Replacement of values above an upper detection limit in compositions

Dominika Mikšová joint work with Peter Filzmoser

TU WIEN

Olomouc, September 6, IAMG conference 2018

his activity has received funding from the European Institute of Innovation and echnology (EIT), a body of the European Union, under the Horizon 2020, the EU ramework Programme for Research and Innovation

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Content

2 Imputation

- CoDa transformation and Tobit regression
- Imputation
- Procedure for imputation of values >UDL

Simulation study

• Simulation based on real data

4 Conclusion

Mo	otivation	Imputation 000

Motivation

- Geochemical compositions (concentrations of chemical elements e.g. in plants or soil) are often affected by values exceeding an upper detection limit (UDL), besides that also by rounded zeros - values below lower detection limit (LDL).
- For Compositional Data (CoDa), only the ratios between the variables (parts) contain the relevant information.
- "Advanced" imputation techniques make use of the multivariate information preserving the data structure: CoDa deals with a specific geometry Aitchison geometry.
- Imputation is necessary for statistical analyses that rely on complete data.
- Simple (naive) approach commonly used in practise: Replacing values above UDL by **1.2 times** the UDL.

MotivationImputation
ooSimulation study
oooooooConclusionCoDa transformation and Tobit regression

- Following the ideas as in the Martin-Fernandez et al. (2012)¹.
- Truncated regression model (τ is truncation point):

$$E[y \mid y > \tau] = \mathbf{x}^{t} \boldsymbol{\beta} + \sigma \left[\frac{\phi(\frac{\tau - \mathbf{x}^{t} \boldsymbol{\beta}}{\sigma})}{1 - \Phi(\frac{\tau - \mathbf{x}^{t} \boldsymbol{\beta}}{\sigma})} \right], \quad (1)$$

where ϕ and Φ are density and distribution function of N(0, 1), respectively.

- Initialize values >UDL with naive imputation.
- We use the ilr transformation to deal with compositions:

$$z_{i} = \sqrt{\frac{D-1}{D-i+1}} \ln \frac{x_{i}}{\prod_{j=i+1}^{D-1} x_{j}}, i = 1, \dots, D-1.$$
(2)

¹J. A. Martın-Fernández et al. (2012). "Model-based replacement of rounded zeros in compositional data: classical and robust approaches". In: Computational Statistics & Data Analysis 56.9, s. 2688–2704. (a) = (a) + (a) + (a) + (a) + (a) = (a) + (a)

Motivation	Imputation	Simulation study	Conclusion
	000		

• Approach based on **Tobit regression** (used for estimation of censored values):

$$\hat{z}_{i1} = \mathbf{z}_{i,-1}^{t} \cdot \hat{\boldsymbol{\beta}} + \hat{\sigma} \left[\frac{\phi \left(\frac{\psi_{i1} - \mathbf{z}_{i,-1}^{t} \cdot \hat{\boldsymbol{\beta}}}{\hat{\sigma}} \right)}{\Phi \left(\frac{\psi_{i1} - \mathbf{z}_{i,-1}^{t} \cdot \hat{\boldsymbol{\beta}}}{\hat{\sigma}} \right)} \right], \quad (3)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where $\hat{\beta}$ are the estimated coefficients, $\hat{\sigma}$ is the estimated standard deviation of the residuals, and ψ_{i1} is the transformed truncation point.

The algorithm iteratively imputes parts with values above upper detection limit:

- 1. For imputation in each variable a specific ilr representation is needed.
- 2. Tobit regression is applied.
- 3. Values > UDL are replaced by the estimated values.
- 4. The corresponding inverse ilr transformation is done, i.e.

$$x_{i} = \exp\left(-\sum_{j=1}^{i-1} \frac{1}{\sqrt{(D-j+1)(D-j)}} z_{j} + \frac{\sqrt{D-i}}{\sqrt{D-i+1}} z_{i}\right), i = 2, \dots, D-1.$$
(4)

- 5. Do the same for next variable and recycle the process again.
- 6. After all parts are imputed, the algorithm starts again until the imputations only change marginally.

