

June 7-8, 2018

**TU Wien** 

http://vss.tuwien.ac.at/

Edited by:

Philipp Hans

Gerald Artner Johanna Grames Heinz Krebs Hamid Reza Mansouri Khosravi Taraneh Rouhi

Cover photo by Matthias Heisler

© 2018 Published by Book-of-Abstracts.com Heinz A. Krebs Dipl.-Ing. Jubiläumsstrasse 17/2 2352 Gumpoldskirchen / Austria

Printed and bound in the Czech Republic

ISBN 978-3-9504017-8-3

# **Contents:**

| Welcome Messages                                              |      |
|---------------------------------------------------------------|------|
| from the Organizers                                           | p 5  |
| by the Rector and the Vice Rector for Research and Innovation | p 7  |
|                                                               |      |
| Index of Contributions                                        |      |
| IDS – Intelligent Data Systems                                | p 10 |
| IND – INDUSTRY 4.0 – From Smart Factory to Smart City         | р 11 |
| NSM – Novel and Smart Materials                               | р 13 |
|                                                               |      |
| Introductions of research fields and Abstracts                |      |
| Introduction Intelligent Data Systems                         | p 16 |
| Abstracts IDS.1 – IDS.9                                       | p 18 |
| Introduction INDUSTRY 4.0 – From Smart Factory to Smart City  | p 36 |
| Abstracts IND.1 – IND.16                                      | p 38 |
| Introduction Novel and Smart Materials                        | p 70 |
| Abstracts NSM.1 – NSM.31                                      | p 72 |
|                                                               |      |

Author Index

р 134

| Introduction by Agata Ciabattoni, Hong-Linh Truong and Ezio Bartocci |                                                                                                                                                            |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IDS.1                                                                | Setareh <b>Zafari</b><br>E330 - Institute of Management Science<br>ARTIFICIAL AGENTS IN SOCIO-TECHNICAL SYSTEM                                             |
| IDS.2                                                                | Lukas <b>Winiwarter</b><br>E120 - Department of Geodesy and Geoinformation<br>CLASSIFICATION OF 3D POINT CLOUDS USING DEEP NEURAL NETWORKS                 |
| IDS.3                                                                | Dragos-Cristian <b>Vasilescu</b><br>E330 - Institute of Management Scienc<br>MACHINE INVENTION SYSTEMS: A NEW APPROACH TO INNOVATION                       |
| IDS.4                                                                | Lilly Maria <b>Treml</b><br>E191 - Institute of Computer Engineering<br>SIMULATING THE HEART USING MAXELER DATAFLOW SUPER-COMPUTING AND<br>FPGA            |
| IDS.5                                                                | Andras <b>Mate</b><br>TU Wien, Vienna, Austria<br>CONTROLLED AUTO-ADJUSTEMENT OF CONSTRUCTION DETAILS VIA BIM-<br>ENVIRONMENTS AND PARAMETRIC MODELLING    |
| IDS.6                                                                | Ulrich <b>Pont</b><br>E259 - Institute of Architectural Sciences<br>CAN FORMAL MODELLING APPROACHES SUPPORT BUILDING PLANING AND<br>PERFORMANCE MODELLING? |
| IDS.7                                                                | Lukas <b>Gnam</b><br>E360 - Institute for Microelectronics<br>COMPARISON OF HIGH-PERFORMANCE GRAPH COLORING ALGORITHMS                                     |
| IDS.8                                                                | Mahnameh <b>Taheri</b><br>E259 - Institute of Architectural Sciences<br>A GENERAL SCHEMA FOR REPRESENTATION OF MONITORED DATA                              |
| IDS.9                                                                | Alexander <b>Pacha</b><br>E193 - Institut für Visual Computing and Human-Centered Technology<br>SELF-LEARNING OPTICAL MUSIC RECOGNITION                    |

