), vh〉+ 〈f(uh(t)), vh〉 ∀vh ∈ X ,

and projected initial condition 〈uh(0), vh〉 = 〈u(0), vh〉. Choosing a basis
{ϕ1, ϕ2, . . . , ϕN} of Xh we may write

uh(x, t) =

N∑

n=1

un(t)ϕn(x).

One defines the usual mass matrix M ∈ RN×N and stiffness matrix A ∈
RN×N with entries

(24) Mnm = 〈ϕn, ϕm〉, Anm = A(ϕn, ϕm), m, n ∈ {1, 2, . . . , N}.
This converts (23) into the ODEs

(25) M
dU

dt
= AU + f(U)
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where U = (u1, . . . , uN )T and f(U) = (〈f(uh), ϕ1〉, . . . , 〈f(uh), ϕN 〉)T . Then
one may use a time-stepping scheme directly. For example, a backward Euler
semi-implicit discretization yields for Um := U(tm) the method

(26) (Id− (δt)mM
−1A)Um+1 = Um + (δt)mM

−1f(Um).

These considerations show that we can, at least formally, just follow the
classical FEM theory to derive numerical methods for equations involving
Dα

0 . However, for the fractional Laplacian Dα
0 the matrix entries for A

defined in (24) are not as easy to compute as for D2
0. FEM techniques

also seem to generalize formally to the asymmetric case as coercivity and
continuity hold for classes of fractional operators more general than Dα

0

[22, p.574-575]. However, we are again faced with the practical problem of
computing (an approximation of) A(ϕn, ϕm). This observation is one reason
which motivates the method presented in the next section. For more details
on FEM for space fractional equations we refer to [23, 24, 27, 50].

3.4. Matrix-transfer techniques. The symmetry of D2
0 and the view of

fractional powers Dα
0 can be employed in conjunction with FEM or FDM

discretizations for (5). Again, we consider the case θ = 0 following [34, 35,
10]. Let A∆ ∈ RN×N be the usual FEM stiffness matrix and M∆ be the
FEM mass matrix for D2

0. One natural idea is to use a fractional power of

the matrix B∆ := M−1
∆ A∆ in a numerical scheme to represent the fractional

Laplacian. Suppose we can compute (B∆)α then a backward semi-implicit
Euler-type time discretization, similar to (26), leads to

(27) (Id− (δt)m(B∆)α)Um+1 = Um +M−1
∆ f(Um).

To solve (27) one has to also compute the function

(28) q(z) =
1

1− (δt)mzα

efficiently for matrices, which has been discussed in [10]. However, we still
have to define Bα

∆. Standard theory implies that A∆,M∆ are real, symmetric
matrices [21]. Furthermore, A∆ is non-negative definite and M∆ is positive
definite. A direct calculation shows that

(M∆)1/2B∆(M∆)−1/2 = (M∆)−1/2A∆(M∆)−1/2.

Therefore, B∆ is similar to a real, symmetric matrix with well-defined point
spectrum σ(B∆) ⊂ R and eigenvalues ξ1 ≤ ξ2 ≤ · · · ≤ · · · ξN . Then it is
very natural to define a matrix function q(Z), including (28) as a special
case, by

q(Z) = Qq(Ξ)Q−1,

where Ξ is a diagonal matrix with Ξnn = ξn, Q consists of the eigenvectors
associated to the eigenvalues ξn and [q(Ξ)]nn = q(ξn). This yields a well-
defined fractional power (B∆)α when applied to q(z) = zα and can then also
be applied to define (28). Unfortunately, the matrix transfer technique does
not generalize immediately to the case θ 6= 0 as the spectrum σ(Dα

θ ) for θ 6= 0
is generically continuous with complex eigenvalues as already discussed in
Section 3.1. For more on the matrix transfer technique we refer to [64, 65].
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3.5. Integral representation, quadrature and projection boundary
conditions. Sections 3.1-3.4 explain why, to the best of our knowledge,
there seem to be very few (if any) detailed numerical studies of the asym-
metric case θ 6= 0 for the nonlinear Allen-Cahn/Nagumo-type Riesz-Feller
reaction-diffusion equation (5).

Here we present an easy-to-implement method to study (5) numerically
with a focus on the dynamics of traveling waves. Our approach is to use the
integral representation of Riesz-Feller operators to view (5) as an integro-
differential equation. For α ∈ (1, 2) the representation formula is given by
[1]

(Dα
θ u)(x, t) = c1

∫ ∞

0

u(x+ ξ, t)− u(x, t)− ξ ∂u∂x(x, t)

ξ1+α
dξ

+c2

∫ ∞

0

u(x− ξ, t)− u(x, t) + ξ ∂u∂x(x, t)

ξ1+α
dξ(29)

where the constants c1,2 are given in [41] as

c1 =
Γ(1 + α) sin

(
(α+ θ)π2

)

π
and c2 =

Γ(1 + α) sin
(
(α− θ)π2

)

π
.

