
TARGET TRACKING USING A DISTRIBUTED PARTICLE-PDA FILTER WITH
SPARSITY-PROMOTING LIKELIHOOD CONSENSUS

Rene Repp?, Pavel Rajmic†, Florian Meyer‡, and Franz Hlawatsch?

?Institute of Telecommunications, TU Wien, Vienna, Austria
†Department of Telecommunications, Brno University of Technology, Brno, Czech Republic

‡LIDS, Massachusetts Institute of Technology, Cambridge, MA, USA

ABSTRACT
We propose a distributed particle-based probabilistic data associa-
tion filter (PDAF) for target tracking in the presence of clutter and
missed detections. The proposed PDAF employs a new “sparsity-
promoting” likelihood consensus that uses the orthogonal matching
pursuit for a sparse approximation of the local likelihood functions.
Simulation results demonstrate that, compared to the conventional
likelihood consensus based on least-squares approximation, large
savings in intersensor communication can be obtained without com-
promising the tracking performance.

Index Terms— Distributed target tracking, sensor network, prob-
abilistic data association, likelihood consensus, orthogonal matching
pursuit.

1. INTRODUCTION

Tracking a moving target under measurement-origin uncertainty [1–
3] is an important problem in many applications [4, 5]. A popular
Bayesian approach to this problem is the probabilistic data asso-
ciation filter (PDAF) [4]. Here, we consider a generalized PDAF
that uses a particle implementation to accommodate nonlinear and
non-Gaussian state-space models [6, 7], and we furthermore con-
sider a distributed multisensor mode of operation within a decentral-
ized sensor network. Distributed multisensor filters have numerous
advantages related to performance, robustness, computational com-
plexity, scalability, and communication cost [8].

We propose a distributed particle-based multisensor PDAF that
relies on the distributed particle filtering algorithm presented in [9,
10] but uses a new “sparsity-promoting” variant of the likelihood
consensus (LC) to reduce intersensor communication. The proposed
distributed PDAF extends the distributed particle filter of [9, 10] to
scenarios with clutter and missed detections. The proposed sparsity-
promoting LC uses the orthogonal matching pursuit (OMP) [11, 12]
for local likelihood function approximation. The OMP allows an
easy specification of the number of significant approximation coef-
ficients, which leads to a flexible tradeoff between approximation
accuracy, computational complexity, and communication cost. Our
simulation results demonstrate that using the OMP, large savings in
intersensor communication can be obtained without compromising
the tracking performance.

This paper is organized as follows. The system model is described
in Section 2. In Section 3, we develop the distributed particle-based
PDAF, and in Section 4, we present the sparsity-promoting LC
scheme. Finally, simulation results are reported in Section 5.
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(GAČR) under grant 17-19638S, and by the Czech National Sustainability
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2. SYSTEM MODEL AND STATISTICAL FORMULATION

We consider an object (“target”) with an unknown time-varying state
xn ∈ Rd, where n ∈ N0 is a discrete time index. The state evolves
according to a Markovian dynamic model with a known state-
transition probability density function (pdf) f(xn|xn−1). There are
S possibly heterogeneous sensors, and each sensor s ∈ {1, . . . , S}
is able to communicate with a certain set of “neighbor” sensors,
Ns ⊆ {1, . . . , S} \ {s}. We assume that the corresponding com-
munication graph is connected, i.e., there is a connection—possibly
composed of multiple hops—between any two sensors.

Each sensor suffers from a measurement-origin uncertainty that
results from clutter and missed detections. Specifically, at time n,
sensor s ∈ {1, . . . , S} produces a random numberM (s)

n of measure-
ments z

(s)
n,m , m ∈

{
1, . . . ,M

(s)
n

}
via a detection process. These

measurements consist of at most one target-originated measurement
and unwanted clutter measurements (false alarms). For the deriva-
tion of the local likelihood function, we make the following assump-
tions about the measurement model [1,2]: (A1) At time n, the target
is detected by sensor swith probabilityP (s)

d (xn). If detected by sen-
sor s, the target generates exactly one measurement z

(s)
n,m at sensor s

according to the conditional pdf f (s)
t

(
z
(s)
n,m

∣∣xn). (A2) For each sen-
sor s, the number of clutter measurements is Poisson distributed with
mean µ(s), and the clutter measurements are independent and identi-
cally distributed (iid) with pdf f (s)

c (·). (A3) The sensors do not know
whether their measurements are target-originated or clutter. (A4)
The measurements of different sensors, z