- We use a geochemical data set from NGU Norway with 30 variables and 604 observations (53 chemical elements analysed).
- The Gjøvik Transect 100 km long, 41 sample sites, 4 mineralisations crossed^a.
- In total 15 different sample materials (birch, spruce, cowberry, mushroom, O- and C-horizon for soil, etc.) collected at each site.
- For 13 elements analytical quality and the detection limits were sufficient to compare results between all sample media.

^aClemens Reimann et al. (2018). "The response of 12 different plant materials and one mushroom to Mo and Pb mineralization along a 100-km transect in southern central Norway". In: <u>Geochemistry: Explor., Envir., Anal.</u> DOI: 10.1144/geochem2017-089.

Motivation

Imputation

Simulation study

Conclusion

Procedure of simulation study based on real data

Obrázek: Bedrock geological map showing the Gjøvik transect sample sites^a

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

000	000000	0

Simulation is done using R package robCompositions:

1st scenario:

- 1. For each variable in turn, UDL values are generated according to certain quantiles from 0.5 0.95.
- For those quantiles compute imputation for classical and robust regression (downweight outliers), and for the "naive" approach.
- Evaluate average effect of all the variables for particular UDLs (quantile) - two measurements of distortion are used:

• Relative difference in covariance matrix (RDCM). The sample covariance matrices are computed with the same ilr transformed observations.

$$\frac{\|\mathbf{S} - \mathbf{S}^*\|_F}{\|\mathbf{S}\|_F} = \frac{\sqrt{\sum_{i,j=1}^{D-1} (s_{ij} - s_{ij}^*)^2}}{\sqrt{\sum_{i,j=1}^{D-1} s_{ij}^2}}$$
(5)

• Compositional error deviation (CED). Normalized Aitchison distance between two data sets. *M* is index for samples containing at least one value >UDL.

$$\frac{\frac{1}{n_M}\sum_{k\in M} d_a(\mathbf{x}_k, \mathbf{x}_k^*)}{\max_{\{\mathbf{x}_i, \mathbf{x}_j\in \mathbf{X}\}} \left\{ d_a(\mathbf{x}_i, \mathbf{x}_j) \right\}}$$
(6)

Motivation	Imputation 000	Simulation study •000000	Conclusion
Simulation based	on real data		

Measurement of distortion

0.6 Naive method Robust method Classical method 0.5 4.0 CED 0.3 0.2 0.1 0.0 Q 0.5 Q 0.6 Q 0.7 Q 0.8 Q 0.9 Upper detection limit