| Introduction by Iva Kovacic and Selim Erol |                                                                                                                                                                       |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IND.1                                      | Maria Lara Miro<br>E104 - Institute of Discrete Mathematics and Geometry<br>GEOMETRIC COMPUTATION TO SURFACE DESIGN                                                   |
| IND.2                                      | Aryan Shahabian<br>E259 - Institute of Architectural Sciences<br>INTERNET OF THINGS AND THE FUTURE OF LIFE-CYCLE ASSESSMENT IN SMART<br>WORLD                         |
| IND.3                                      | Titanilla <b>Komenda</b><br>E330 - Institute of Management Science<br>CYCLE TIME OPTIMISATION IN SELF-ORGANISING PRODUCTION LINES WITH<br>HUMAN MACHINE COLLABORATION |
| IND.4                                      | Philipp Hold<br>E330 - Institute of Management Science<br>THE CYBER PHYSICAL ASSEMBLY SYSTEM OF TU WIEN PILOT FACTORY<br>INDUSTRY 4.0                                 |
| IND.5                                      | Sabine Horvath<br>E120 - Department of Geodesy and Geoinformation<br>CALIBRATION OF A ROBOT ARM USING LASER TRACKER MEASUREMENTS AND<br>ARTIFICIAL NEURAL NETWORKS    |
| IND.6                                      | Nikias <b>Schachinger</b><br>E260 - Institute of Urban Design and Landscape Architecture<br>ELEONAS ATHEN - INDUSTRY 4.0 CONCEPT                                      |
| IND.7                                      | Robert Tomic<br>E260 - Institute of Urban Design and Landscape Architecture<br>INDUSTRIALIZATION OF THE PROCESSES IN THE KITCHEN                                      |
| IND.8                                      | Ulrich <b>Pont</b><br>E259 - Institute of Architectural Sciences<br>INTERFACING ARCHITECTURAL DESIGN AND INDUSTRY 4.0 CONCEPTS: A CASE<br>STUDY                       |
| IND.9                                      | Elahe <b>Ghalebi</b><br>E191 - Institute of Computer Engineering<br>WAFERMAP PATTERNS CLUSTERING VIA VARIATIONAL AUTOENCODERS                                         |
| IND.10                                     | Galina <b>Paskaleva</b><br>E194 - Institute of Information Systems Engineering<br>LOSS- AND DISTORTION-FREE TRANSLATION BETWEEN DATA MODELS IN OPEN<br>BIM            |
| IND.11                                     | Martin Koller<br>E302 - Institute of Energy Systems and Thermodynamics<br>MODELLING METHOD FOR THE OPTIMAL OPERATION OF SENSIBLE THERMAL<br>ENERGY STORAGES           |

| IND.12 | Mario <b>Potente</b><br>E302 - Institute of Energy Systems and Thermodynamics                                                                 |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|        | MULTI-SCENARIO SIMULATION AND EXERGY ANALYSIS OF A DISTRICT HEATING<br>NETWORK FOR A CASE STUDY IN THE CITY OF VIENNA                         |
| IND.13 | Aída <b>Santana Sosa</b><br>E259 - Institute of Architectural Sciences                                                                        |
|        | CONSTRUCTION MATTERS: INCREASING THE EFFICIENY IN DESIGN AND CONSTRUCTION PROCESS                                                             |
| IND.14 | Julian <b>Kager</b><br>E166 - Institute of Chemical, Environmental and Bioscience Engineering                                                 |
|        | ENGINEER'S PLAYGROUND: INTERFACING STUDENTS AND BIOREACTORS FOR<br>TEACHING AND RESEARCH                                                      |
| IND.15 | Christoph <b>Luckeneder</b><br>E384 - Institute of Computer Technology<br>IN-FIELD SIMULATION FOR PROCESS TUNING IN INDUSTRY 4.0 APPLICATIONS |
| IND.16 | Anna <b>Engedy</b><br>E259 - Institute of Architectural Sciences<br>COMPUTATIONAL PREDICTION OF SOUND PROPAGATION IN URBAN CANYONS            |