Note that there is also an integral representation for α ∈ (0, 1) [1] for x ∈ R.
Furthermore, there is an analogous integral representation formula for frac-
tional Laplacians in Rd in [19]. Hence, starting from a representation like
(29) is not really a restriction, even for higher-dimensional cases. Further-
more, a similar strategy has also been applied successfully in a similar to
context to other nonlocal operator equations [4] involving traveling waves.
If we write

g1(ξ, x, t) :=
u(x+ ξ, t)− u(x, t)− ξ ∂u∂x(x, t)

ξ1+α
,

g2(ξ, x, t) :=
u(x− ξ, t)− u(x, t) + ξ ∂u∂x(x, t)

ξ1+α
,

then we can simply re-write (5) as an integro-differential equation

(30)
∂u

∂t
(x, t) = c1

∫ ∞

0
g1(ξ, x, t) dξ + c2

∫ ∞

0
g2(ξ, x, t) dξ + f(u(x, t)).

For simplicity, we shall just introduce our method for a uniform spatial mesh
(20), i.e. we have

(31) −b = x1 < x2 < · · · < xN = b with xn+1 − xn =
2b

N − 1
=: h,

where we assume that N ≥ 3 is odd so that x(N+1)/2 = 0. Furthermore, we
use another spatial mesh to approximate the integral operators (29) over a
finite domain obtained as a sub-mesh from (31) as follows

(32) ξ1 = xN+1
2

+1, ξ2 = xN+1
2

+2, . . . , ξM+1 = xN ,

which has M subintervals [ξm, ξm+1]. We may easily relate M to the num-
ber of points N in our original mesh by M = (N − 1)/2. For b,N suffi-
ciently large we may just use a quadrature rule to approximate (29); we
remark that the possibility to use quadrature techniques for time-fractional
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Caputo-derivative fractional equations has already been noticed in [2, 37].
Very recently (in fact, during the preparation of this work), Huang and
Oberman [33] proposed a quadrature-scheme based upon a singular inte-
gral presentation of the symmetric case Dα

0 . We use the regularized, fully
asymmetric representation (29) and obtain for the trapezoidal rule, with
ρ ∈ {1, 2}, that

cρ

∫ ∞

0
gρ(ξ, x, t) dξ ≈ cρ

∫ b

h
gρ(ξ, x, t) dξ

≈ cρ(b− h)

2M

[
gρ(ξ1, x, t) + gρ(ξM+1, x, t) + 2

M∑

m=2

gρ(ξm, x, t)

]
.

Using this approximation in (30) yields a system of (formal) ODEs for
un(t) = u(xn, t), which can be written as

dun
dt

=
b− h
2M

[
c1 ((g1(u))n,1 + (g1(u))n,M+1) + 2c1

M∑

m=2

(g1(u))n,m

+c2 ((g2(u))n,1 + (g2(u))n,M+1) + 2c2

M∑

m=2

(g2(u))n,m

]
+ f(un)(33)

for n ∈ {1, 2, . . . , N}, where the terms involving (gρ(u))n,m are given by

(g1(u))n,m = un+m−un
ξ1+αm

− un+1−un
ξαmh

, (g2(u))n,m = un−m−un
ξ1+αm

+ un+1−un
ξαmh

.

Of course, the system (33) is, as yet, only a formal representation as it
involves spatial mesh indices for u which lie outside the range i.e. un =
u(xn, t) for n ∈ {1, 2, . . . , N}. There is a choice of boundary conditions.
However, instead of classical Neumann or Dirichlet conditions, we want to
compute traveling waves which satisfy

lim
x→−∞

u(x, t) = u−, lim
x→+∞

u(x, t) = u+

for constants u±. Hence, we adopt the following projection-type boundary
conditions for the numerical method

(34) un =

{
uN if n ≥ N ,
u1 if n ≤ 1,

Using (34), we get a well-defined ODE system (33) which can be solved
using forward integration, i.e. we adopt a method-of-lines approach; for more
details on using projection boundary conditions to compute traveling waves
in the classical FitzHugh-Nagumo equation we refer e.g. to [18, 30, 31].

Regarding our algorithm (33)-(34) for waves of the Riesz-Feller bistable
equation, we emphasize that our approach is clearly non-optimal from a nu-
merical perspective. For example, there are straightforward generalizations
to non-uniform meshes and higher-order schemes by using non-uniform-mesh
higher-order quadrature methods. We leave these generalizations as future
challenges. Here, we are primarily interested in developing a simple scheme
for (5) and to visualize some of the results from Theorem 1.

3. REACTION-DIFFUSION EQUATIONS 171

appeared as: F. Achleitner and C. Kuehn. “Analysis and numerics of
traveling waves for asymmetric fractional reaction-diffusion equations”. In:
Commun. Appl. Ind. Math. 6.2 (2015), e–532, 25



14 FRANZ ACHLEITNER AND CHRISTIAN KUEHN

3.6. Numerical results. In this section, we briefly discuss some numerical
simulations of (5) with f(u) = u(1− u)(u− a) for some a ∈ (0, 1) using our
algorithm from Section 3.5. Unless stated otherwise, we fix Ω = [−b, b] =
[−30, 30], N = 181, spatial mesh points and always employ a standard stiff
ODE solver to solve (33)-(34) (more precisely, ode15s from MatLab [56])
for t ∈ [0, T ]. Figure 1(a) shows the initial condition

(35) u0(x) = u(x, 0) =





0 if x ∈ [−30,−2),
1
4x+ 1

2 if x ∈ [−2, 2],
1 if x ∈ (2, 30].