Measurement of distortion

<□> <□> <□> <=> <=> <=> <=> <=> <</p>

Mot	Motivation Imputation 000				Simulation study ⊙●oooooo						Con	Conclusion		
01	rigiı	nal d	ata	- Ar	tificia	al UI	DL =	= 23	09 (0	quan	tile 8	85%))	
	*	AI ‡	Ba ‡	Cd ¢	Ce ‡	Co ‡	Cs ÷	Cu ÷	Fe 🌼	Mn. 🗘	Mo ÷	Na 🔅	Ni ÷	Zn 🗘
	15	23.7	137.48	0.861	0.048	0.589	0.0130	4.42	88	3942	0.0618	10.8	1.167	254.3
	16	26.8	72.62	0.263	0.055	0.802	0.0139	3.61	106	3700	0.1296	12.6	0.942	195.6
	17	25.6	94.50	0.246	0.037	0.646	0.0117	3.72	101	1855	0.0516	13.1	4.433	167.2
	18	31.6	151.95	0.556	0.090	0.673	0.0263	4.33	122	3168	0.0927	21.6	1.069	273.4
	19	32.2	107.70	0.459	0.116	0.120	0.0608	3.71	84	4011	0.1310	49.1	1.260	262.9
	20	37.1	106.42	0.523	0.091	0.145	0.1870	3.54	89	3281	0.1700	24.3	1.096	311.8
	21	43.8	135.49	0.333	0.113	0.326	0.0269	4.67	124	1616	0.0457	32.4	4.827	294.7
	22	42.4	140.18	0.634	0.090	0.096	0.2613	4.99	110	5392	0.3471	107.7	1.581	310.4
	23	46.7	186.99	0.970	0.150	0.087	0.0285	3.55	124	3543	0.1669	26.4	0.515	653.3
	24	21.1	153.52	0.274	0.060	0.268	0.0855	3.59	121	1689	0.1233	16.5	0.459	203.2
	25	38.7	120.68	0.504	0.079	1.190	0.0763	4.30	106	2171	0.0925	23.7	1.758	313.8
	26	42.1	145.07	0.440	0.068	1.246	0.1553	4.52	104	3584	0.0880	18.9	2.166	314.4
	27	69.0	95.48	0.528	0.179	0.783	0.1957	5.22	176	3405	0.2267	45.6	2.219	184.1
	28	54.6	101.54	0.500	0.199	0.342	0.1471	5.50	111	3151	0.1259	30.1	3.095	301.9
	29	41.9	107.19	0.479	0.116	1.225	0.0401	4.26	118	2720	0.1095	28.7	1.471	257.9

30

31

32

33

32.2

40.1

21.4

19.0

37.67

61.76

49.66

49.25

0.502

0.590

0.501

0.345

0.057

0.186

0.053

0.040

0.330

0.319

0.575

0.575

0.0795

0.0266

0.0429

0.0328

4.00

4.83

3.06

3.24

2045

4737

3097

1537

96

101

83

117

0.0759

0.1348

0.0761

0.1573

36.2

40.2

12.9

13.1

1.222

1.032

0.792

1.525

246.3

323.5

242.7

144.4

				000				000000	Э				
Replacement by Inf													
*	AI ¢	Ba ÷	Cd ¢	Ce 🗘	Co 0	Cs ÷	Cu ÷	Fe 0	Mn °	Mo 🗘	Na ‡	Ni ‡	Zn °
15	23.7	137.48	0.861	0.048	0.589	0.0130	4.42	88	Inf	0.0618	10.8	1.167	254.3
16	26.8	72.62	0.263	0.055	0.802	0.0139	3.61	106	Inf	0.1296	12.6	0.942	195.6
17	25.6	9 <mark>4</mark> .50	0.246	0.037	0.646	0.0117	3.72	101	1855	0.0516	13.1	4.433	167.2
18	31.6	151.95	0.556	0.090	0.673	0.0263	4.33	122	Inf	0.0927	21.6	1.069	273.4
19	32.2	107.70	0.459	0.116	0.120	0.0608	3.71	84	Inf	0.1310	49.1	1.260	262.9
20	37.1	106.42	0.523	0.091	0.145	0.1870	3.54	89	Inf	0.1700	24.3	1.096	311.8
21	43.8	135.49	0.333	0.113	0.326	0.0269	4.67	124	1616	0.0457	32.4	4.827	294.7
22	42.4	140.18	0.634	0.090	0.096	0.2613	4.99	110	Inf	0.3471	107.7	1.581	310.4
23	46.7	186.99	0.970	0.150	0.087	0.0285	3.55	124	Inf	0.1669	26.4	0.515	653.3
24	21.1	153.52	0.274	0.060	0.268	0.0855	3.59	121	1689	0.1233	16.5	0.459	203.2
25	38.7	120.68	0.504	0.079	1.190	0.0763	4.30	106	2171	0.0925	23.7	1.758	313.8
26	42.1	145.07	0.440	0.068	1.246	0.1553	4.52	104	Inf	0.0880	18.9	2.166	314. <mark>4</mark>
27	69.0	95.48	0.528	0.179	0.783	0.1957	5.22	176	Inf	0.2267	45.6	2.219	184.1
28	54.6	101.54	0.500	0.199	0.342	0.1471	5.50	111	Inf	0.1259	30.1	3.095	301.9
29	41.9	107.19	0.479	0.116	1.225	0.0401	4.26	118	Inf	0.1095	28.7	1.471	257.9
30	32.2	37.67	0.502	0.057	0.330	0.0795	4.00	96	2045	0.0759	36.2	1.222	246.3
31	40.1	61.76	0.590	0.186	0.319	0.0266	4.83	101	Inf	0.1348	40.2	1.032	323.5
32	21.4	49.66	0.501	0.053	0.575	0.0429	3.06	83	Inf	0.0761	12.9	0.792	242.7
33	19.0	4 9.25	0.345	0.040	0.575	0.0328	3.24	117	1537	0.1573	13.1	1.525	144. <mark>4</mark>