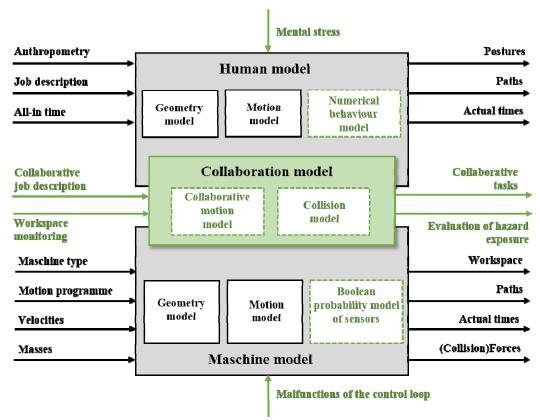
| Introduction by Thomas Konegger and Stefan Scheiner |                                                                                                                      |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| NSM.1                                               | Suzanne Lancaster<br>E362 - Institute of Solid State Electronics                                                     |
|                                                     | HETEROSTRUCTURE FORMATION IN III-V NANOWIRES GROWN ON SILICON                                                        |
| NSM.2                                               | Samira <b>Aien</b><br>E259 - Institute of Architectural Sciences                                                     |
|                                                     | PERFORMANCE EVALUATION OF VARIOUS FINISHING LAYERS FOR AEROGEL<br>PLASTER                                            |
| NSM.3                                               | Richard <b>Obmann</b><br>E164 - Institute of Chemical Technologies and Analytics                                     |
|                                                     | POROUS POLYMER DERIVED SICN-CERAMIC WITH DIRECTIONAL PORE<br>STRUCTURE OBTAINED BY FREEZE CASTING                    |
| NSM.4                                               | Sonja <b>Baumgartner</b><br>E308 – Institute of Materials Science and Technology                                     |
|                                                     | DIGITAL MATERIALS: A HYBRID 3D-PRINTING SYSTEM                                                                       |
| NSM.5                                               | Ulrich <b>Pont</b><br>E259 - Institute of Architectural Sciences                                                     |
|                                                     | EXPLORING THE TECHNICAL REQUIREMENTS OF VACUUM GLAZING FOR<br>CONTEMPORARY WINDOW CONSTURUCTIONS                     |
| NSM.6                                               | Thomas <b>Haunold</b><br>E165 - Institute of Materials Chemistry                                                     |
|                                                     | LOW ENERGY ION SCATTERING (LEIS) - INTRODUCTION TO THEORY AND<br>PRACTICAL APPLICATION                               |
| NSM.7                                               | Stefan <b>Helfert</b><br>E163 - Institute of Applied Synthetic Chemistry                                             |
|                                                     | TAILOR-MADE POLYMER INTERFACES - SURFACES ON DEMAND                                                                  |
| NSM.8                                               | Matthias <b>Nebel</b><br>E164 - Institute of Chemical Technologies and Analytics                                     |
|                                                     | MODIFICATION OF PRECERAMIC POLYMERS AND INVESTIGATION OF THEIR<br>POROSITY DEVELOPMENT                               |
| NSM.9                                               | Johannes <b>Rauchenecker</b><br>E164 - Institute of Chemical Technologies and Analytics                              |
|                                                     | COATING OF TUBULAR SILICON NITRIDE SUPPORT STRUCTURES WITH POLYMER<br>DERIVED CERAMIC MEMBRANE LAYERS                |
| NSM.10                                              | Vera <b>Truttmann</b><br>E165 - Institute of Materials Chemistry                                                     |
|                                                     | FUNCTIONALIZATION OF SUPPORTED Au11 NANOCLUSTERS THROUGH LIGAND<br>EXCHANGE AND COMPARISON TO LIQUID PHASE REACTIONS |