(s)
n ,

(
z
(s)
n,1, . . . , z

(s)

n,M
(s)
n

)
,

are conditionally independent given the state xn. With these as-
sumptions, the local likelihood function (LLF) of sensor s is given
by [2, Sec. 4.5]

f
(
z(s)
n

∣∣xn) = C
(
z(s)
n

)[(
1−P (s)

d (xn)
)
µ(s)

+ P
(s)
d (xn)

M
(s)
n∑

m=1

f
(s)
t

(
z
(s)
n,m

∣∣xn)
f
(s)
c
(
z
(s)
n,m

) ]
, (1)

where C
(
z
(s)
n

)
is a normalization constant. Without clutter and

missed detections (i.e., M (s)
n =1, µ(s)= 0, P (s)

d (xn) =1), the LLF
in (1) would simplify to f

(
z
(s)
n

∣∣xn)= f
(s)
t

(
z
(s)
n

∣∣xn).
For optimum Bayesian estimation of the state xn based on the

measurements of all sensors, the global likelihood function (GLF)
f(zn|xn), with zn,

(
z
(1)
n , . . . , z

(S)
n

)
, is needed. Due to assumption

(A4), the GLF is obtained as

f(zn|xn) =

S∏
s=1

f
(
z(s)
n

∣∣xn) . (2)



3. DISTRIBUTED PARTICLE-PDAF

At time n, we would like to estimate the time-varying target state
xn from the measurements of all the sensors up to time n, z1:n ,
(z1, . . . , zn). In an optimum Bayesian framework, this can be done
by the minimum mean-square error (MMSE) estimator [13]

x̂MMSE
n , E{xn|z1:n} =

∫
xn f(xn|z1:n) dxn . (3)

Here, f(xn|z1:n) is the global posterior pdf. Our main task is now
to compute f(xn|z1:n) in a sequential (recursive) fashion. This is
accomplished by a generalization of the PDAF [4] to arbitrary—i.e.,
generally non-Gaussian—pdfs [2]. For a practical implementation
of this generalized PDAF, all pdfs are represented by particles and
weights. In a distributed version of this particle-based PDAF, each
sensor s runs a local particle filter (LPF). This LPF uses a local
approximation of the GLF, f̂s(zn|xn)≈ f(zn|xn), and not merely
its own LLF f

(
z
(s)
n

∣∣xn). Thereby, the resulting local state estimate
x̂
(s)
n takes into account the measurements of all the sensors, zn. The

LC-based distributed calculation of f̂s(zn|xn) will be discussed in
Section 4.

In the LPF at sensor s, the global posterior pdf f(xn|z1:n) is
represented by a set of particles and associated weights

{(
x
(s,j)
n ,

w
(s,j)
n

)}J
j=1

, with
∑J
j=1w

(s,j)
n = 1. Accordingly, the recursive up-

date of the global posterior pdf, f(xn−1|z1:n−1) → f(xn|z1:n),
amounts to a recursive update of the associated “weighted particle
set,”

{(
x
(s,j)
n−1 , w

(s,j)
n−1

)}J
j=1
→
{(

x
(s,j)
n , w

(s,j)
n

)}J
j=1

. We here con-
sider only the simplest particle filter algorithm, the so-called sequen-
tial importance resampling filter [7]. At time n ≥ 1, the following
steps are performed. First, for each previous particle x

(s,j)
n−1 , a new

particle x
(s,j)
n is sampled from f

(
xn
∣∣x(s,j)
n−1

)
, i.e., from the state-

transition pdf f(xn|xn−1) evaluated at xn−1 = x
(s,j)
n−1 . Next, the

weights associated with the particles x
(s,j)
n are calculated as

w(s,j)
n = c f̂s

(
zn
∣∣x(s,j)
n

)
, j = 1, . . . , J , (4)

with c = 1/
∑J
j=1 f̂s

(
zn
∣∣x(s,j)
n

)
. Note that this expression in-

volves the local GLF approximation f̂s(zn|xn) and, thereby, the
current measurements of all the sensors, zn. Furthermore, if
a suitable criterion is satisfied (as discussed in [7, 14]), the set{(

x
(s,j)
n , w

(s,j)
n

)}J
j=1

is resampled to avoid an effect known as

particle degeneracy. From the final weighted particle set
{(

x
(s,j)
n ,

w
(s,j)
n

)}J
j=1

, a Monte Carlo approximation of the global MMSE
state estimate (3) is now computed as

x̂(s)
n =

J∑
j=1

w(s,j)
n x(s,j)

n .