Simulation study

Motivation

◆□> <畳> < Ξ> < Ξ> < □> < □>

Conclusion

1/1	$\sim t$	11/	-11	 \sim	
1	υı	1 V	a		

Imputation

Simulation study

Conclusion

Imputed data based on Tobit regression

*	AI ÷	Ba 🔅	Cd 0	Ce 🔅	Co 🗘	Cs 🔅	Cu 🌣	Fe 🗘	Mn 🌐	Mo 🗦	Na 🔅	Ni °	Zn ‡
15	23.7	137.48	0.861	0.048	0.589	0.0130	4.42	88	3392.272	0.0618	10.8	1.167	254.3
16	26.8	72.62	0.263	0.055	0.802	0.0139	3.61	106	3299.623	0.1296	12.6	0.942	195.6
17	25.6	94.50	0.246	0.037	0.646	0.0117	3.72	101	1855.000	0.0516	13.1	4.433	167.2
18	31.6	151.95	0.556	0.090	0.673	0.0263	4.33	122	3540.451	0.0927	21.6	1.069	273.4
19	32.2	107.70	0.459	0.116	0.120	0.0608	3.71	84	4016.379	0.1310	49.1	1.260	262.9
20	37.1	106.42	0.523	0.091	0.145	0.1870	3.54	89	4395.477	0.1700	24.3	1.096	311.8
21	43.8	135.49	0.333	0.113	0.326	0.0269	4.67	124	1616.000	0.0457	32.4	4.827	294.7
22	42.4	140.18	0.634	0.090	0.096	0.2613	4.99	110	5188.908	0.3471	107.7	1.581	310.4
23	46.7	186.99	0.970	0.150	0.087	0.0285	3.55	124	4517.841	0.1669	26.4	0.515	653.3
24	21.1	153.52	0.274	0.060	0.268	0.0855	3.59	121	1689.000	0.1233	16.5	0.459	203.2
25	38.7	120.68	0.504	0.079	1.190	0.0763	4.30	106	2171.000	0.0925	23.7	1.758	313.8
26	42.1	145.07	0.440	0.068	1.246	0.1553	4.52	104	4387.731	0.0880	18.9	2.166	31 4 .4
27	69.0	95.48	0.528	0.179	0.783	0.1957	5.22	176	3600.537	0.2267	45.6	2.219	184.1
28	54.6	101.54	0.500	0.199	0.342	0.1471	5.50	111	4182.040	0.1259	30.1	3.095	301.9
29	41.9	107.19	0.479	0.116	1.225	0.0401	4.26	118	3536.009	0.1095	28.7	1.471	257.9
30	32.2	37.67	0.502	0.057	0.330	0.0795	4.00	96	2045.000	0.0759	36.2	1.222	246.3
31	40.1	61.76	0.590	0.186	0.319	0.0266	4.83	101	3371.816	0.1348	40.2	1.032	323.5
32	21.4	49.66	0.501	0.053	0.575	0.0429	3.06	83	3238.602	0.0761	12.9	0.792	242.7
33	19.0	49.25	0.345	0.040	0.575	0.0328	3.24	117	1537.000	0.1573	13.1	1.525	144.4