| NSM.11 | Tobia <b>Cavalli</b><br>E165 - Institute of Materials Chemistry                                                                                                                                 |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | DESIGN OF NON-SPHERICAL COLLOIDAL POLYMER PARTICLES FOR SELF-<br>ASSEMBLED MATERIALS                                                                                                            |
| NSM.12 | Maciej <b>Kubeł</b><br>AGH University of Science and Technology, Krakow, Poland                                                                                                                 |
|        | ADSORPTION OF CO₂ ON ACTIVATED LIGNITE                                                                                                                                                          |
| NSM.13 | Elżbieta <b>Jószczuk</b><br>AGH University of Science and Technology, Krakow, Poland                                                                                                            |
|        | OBTAINING A LIGNITE-BASED BIOCHAR DISPLAYING ADSORPTION PROPERTIES                                                                                                                              |
| NSM.14 | Alvaro <b>Peinado</b><br>E165 - Institute of Materials Chemistry                                                                                                                                |
|        | Ag <sub>x</sub> (SR) NANOCLUSTERS SUPPORTED ON ZEOLITES AS CATALYSTS FOR<br>ENVIRONMENTAL PROCESSES                                                                                             |
| NSM.15 | Raffael <b>Rameshan</b><br>E165 - Institute of Materials Chemistry                                                                                                                              |
|        | STABILITY OF CATALYSTS IN SOLID OXIDE FUEL CELLS                                                                                                                                                |
| NSM.16 | Fatemeh Hassanli<br>E166 - Institute of Chemical, Environmental and Bioscience Engineering                                                                                                      |
|        | INVESTIGATION AND RECOVERY OF FLARE GAS USING A MEMBRANE<br>SEPARATION UNIT TO ENHANCE METHANOL SYNTHESIS PRODUCTION IN THE<br>PRESENCE OF CATALYST DEACTIVATION                                |
| NSM.17 | Stephan <b>Pollitt</b><br>E165 - Institute of Materials Chemistry                                                                                                                               |
|        | DEVELOPMENT OF A TRULY HOMOGENEOUS AND MONODISPERSE CATALYTIC<br>SYSTEM IN MEANS OF THIOLATE PROTECTED GOLD NANOCLUSTERS                                                                        |
| NSM.18 | Elise <b>Zerobin</b><br>E163 - Institute of Applied Synthetic Chemistry                                                                                                                         |
|        | MOLECULAR DESIGN TOWARDS NOVEL PHOTO-INITIATORS WITH INCREASED<br>TWO-PHOTON ABSORPTION CROSS SECTION                                                                                           |
| NSM.19 | Patrick <b>Steinbauer</b><br>E163 - Institute of Applied Synthetic Chemistry                                                                                                                    |
|        | RAFT POLYMERS AS ADHESION MOTIFS FOR BONE GLUE APPLICATIONS                                                                                                                                     |
| NSM.20 | Katharina <b>Ehrmann</b><br>E163 - Institute of Applied Synthetic Chemistry<br>THERMOPLASTIC POLYURETHANES AND THEIR APPLICATION AS ELECTROSPUN<br>BIODEGRADABLE SOFT TISSUE MEDICAL PROSTHESES |
| NSM.21 | Elisabeth <b>Staudigl</b><br>E325 - Institute of Mechanics and Mechatronics                                                                                                                     |
|        | MODELING ELECTRO-ACTIVE DIELECTRIC AND ELECTROSTRICTIVE ELASTOMER<br>PLATES IN THE FRAMEWORK OF NONLINEAR STRUCTURAL ELECTRO-MECHANICS                                                          |
|        |                                                                                                                                                                                                 |

