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Motivation
Geochemical compositions (concentrations of chemical
elements e.g. in plants or soil) are often affected by values
exceeding an upper detection limit (UDL), besides that
also by rounded zeros - values below lower detection limit
(LDL).

For Compositional Data (CoDa), only the ratios between the
variables (parts) contain the relevant information.

“Advanced” imputation techniques make use of the
multivariate information preserving the data structure: CoDa
deals with a specific geometry - Aitchison geometry.
Imputation is necessary for statistical analyses that rely on
complete data.
Simple (naive) approach commonly used in practise:
Replacing values above UDL by 1.2 times the UDL.
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CoDa transformation and Tobit regression
Following the ideas as in the Martin-Fernandez et al. (2012)1.
Truncated regression model (τ is truncation point):

E [y | y > τ ] = xtβ + σ

[
φ( τ−xtβ

σ )

1− Φ( τ−xtβ
σ )

]
, (1)

where φ and Φ are density and distribution function of N(0, 1),
respectively.
Initialize values >UDL with naive imputation.
We use the ilr transformation to deal with compositions:

zi =

√
D − 1

D − i + 1
ln

xi

D−1

√√√√ D∏
j=i+1

xj

, i = 1, . . . ,D − 1. (2)

1J. A. Martın-Fernández et al. (2012). “Model-based replacement of
rounded zeros in compositional data: classical and robust approaches”. In:
Computational Statistics & Data Analysis 56.9, s. 2688–2704.
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Approach based on Tobit regression (used for estimation of
censored values):

ẑi1 = zti ,−1 · β̂ + σ̂

φ
(
ψi1−zti,−1·β̂

σ̂

)
Φ

(
ψi1−zti,−1·β̂

σ̂

)
 , (3)

where β̂ are the estimated coefficients, σ̂ is the estimated
standard deviation of the residuals, and ψi1 is the transformed
truncation point.
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Procedure for imputation of values >UDL

The algorithm iteratively imputes parts with values above upper
detection limit:

1. For imputation in each variable a specific ilr representation is
needed.

2. Tobit regression is applied.
3. Values >UDL are replaced by the estimated values.
4. The corresponding inverse ilr transformation is done, i.e.

xi = exp

− i−1∑
j=1

1√
(D − j + 1)(D − j)

zj +

√
D − i

√
D − i + 1

zi

 , i = 2, . . . ,D − 1.

(4)

5. Do the same for next variable and recycle the process again.
6. After all parts are imputed, the algorithm starts again until the

imputations only change marginally.



Motivation Imputation Simulation study Conclusion

Procedure of simulation study based on real data

We use a geochemical data set from NGU Norway with 30
variables and 604 observations (53 chemical elements
analysed).
The Gjøvik Transect - 100 km long, 41 sample sites,
4 mineralisations crosseda.
In total 15 different sample materials (birch, spruce, cowberry,
mushroom, O- and C-horizon for soil, etc.) collected at each
site.
For 13 elements analytical quality and the detection limits
were sufficient to compare results between all sample media.

aClemens Reimann et al. (2018). “The response of 12 different plant
materials and one mushroom to Mo and Pb mineralization along a 100-km
transect in southern central Norway”. In: Geochemistry: Explor., Envir., Anal.
DOI: 10.1144/geochem2017-089.

https://doi.org/10.1144/geochem2017-089
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Procedure of simulation study based on real data

Obrázek: Bedrock geological map showing the Gjøvik transect sample
sitesa
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Simulation is done using R package robCompositions:

1st scenario:
1. For each variable in turn, UDL values are generated according

to certain quantiles from 0.5 - 0.95.

2. For those quantiles compute imputation for classical and
robust regression (downweight outliers), and for the “naive”
approach.

3. Evaluate average effect of all the variables for particular UDLs
(quantile) - two measurements of distortion are used:
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Simulation based on real data

Relative difference in covariance matrix (RDCM). The sample
covariance matrices are computed with the same ilr
transformed observations.

‖S− S∗‖F
‖S‖F

=

√√√√D−1∑
i,j=1

(sij − s∗ij )
2

√√√√D−1∑
i,j=1

s2ij

(5)

Compositional error deviation (CED). Normalized Aitchison
distance between two data sets. M is index for samples
containing at least one value >UDL.

1
nM

∑
k∈M

da(xk , x∗k)

max
{xi ,xj∈X}

{da(xi , xj)}
(6)
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Simulation based on real data
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Original data - Artificial UDL = 2309 (quantile 85%)
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Replacement by Inf
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Imputed data based on Tobit regression
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Imputed data by naive approach
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Comparison
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Simulation based on real data

2nd scenario:

Boxplots for different material separately →
plants, soil (CHO; OHO) and fungi (LAC).
13 variables selected.
Two measurements of distortion are provided.
Sorted according median of classical approach.
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Simulation based on real data
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Simulation based on real data

3rd scenario:

Boxplots for 30 different elements.
Using entire data set.
Sorted according median of classical approach.
Results for RDCM: Naive approach is better than classical
method just for element Ba and better than robust method for
B, Ba, Mn, otherwise it gives clear advantage of imputation
based on Tobit regression.
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Simulation based on real data
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Simulation based on real data

4th scenario:

Varying sample size with 20 iterations.
Using just plant material (birch, spruce, cowberry, etc.)
Computed imputation method for classical approach.
Significant difference of error measurements for small data
and the big one.
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Simulation based on real data
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Key points of the presentation:

When applying multivariate statistical methods, it is necessary
to have a complete data set available.
Classical and robust methods are applied after ilr
transformation.
With increasing proportion of values >UDL, the imputation
method based on Tobit regression performed better than the
naive aproach according to both error measurements.
Imputation produces minor distortion in the covariance
structure of tha data.
Next step: combined strategy for replacement of both UDL
and LDL values.

Thank you for your attention!
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