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

うくぐ

Motiva	tion			Imputat 000	ion			Simulatio 0000●00	on study			Con	clusion
lmp	uted	data	a by	naiv	e ap	proa	ch						
*	AI ‡	Ba ‡	Cd ÷	Ce ÷	Co 🔅	Cs ÷	Cu ‡	Fe 0	Mn ÷	Mo ÷	Na ÷	Ni °	Zn ÷
15	23.7	137.48	0.861	0.048	0.589	0.0130	4.42	88	2770.8	0.0618	10.8	1.167	254.3
16	26.8	72.62	0.263	0.055	0.802	0.0139	3.61	106	2770.8	0.1296	12.6	0.942	195.6
17	25.6	94.50	0.246	0.037	0.646	0.0117	3.72	101	1855.0	0.0516	13.1	4.433	167.2
18	31.6	151.95	0.556	0.090	0.673	0.0263	4.33	122	2770.8	0.0927	21.6	1.069	273.4
19	32.2	107.70	0.459	0.116	0.120	0.0608	3.71	84	2770.8	0.1310	49.1	1.260	262.9
20	37.1	106.42	0.523	0.091	0.145	0.1870	3.54	89	2770.8	0.1700	24.3	1.096	311.8
21	43.8	135.49	0.333	0.113	0.326	0.0269	4.67	124	1616.0	0.0457	32.4	4.827	294.7
22	42.4	140.18	0.634	0.090	0.096	0.2613	4.99	110	2770.8	0.3471	107.7	1.581	310.4
23	46.7	186.99	0.970	0.150	0.087	0.0285	3.55	124	2770.8	0.1669	26.4	0.515	653.3
24	21.1	153.52	0.274	0.060	0.268	0.0855	3.59	121	1689.0	0.1233	16.5	0.459	203.2
25	38.7	120.68	0.504	0.079	1.190	0.0763	4.30	106	2171.0	0.0925	23.7	1.758	313.8
26	42.1	145.07	0.440	0.068	1.246	0.1553	4.52	104	2770.8	0.0880	18.9	2.166	314. <mark>4</mark>
27	69.0	95.48	0.528	0.179	0.783	0.1957	5.22	176	2770.8	0.2267	45.6	2.219	184.1
28	54.6	101.54	0.500	0.199	0.342	0.1471	5.50	111	2770.8	0.1259	30.1	3.095	301.9
29	41.9	107.19	0.479	0.116	1.225	0.0401	4.26	118	2770.8	0.1095	28.7	1.471	257.9
30	32.2	37.67	0.502	0.057	0.330	0.0795	4.00	96	2045.0	0.0759	36.2	1.222	246.3
31	40.1	61.76	0.590	0.186	0.319	0.0266	4.83	101	2770.8	0.1348	40.2	1.032	323.5
32	21.4	49.66	0.501	0.053	0.575	0.0429	3.06	83	2770.8	0.0761	12.9	0.792	242.7
33	19.0	49.25	0.345	0.040	0.575	0.0328	3.24	117	1537.0	0.1573	13.1	1.525	144. <mark>4</mark>

Motivation

Comparison

	Mn ÷		Mn ÷
15	3942	Tobit reg.	3392.272
16	3700		3299.623
17	1855		1855.000
18	3168		3540.451
19	4011		4016.379
20	3281		4395.477
21	1616		1616.000
22	5392		5188.908
23	3543		4517.841
24	1689		1689.000
25	2171		2171.000
26	3584		4387.731
27	3405		3600.537
28	3151		4182.040
29	2720		3536.009
30	2045		2045.000
31	4737		3371.816
32	3097		3238.602
33	1537		1537.000