This recursive algorithm is initialized at time n = 0 by randomly
drawing J particles x

(s,j)
0 from a prior pdf f(x0), and the weights

are set to w(s,j)
0 ≡ 1/J .

Through the above LPF recursion, at each time n, each sensor s
obtains an approximate particle representation

{(
x
(s,j)
n , w

(s,j)
n

)}J
j=1

of the global posterior pdf f(xn|z1:n) and an approximation x̂
(s)
n

of the MMSE state estimate x̂MMSE
n ; both involve the measurements

of all the sensors. The LPF algorithms running at different sensors
are identical. Therefore, any differences between the state estimates
x̂
(s)
n at different sensors s are only due to the random sampling of the

particles at each sensor and errors caused by the LC (e.g., because
of incompletely converged consensus algorithms).

4. SPARSITY-PROMOTING LIKELIHOOD CONSENSUS

We now discuss the distributed calculation of the GLF approxima-
tions f̂s

(
zn|x(s,j)

n

)
required in the weight calculation step (4).

4.1. Review of the Likelihood Consensus Scheme

We can formally write the GLF f(zn|xn) as

f(zn|xn) = exp
(
lnf(zn|xn)

)
= exp

(
Sλ(xn)

)
, (5)

with λ(xn) , lnf(zn|xn)/S. Using (2), we obtain

λ(xn) =
1

S

S∑
s=1

lnf
(
z(s)
n

∣∣xn) . (6)

This is the average of the log-LLFs lnf
(
z
(s)
n

∣∣xn) of the individual
sensors s = 1, . . . , S, which are functions of xn ∈ Rd (note that
z
(s)
n is observed and thus considered fixed).

In the LC scheme [10], for a distributed calculation of λ(xn),
each log-LLF is approximated by a finite-order function expansion,
i.e.,

lnf
(
z(s)
n

∣∣xn) ≈ K∑
k=1

α
(s)
k ψk(xn) , (7)

with fixed functions (“atoms”) ψk(·) that are identical at all sen-
sors and known to all sensors. A specific choice of the “dictionary”{
ψk(·)

}K
k=1

will be considered in Section 5. The calculation of the

expansion coefficients
{
α
(s)
k

}K
k=1

will be discussed in Section 4.2;

note that the α(s)
k depend on the local measurement z

(s)
n . Inserting

(7) into (6) and changing the order of summations yields

λ(xn) ≈
1

S

S∑
s=1

K∑
k=1

α
(s)
k ψk(xn) =

K∑
k=1

βkψk(xn) , (8)

with the global expansion coefficients

βk ,
1

S

S∑
s=1

α
(s)
k , k=1, . . . ,K . (9)

By (8), distributed calculation of λ(xn) amounts to distributed
calculation of the global coefficients βk for k = 1, . . . ,K. Based
on expression (9), this can be done by executing K instances of the
average consensus algorithm [15], using only communication with
the neighbor sensors s′ ∈ Ns. In iteration i ∈ {1, 2, . . .} of the
kth instance of the average consensus algorithm (which is used to
calculate βk), sensor s updates an iterated estimate β̂(s)

k,i of βk as

β̂
(s)
k,i =

∑
s′∈{s}∪Ns

γs,s′ β̂
(s′)
k,i−1 , (10)

where the γs,s′ are suitably chosen weights [15–17]. The recursion
(10) is initialized by the local expansion coefficient, i.e., β̂(s)

k,0 =α
(s)
k .

Note that (10) implies that in each iteration i, sensor s has to broad-
cast its iterated estimates β̂(s)

k,i , k=1, . . . ,K to its neighbors s′∈Ns.
As an alternative to the average consensus algorithm,K instances of
a gossip algorithm [18] can be used.

If the communication graph is connected (as we assumed in Sec-
tion 2), then for i→∞ the consensus recursion (10) is guaranteed to
converge to βk [16]. In practice, only a finite number I of iterations
is executed, where I is fixed or chosen adaptively based on some



stopping criterion. The resulting final estimate β̂(s)
k,I then provides an

approximation of βk. Thereby, we obtain a corresponding approx-
imation of λ(xn) in (8), λ(xn) ≈ λ̂s(xn) ,

∑K
k=1 β̂

(s)
k,I ψk(xn),

which entails the desired GLF approximation f̂s
(
zn|x(s,j)

n

)
via (5):

f̂s
(
zn|x(s,j)

n

)
= exp

(
S λ̂s

(
x(s,j)
n

))
= exp

(
S

K∑
k=1

β̂
(s)
k,I ψk

(
x(s,j)
n

))
.

