TECHNISCHE Institut fur
UNIVERSITAT = Computertechnik
WIEN™ _— Institute of
_JVienna University of Technology Computer Technology

A Multi-Agent-Based Middleware for
the Development of Complex
Architectures

Alexander Wendt, Stefan Wilker, Marcus Meisel and Thilo
Sauter

13.06.2018

ACONA ©

https://github.com/aconaframework/acona

Usage of Complex Systems

= Smart Grids

* Electric grid with additional IT infrastructure

* Connect heterogenous hardware with algorithms
= Multi-Agent-Systems : \\) |
* Each agent — Simple behavior

° Multi agents — Emergent behavior

= Cognitive Architectures

X s N
| sexual tljrlves !V) Biive tra_ck/
* Mimic decision-making in biology S e S Super-£go
g rules

external perception

i I
t!

perception track/
unconscious

defense
mechanisms

* Selection and prioritization tasks T sensars
and
neural (de-)
oo e . nets, symboli-
* Artificial life o T e~ A

conscious

<
selection of need/
conscious
J

https://www.dict.cc/englisch-deutsch/prioritization.html

ACONA ©

D e S i g n Of CO m p I ex SySte m S https://github.com/aconaframework/acona
= Requirements on complex architectures m Mm
* Handle heterogeneity: E.g. several types of hardware from i&‘s w

different producers

* Handle complexity: Interactions between different
components

* Handle adaptability: Extensions and change requests

= Solution: Middleware

* Connect disconnected systems through an application ‘ %
* Hide communication infrastructure /A, A

* Use common interface for applications

ACONA ©

P ro b I e m Sta te m e nt https://github.com/aconaframework/acona

" Goal: Implement cognitive systems in industrial
domain with one middleware

= Requirements

* Agent system with , body” and encapsulated internal
functions

* Necessary infrastructure provided by internal
functions

* Flexible enough to support a cognitive architecture

Validation with a Cognitive ACONA ©
Architecture

= Large collection of % e e
interacting modules | _E._,,_
and memories o Pt b

*" Hard to develop

= Research->often
updated

= |fitis possible to implement a cognitive architecture, then it is
possible to implement it for industrial applications too

ACONA ©

C u r re n t S O I u t i O n S https://github.com/aconaframework/acona

= Smart Grids Middleware MU E @ B RaooIt

* OpenMuc: No agent system, limited value range on channels
* ZeroMQ: Each client needs port -> limited number of agents/functions

°* MQTT, e.g. RabbitMQ: Missing function infrastructure -> e.g.
Request/Response-pattern

= Java JADE J =Jl
* Multi-agent system with agent and behaviors -> Good

* Missing function infrastructure -> lots of repeated programming

* Behavior structure not parallelizable -> no blocking functions

ACONA ©

A p p ro a C h https://github.com/aconaframework/acona

= Java JADE as base
* Use existing agent concept
* Use existing communication methods (FIPA)

= Add extra infrastructure layer to Java JADE
* Thread-based functions instead of behaviors

* Function dependencies in data instead of direct references

* Connection to JUnit to inject data

" Framework A Multi-Agent-Based Middleware for the
Development of Complex Architectures (ACONA)

ACONA ©

F u n Cti O n a I ity Of a Ce | I https://github.com/aconaframework/acona

Configuration Cell cell Functions Cell

Data Storage Communicator

Basic Functions

ACONA ©

CO m m u n i Ca to r https://github.com/aconaframework/acona

" Communication between
functions internally and
between cells

Configuration Ce|| Cell Functions Ce||

" Message-based

[e]

Data Storage Communicator

= Remote procedure call in any
other function or cell

Basic Functions

ACONA ©

D a t a St O ra g e https://github.com/aconaframework/acona
u Key-value StOrage Configuration Cel| Cell Functions
Datapoint-based
o be
= JSON based data structures v

\ 4

Serialize class and transfer

" Function-less data transfer Data Storage Communicator
between functions Basic Functions

* Publisher-subscribe pattern

* Memory-based data exchange

ACONA ©

Ce I I F u n Ct i O n https://github.com/aconaframework/acona

= Defines system functionality Configuration Cell~ Cell Functions

= Multiple activation methods

* RPC

®* Function execution

* Trigger on subscription

Communicator Cell Function Data Storage

Data Storage Communicator

Result Datapoint
State Datapoint

Basic Functions

Configuration Datapoint

Function Execution

Command Datapoint

Subscription Notifier
m Stefan Wilker 11/17

Subscribed Datapoint

ACONA ©

B a S I C Ce I I F u n Ct I O n S https://github.com/aconaframework/acona
® Data sto rage fu nctions Configuration Cell Cell Functions