Mn ÷		Mn ÷	
2770.8	"naive"	3942	15
2770.8	$\leq \Box$	3700	16
1855.0		1855	17
2770.8		3168	18
2770.8		4011	19
2770.8		3281	20
1616.0		1616	21
2770.8		5392	22
2770.8		3543	23
1689.0		1689	24
2171.0		2171	25
2770.8		3584	26
2770.8		3405	27
2770.8		3151	28
2770.8		2720	29
2045.0		2045	30
2770.8		4737	31
2770.8		3097	32
1537.0		1537	33

Motivation	Imputation 000	Simulation study 000000●	Conclusion
Simulation based	on real data		

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

2nd scenario:

- Boxplots for different material separately \rightarrow plants, soil (CHO; OHO) and fungi (LAC).
- 13 variables selected.
- Two measurements of distortion are provided.
- Sorted according median of classical approach.

Motivation	Imputation 000	Simulation study 000000●	Conclusion
Simulation based	on real data		

Error measurement for different material

Order according median of classical approach

Error measurement for different material

Order according median of classical approach

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Motivation	Imputation 000	Simulation study 000000●	Conclusion
Simulation based	on real data		

3rd scenario:

- Boxplots for 30 different elements.
- Using entire data set.
- Sorted according median of classical approach.
- Results for RDCM: Naive approach is better than classical method just for element Ba and better than robust method for B, Ba, Mn, otherwise it gives clear advantage of imputation based on Tobit regression.

ション ふゆ く は マ く ほ マ う く し マ

Motivation	Imputation 000	Simulation study 000000●	Conclusion	
Simulation base	ed on real data			
Error measurement for entire data set				
t - Classical - Robust -	Naive			

Order according median of classical approach

Order according median of classical approach

Motivation	Imputation 000	Simulation study 000000●	Conclusion
Simulation based	on real data		

4th scenario:

- Varying sample size with 20 iterations.
- Using just plant material (birch, spruce, cowberry, etc.)
- Computed imputation method for classical approach.
- Significant difference of error measurements for small data and the big one.

ション ふゆ く は マ く ほ マ う く し マ

Motivation	Imputation 000	Simulation study 000000●	Conclusion
Cimulation	based on real data		

Simulation based on real data

Motivation	Imputation 000	Simulation study 0000000	Conclusion
Key points of th	e presentation:		

- When applying multivariate statistical methods, it is necessary to have a complete data set available.
- Classical and robust methods are applied after ilr transformation.
- With increasing proportion of values >UDL, the imputation method based on Tobit regression performed better than the naive aproach according to both error measurements.
- Imputation produces minor distortion in the covariance structure of tha data.
- Next step: combined strategy for replacement of both UDL and LDL values.

Thank you for your attention!

Motivation	Imputation 000	Simulation study	Conclusion
References			

- J. J. Egozcue, V. Pawlowsky-Glahn, G. Mateu-Figueras, and C. Barceló-Vidal (2003). Isometric logratio transformations for compositional data analysis. Mathematical Geology, **35**(3), pp. 279-300.
- J. A. Martin-Fernandez, K. Hron, M. Templ, P. Filzmoser, and J. Palarea-Albaladejo (2012). Model-based replacement of rounded zeros in compositional data: classical and robust approaches. <u>Computational Statistics & Data Analysis</u>, **56**(9), 2688–2704.
 - C. Reimann, P. Englmaier, B. Flem, O. A. Eggen, T. E. Finne, M. Andersson P. Filzmoser (2018). The response of 12 different plant materials and one mushroom to Mo and Pb mineralization along a 100-km transect in southern central Norway. <u>Geochemistry: Exploration, Environment, Analysis</u>, **18**(3), 204–215.
 - M. Templ et al. (2018). robCompositions: Robust Estimation for Compositional Data. <u>R package version 2.0.7.</u>