The initial condition (35) is important as it has been used in the existence
part of the proof of Theorem 1 as discussed in [1, 16]. In particular, u0 is
shown to converge to a traveling wave.
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Figure 1. Fixed parameter values are θ = 0.1, α = 1.8,
T = 20. (a) Initial condition u0 = u(x, 0) given by (35). (b)
Simulation with a = 0.5. (c) Simulation with a = 0.6, the
wave travels to the right.

Figure 1(b)-(c) show the fully asymmetric fractional case with Dα
θ for

α = 1.8 and θ = 0.1. In both cases we observe a rapid smoothing effect of the
solution as predicted by the smoothing result in Theorem 1. Furthermore,
in both cases, convergence to a traveling wave profile is observed, where
moving the parameter a changes the wave speed. Again, this is expected
since the supremum-norm of the nonlinearity f(u) = u(1 − u)(u − a) does
influence the wave speed.
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Figure 2. Fixed parameter values are θ = 0.1, a = 0.5,
T = 2 with initial condition (36). (a) α = 1.8. (b) α = 1.2.
(c) α = 1.01.
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As a second interesting part we are interested in discontinuous initial
conditions bounded away from the traveling wave, and even violating one of
the stability assumptions (0 ≤ u0 ≤ 1) from Theorem 1. One example is

(36) u0(x) = u(x, 0) =

{
0.49 if x ∈ [−30, 0],
1.51 if x ∈ (0, 30].

Furthermore, we vary the fractional exponent α. Figure 2 shows the results.
Although the initial condition is not within the framework of the theoretical
analysis, we still observe extremely rapid convergence to a wave profile where
the end-states move to u(−b, t) = 0 and u(b, t) = 1. Note however, that
the convergence, as well as the regularization effect, seems to be slower for
smaller exponents α.

au

t x t
t

x

b uu c

x

Figure 3. Fixed parameter values are α = 1.5, a = 0.5,
T = 120 with initial condition (35). (a) θ = 0.2; wave moves
to the left. (b) θ = 0.0; standing wave. (c) θ = −0.2; wave
moves to the right.

Another question is the effect of the asymmetry parameter θ. Figure 3
shows three different cases for θ = 0.2, 0,−0.2. It is clearly visible that the
wave speed is directly affected. Within the time t ∈ [0, T ], the wave in Figure
2(b) barely moves while there is a drift to the right in Figure 2(c) and to the
left in Figure 2(a). Hence, we may conclude that the asymmetry parameter
definitely has an effect on quantitative properties of traveling waves. Based
on the relation to microscopic super-diffusion processes and previous studies
for other nonlinearities [42], a quantitative change is expected.

As a last issue, we briefly discuss the influence of the asymmetry pa-
rameter on numerical stability. Figure 4 shows simulations for the same
parameter values α = 1.5, θ = 0.4 where θ is chosen closer to the critical
line 2− α (see Section 2) than before. The absolute error tolerance for the
numerical time step is different in Figures 4(a)-(b). Whereas we observe
numerically induced oscillations in Figure 4(a) for a relatively low tolerance,
the oscillations are suppressed for the more accurate computation in Figure
4(b). We checked that the numerical solution poses no problem for the lower
error tolerance when θ is lower as well, for example, θ = 0.1. This gives a
strong indication that the ODE problem may be stiff, respectively that the
region of A-stability shrinks when θ is changed. In particular, this leads to
the conjecture that the asymmetric case is not only more complicated with
respect to the design and implementation of numerical algorithms but also
with respect to numerical stability.
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Figure 4. Fixed parameter values are α = 1.5, a = 0.5,
T = 3, θ = 0.4 with b = 10 and L = 101 i.e. on a coarser grid
than in the previous figures. (a) Absolute tolerance for the
ODE time stepper is 10−6. (b) Absolute tolerance for the
ODE time stepper is 10−9.

3.7. Numerical analysis: some challenges. In this section, we would
like to highlight some numerical challenges/conjectures which are relevant
for future work:

(1) Provide a generalization of our scheme to higher-order quadrature
rules and non-uniform meshes, including convergence and error anal-
ysis.

(2) Generalize the scheme to 2- and 3-dimensional cases. What about
the computation of coherent/localized structures for this case?

(3) Investigate the numerical stability properties of algorithms for asym-
metric fractional evolution equations regarding the (α, θ)-dependence.

(4) Compare various approaches to truncate the domain R. What is the
influence of boundary conditions for space-fractional equations?

(5) What about adaptive algorithms to resolve wave profiles? What is
the influence of α and θ on the adaptive mesh selection?

(6) Provide robust methods, including error estimates, to calculate the
wave-speed and far-field/tail behavior.

(7) Which methods for fractional diffusion equations, derived by differ-
ent approaches such as FDM, FEM or quadrature, are equivalent?
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