| NSM.22 | Benjamin <b>Klebel</b><br>E138 - Institute of Solid State Physics                                                       |
|--------|-------------------------------------------------------------------------------------------------------------------------|
|        | ELECTRONIC TRANSPORT PROPERTIES AND FERMI SURFACE TOPOLOGY IN<br>CUPRATE SUPERCONDUCTORS                                |
| NSM.23 | Josef <b>Fuchs</b><br>E166 - Institute of Chemical, Environmental and Bioscience Engineering                            |
|        | STATE OF RESEARCH IN THE FIELD OF DUAL FLUIDIZED BED STEAM GASIFICATION OF BIOMASS WITH IN-SITU CO <sub>2</sub> CAPTURE |
| NSM.24 | Andreas <b>Nagl</b><br>E165 - Institute of Materials Chemistry                                                          |
|        | SELECTIVE ETHANOL OXIDATION ON SUPPORTED BIMETALLIC GOLD<br>CATALYSTS: BASE CHEMICALS FROM "GREEN" PROCESSES            |
| NSM.25 | Philipp <b>Hans</b><br>E057 - X-ray center XRC                                                                          |
|        | CRYSTALLOGRAPHY AS A VERSATILE RESEARCH TOOL                                                                            |
| NSM.26 | Noelia <b>Barrabes</b><br>E165 - Institute of Materials Chemistry                                                       |
|        | Aun(SR)m NANOCLUSTERS: TOWARD ATOMICALLY DESIGN NANOCATALYSTS                                                           |
| NSM.27 | Christoph <b>Rameshan</b><br>E165 - Institute of Materials Chemistry                                                    |
|        | ENHANCING CATALYTIC ACTIVITY BY ELECTROCHEMICALLY DRIVEN METAL<br>NANOPARTICLE EXSOLUTION                               |
| NSM.28 | Clara <b>Garcia</b><br>E165 - Institute of Materials Chemistry                                                          |
|        | SUPPORTED GOLD NANOCLUSTERS: EFFECT OF CLUSTER SIZE AND OXIDE<br>MATERIAL UNDER OXIDATION PROCESSES                     |
| NSM.29 | Jia <b>Wang</b><br>E165 - Institute of Materials Chemistry                                                              |
|        | MATERIAL DESIGN FOR PHOTOCATALYTIC H <sub>2</sub> PRODUCTION FROM WATER<br>SPLITTING                                    |
| NSM.30 | Elias K <b>. Bumbaris</b><br>E165 - Institute of Materials Chemistry                                                    |
|        | ENVIRONMENTALLY FRIENDLY GENERATION OF HIGH-PERFORMANCE<br>POLYIMIDE FOAMS USING MONOMER SALTS                          |
| NSM.31 | Florentyna <b>Sosada-Ludwikowska</b><br>E362 - Institute of Solid State Electronics                                     |
|        | DRY TRANSFER PROCESS OF MO <sub>X</sub> NANOWIRES USED FOR GAS SENSING<br>APPLICATIONS                                  |

## CYCLE TIME OPTIMISATION IN SELF-ORGANISING PRODUCTION LINES WITH HUMAN MACHINE COLLABORATION

Titanilla Komenda, Wilfried Sihn


E330 - Institute of Management Science at TU Wien

## **INTRODUCTION**

Human machine collaboration refers to humans directly working together with machines on the same workpiece and in the same workspace. In self-organising production lines, humans and machines determine their location of collaboration based on different parameters individually. Thus, cycle time estimation is not trivial, as it depends on order sequence, availability, distance to other collaboration partners, motion parameters and obstacles on the path [1]. In this sense, there is a need for a simulation model, predicting cycle time for this kind of production lines.

## MAIN IDEA AND RESEARCH FIELDS

Even though, digital machine and human models already exist to do feasibility, cycle time and ergonomic analyses, they are not used for a consistent planning process in terms of cycle time estimation of collaborative tasks [2]. State-of-the-art simulation tools consider humans and machines separately when it comes to cycle time estimation [3]. One of the main reasons is the different approach regarding motion modelling [4]. As digital human models are also considered as multi-body systems, the high complexity of human motion modelling leads to a lack of performing tasks on moved objects [5]. Furthermore, models mapping malfunctions of the control system or the psychophysiology of humans are not existent and integrated in such consistent process planning tools [6].



