The use of log-ratio methodology in cell-wise outlier diagnostics

Jan Walach1, P.Filzmoser1, K.Hron2

1TU Wien, 2Palacky University Olomouc

June 11, 2018
Outline of DSSV 2018 presentation

def dataset_directory()
 setwd("/home/jan/Dropbox/Git/Batch2/Prezentace")
 set.seed(1314233448)
 for (i in 1:7)
 {
 p <- sample(c('Talking', 'Talking', 'Describing a plot', 'Getting lost in a complicated formulas'), 3)
 print(p)
 for (j in 1:length(dir(paste0(getwd(),'/',p))))
 {
 temp = list.files(path = paste0(getwd(),'/',p), pattern="*")
 mySlides = lapply(temp, read.delim)
 }
 }

[1] "Talking"
[1] "Getting lost in a complicated formulas"
[1] "Talking"
[1] "Talking"
[1] "Getting lost in a complicated formulas"
[1] "Describing a plot"
[1] "Talking"
Data

- Focus on metabolomics data
- Two groups (e.g. control/disease patients)
- Usually low number of observations
- Flat data: many variables

Goal

- Clustering/Classification
- Exploratory analysis
- Identification of non-standard samples/values
- Find informative variables
The use of log-ratio methodology in cell-wise outlier diagnostics
The use of log-ratio methodology in cell-wise outlier diagnostics

Size-effect

- Problem: “Size effect”
- Different sample volume and/or sample concentration
- Special treatment required
Size-effect

Without size–effect

With size–effect
Size-effect: Use of log-ratios

With size-effect

V1 vs. V2

log(V1/V2) vs. Index
The use of log-ratio methodology in cell-wise outlier diagnostics
The use of log-ratio methodology in **cell-wise outlier diagnostics**

Outlier diagnostics

Row-wise outliers

<table>
<thead>
<tr>
<th>Samples</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Outlier diagnostics

Row-wise outliers

Variables
Samples

Cell-wise outliers

Variables
Samples
Outlier diagnostics

Row-wise outliers

Cell-wise outliers

Samples

Variables

Samples

Variables
Method:
Cell-wise rPLR

Steps:

1. Computing log-ratios
2. Robust centering + scaling
3. Applying weighting function
4. Projection to original space
Computing log-ratios

Data

- Data matrix X with dimensions $n \times D$

Based on idea of robust variation matrix

- Matrix T, elements t_{jk}, for $j, k = 1, \ldots, D$

\[
t_{jk} = \text{var} \left[\ln \left(\frac{x_{1j}}{x_{1k}} \right), \ln \left(\frac{x_{2j}}{x_{2k}} \right), \ldots, \ln \left(\frac{x_{nj}}{x_{nk}} \right) \right], \tag{1}
\]

- where \(\text{var} \) denotes a variance

- Elements inside \(\text{var} () \) will be robustly centred \pm scaled and each will get a weight

- There are in total $\frac{D \times (D-1)}{2}$ possible log-ratios
Computing log-ratios

\[t_{jk} = \text{var} \left[\ln \left(\frac{x_{1j}}{x_{1k}} \right), \ln \left(\frac{x_{2j}}{x_{2k}} \right), \ldots, \ln \left(\frac{x_{nj}}{x_{nk}} \right) \right], \]

Three-way weight matrix

- All weights can be stored in the three-way matrices \(W \), with \(D \) rows, \(D \) columns and \(n \) slices
- Information about observations is in certain slices
- Information about cells in rows of slices
Projection to original dimensions

Weight matrix

Information about i-th variable

Information about j-th variable

1 2 b ... D
D a ... 2 1
1 2 n
Diagnostics

- Average of all weights for each observation and each involved variable,

\[m_{ij} = \frac{1}{D} \sum_{k=1}^{D} w_{jki} \] \hspace{1cm} (2)

- Or Median

\[m_{ij} = \text{median}_{k}(w_{jki}) \] \hspace{1cm} (3)
Applying weighting function

Weighting functions:

- τ function
- Tukey’s biweight function
- Huber function
- Hampel function
Example of pairwise log-ratios
Cell-wise outliers

Tau

Biweight

Huber

Hampel

Sorted log-ratio vs. Weights
Diagnostics example: τ

- Imputed outliers
- Identified outliers
Diagnostics example: Hampel

Imputed outliers

Identified outliers
• MCADD (Medium chain acyl-CoA dehydrogenase deficiency)
• $n_1 = 25$, $n_2 = 25$, $D = 273$
Biomarkers = Cell-wise outliers in one variable for one group.
Let’s consider two group problem with n_1, n_2 samples

For each variable j:

$$V_j = |\text{median}_{i=1,\ldots,n_1} m_{ij} - \text{median}_{i=1,\ldots,n_2} m_{ij}|$$ \hspace{1cm} (4)

Permutation test can be used in order to set a cut-off values
Metabolomic dataset

The diagrams illustrate the rank of different methods (OPLS-DA, rPLR) across various percentage thresholds (5%, 10%, 15%, 20%, 25%). The box plots show the distribution of ranks for each method at different thresholds, with median, quartiles, and outliers indicated.
R-implementation

Cell-wise outliers

Threshold:

Weighting function:

Aggregation:

Sorting:

Sort according to:

Filename

Download Plot

Without group information
References

https://github.com/walachja/Cell-wise_rPLR