* Read

* Write

* Subscibe

\ 4

®* Unsubscribe

. [[.
Add |t|0na| fU nctions Data Storage Communicator
Basic Functions

* Collect cell functions states

* Logger

ACONA ©

CO n fi g u ra t i O n https://github.com/aconaframework/acona

= Used to instantiate the whole
cell through reflections

:Ce” Cell Functions

JSON
{,var”

1)

\ 4

= JSON format

Data Storage Communicator

CellGatewayImpl weatherAgent3 = this.controller.createAgent(
CellConfig.newConfig(weatherAgent3Name) Basic Functions
.addCellfunction(CellFunctionConfig.newConfig(weatherservice, WeatherService.class)
.setProperty(WeatherService.CITYNAME, "stockholm™)
.setProperty(WeatherService.USERID, "tester")
.addManagedDatapoint (WeatherService . WEATHERADDRESSID,
publishAddress , weatherAgent3Name, SyncMode.WRITEONLY))
.addCellfunction(CellFunctionConfig.newConfig(CFStateGenerator.class)));
weatherAgent3.getCommunicator().write(DatapointBuilder.newDatapoint(weatherservice + '
.setValue(ControlCommand.START));

*.command")

ACONA ©

R e S u I t S https://github.com/aconaframework/acona

= Complex module interactions possible
* Controller: e.g. web service to receive external calls
* Codelet/Codelet handler: Rule engine with rules

* Service: e.g. mathematical algorithm

= Parallel agents and functions with different types of
connections

Cell Controller I Cell Codelet I \ Cell Service
Start RPCCall 1
ol I Codelet I I I Servi
RPCCall 3 ervice
Handler Finished RPC Call 4
Start
, RPC Call 2
Write state
. Sub Sub

. Write Function| |Function
. Finished 1 2

Result: Cognitive Architecture

ACONA ©

Process and components of the cognitive system

The Cognitive Process

B: Activate
concepts from

D: Activate
option related
content

C: Create system

input goals

F: Propose . H: Select option
action for each & Eva.JIuate with highest
: options
option score

E: Propose

q : Execute action
options

activate activate activate

Activation Goal Belief
Codelet Codelet Codelet
Handler Handler Handler

Codelet Codelet Codelet)

A: Read system
inputs

—

N

:—r\:smB:soﬂ—-<3m

X

J: Execute
service

Working
memory

N

activate activate activate

Evaluation
Codelet
Handler

Option Action
Codelet Codelet
Handler Handler

‘L\

Codelet)

Executor

Codelet Action

Codelet Codelet

Communication Medium

I ervice

Long-term
Memory

‘Internal

state Services

memory

T'J Institute of
AR Computer Technology

Stefan Wilker

https://github.com/aconaframework/acona

15/17

ACONA ©

CO n C | u S i O n a n d O u t | O O k https://github.com/aconaframework/acona

" |nfrastructure extends Java JADE for complex systems

= General and highly customizable

°* Modular system —> easy to extend, easy unit testing

* Functions contain frequent patterns = save developer effort

= Successfully implemented as cognitive architecture

" Next steps
* Implement cognitive systems in Smart Grid applications

* Provide framework for evolutionary programming by
replicating agents with configuration as “DNA”

TECHNISCHE Institut fir
UNIVERSITAT |CT Energy&|T GI’OUD Computertechnik
WIEN introducing smart to the electric grid Institute of
Vienna University of Technology Computer Technology

Thank You

ACONA ©

https://github.com/aconaframework/acona

Stefan Wilker
stefan.wilker@tuwien.ac.at

For more information about our projects, please visit
http://energyit.ict.tuwien.ac.at

ACONA ©

Pe rfo r m a n C e - Te St S https://github.com/aconaframework/acona

Message Speedin Linked Cells

100000
80000
60000

40000 Setup time

~

20000 Q
0 W

0 1000 2000 3000 4000 5000 6000 7000 8000

Time [ms]

—&— Run time

Number of cells

Performance of the Codelet Handler

Setup time

Time [ms]

—&— Runtime

0 500 1000 1500 2000 2500

Number of Codelets
'endt 18/17