Picture 1: Extended model parameters for human machine systems

### **RESEARCH ACTIVITIES AND RELEVANCE**

In this sense, influencing factors of cycle time in collaborative tasks are analyzed [7]. A simulation model is developed, considering not only motion models but also a logical model of the control system including malfunctions as well as a psychophysiological model of collaborative partners. Based on an analysis and classification of collaborative tasks, requirements for modelling human machine collaboration are defined. The collaborative system is then modelled as a simulation-ready hybrid model [8], which is optimised by a multi-criteria optimisation considering production requirements and constraints. Even though, design parameters for collaborative tasks are often in conflict with cycle time and productivity, there is an optimal set of collaborative parameters meeting this trade-off. Based on multi-criteria optimisation an optimal set of physical, psychophysiological and operational costs can be determined for each step of production. The application of the model is shown on different use-cases.

#### ACKNOWLEDGEMENT

This project was initially funded by the Federal Ministry for Transport, Innovation and Technology (bmvit). Experiments validating the simulation model were performed in the TU Wien Industry 4.0 Pilot Factory, located in the Aspern Technology Center of the Vienna Business Agency. The Pilot Factory is partly funded by the Federal Ministry for Transport, Innovation and Technology (bmvit), the Vienna University of Technology (TU Wien) and participating companies.

#### REFERENCES

- [1] Cherubini, A., Passama, R., Crosnier, A., Lasnier, A. und Fraisse, P. 2016, 'Collaborative manufacturing with physical human-robot interaction', Robotics and Computer-Integrated Manufacturing, Band 40, Ausgabe August 2016, S. 1-13.
- [2] Leidholdt, W. 2014, 'Die Simulation von Mensch-Roboter-Kollaboration unabdingbar für die Prozessgestaltung', in Produktion und Arbeitswelt 4.0. Aktuelle Konzepte für die Praxis: TBI2014 – 15. Tage des Betriebs- und Systemingenieurs, E. Müller (Hrsg.), Wissenschaftliche Schriftenreihe des Instituts für Betriebswissenschaften und Fabriksysteme, Chemnitz, S. 109-115.
- [3] Komenda, T., Malisa, V. und Leidholdt, W. 2016, 'Modellierung von Arbeit an bewegten Objekten. Digitale Menschmodelle f
  ür Mensch-Maschine-Kollaboration', atp edition. Automatisierungstechnische Praxis, Band 2016, Ausgabe 12, M
  ünchen, S. 34-43.
- [4] Komenda, T. und Leidholdt, W. 2016, 'ema a Software Tool for Planning Human-Machine-Collaboration', SNE Simulation Notes Europe, Band 26, Ausgabe 1, Wien, S. 27-32.
- [5] Komenda, T. und Breitenecker, F. 2016b, 'Modellierung von Arbeit an bewegten Objekten in kollaborativen Betriebsformen', in Proceedings of the 23rd Symposium Simulationstechnik (ASIM 2016), T. Wiedemann (Hrsg.), ARGESIM, Dresden, S. 17-23.
- [6] Komenda, T. und Breitenecker, F. 2016a, 'Nonlinearity in Collaborative Applications incorporating Humans and Machines: Identification and Modelling', in Proceedings of the Vienna Young Scientists Symposium (VSS), B. Ullmann (Hrsg.), Book-of-Abstracts.com, Wien, S. 94-95.
- [7] Komenda, T. 2016, 'Systematic Analysis of Collaborative Human-Machine-Scenarios: Task Execution on Moved Objects', in Proceedings of the 14th Industrial Simulation Conference (ISC'14), N. Vasiliu (Hrsg.), EUROSIS-ETI, Bucharest, S. 47-49.
- [8] Deatcu, C. und Pawletta, T. 2009, 'Towards Dynamic Structure Hybrid DEVS for Scientific and Technical Computing Environments', SNE Simulation Notes Europe, Band 19, Ausgabe 3-4, S. 75-78.