In the course of the I consensus iterations, each sensor has to
broadcast IK real numbers to its neighbors. This communication
cost can be reduced by an adaptive pruning of the local expansion
coefficients α(s)

k , as explained in the next subsection.

4.2. OMP-based LLF Approximation

The standard way to calculate the local expansion coefficients α(s)
k ,

k =1, . . . ,K in (7) at the respective sensor s is via a least-squares
(LS) fit of

∑K
k=1α

(s)
k ψk(xn) to the log-LLF lnf

(
z
(s)
n

∣∣xn) [9, 10].
Because only the values of the log-LLF at the current particles
x
(s,j)
n are needed in (4), the approximation of the log-LLF has

to be good only in the state-space regions containing the x
(s,j)
n .

Therefore, the LS fit minimizes, with respect to the the local coef-
ficient vector α(s) ,

(
α
(s)
1 · · · α

(s)
K

)T, the approximation error of
the expansion (7) evaluated at the particles x

(s,j)
n , j =1, . . . , J , i.e.,∥∥λ(s) −

∑K
k=1 α

(s)
k ψ

(s)
k

∥∥, where λ(s) ,
(
lnf
(
z
(s)
n

∣∣x(s,1)
n

)
· · ·

lnf
(
z
(s)
n

∣∣x(s,J)
n

))T and ψ(s)
k ,

(
ψk
(
x
(s,1)
n

)
· · · ψk

(
x
(s,J)
n

))T. This
error can also be written as

∥∥λ(s) − Ψ(s)α(s)
∥∥, where Ψ(s) is

the J ×K matrix with columns ψ(s)
1 , . . . ,ψ

(s)
K . Assuming that

J ≥ K (i.e., there are at least as many particles as expansion co-
efficients) and that the ψ(s)

k are linearly independent, the solution
to this minimization problem is given by α(s)

LS = Ψ(s)#λ(s) with
Ψ(s)#,

(
Ψ(s)TΨ(s)

)−1
Ψ(s)T [19].

We now propose a sparse alternative to the LS fit that uses an it-
erative algorithm known as the orthogonal matching pursuit (OMP)
[11,12]. The idea is to reduce the number of “significant” expansion
coefficients and, thereby, the number of consensus instances and, in
turn, the communication cost of the LC. In the first iteration, the
OMP selects the atom ψk1(·) that best matches lnf

(
z
(s)
n

∣∣xn) eval-
uated at the particles x

(s,j)
n , i.e.,

k1 = argmax
k∈{1,...,K}

∣∣ψ(s)T
k λ(s)

∣∣
‖ψ(s)

k ‖
.

Then, a residual ρ1 is formed by subtracting from λ(s) the orthog-
onal projection of λ(s) onto ψ(s)

k1
, i.e., ρ1 = λ(s) −

(
ψ

(s)T
k1
λ(s)

/‖ψ(s)
k1
‖
)
ψ

(s)
k1

. In the second iteration, the atom ψk2(·) that best
matches the residual ρ1 is selected, and a new residual ρ2 is formed
by subtracting from λ(s) the orthogonal projection of λ(s) onto the
linear subspace of RJ spanned byψ(s)

k1
andψ(s)

k2
. More generally, in

iteration `≥ 2, the atom ψk`(·) that best matches the residual ρ`−1

is selected, i.e.,

k` =argmax
k∈K`

∣∣ψ(s)T
k ρ`−1

∣∣
‖ψ(s)

k ‖
,

with K` , {1, . . . ,K} \ {k1, . . . , k`−1}. Then, the new residual
ρ` is formed as ρ` = λ(s)−P`λ

(s), with the orthogonal projec-
tion matrix P` , Ψ

(s)
` Ψ

(s)#
` , where Ψ

(s)
` is the J × (`−1) matrix

with columns ψ(s)
k1
, . . . ,ψ

(s)
k`−1

. Note that ρ` is orthogonal to all
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Fig. 1. Surveillance region with sensor network and target trajectory.

the previously selected atom vectors ψ(s)
k1
, . . . ,ψ

(s)
k`−1

. The residual

can also be written (and calculated) as ρ` = λ(s)−Ψ
(s)
` c`, where

c` ,Ψ
(s)#
` λ(s) corresponds to the LS fit of Ψ

(s)
` c to λ(s). We note

that in contrast to the LS-based calculation of α(s), there may be
J <K (i.e., fewer particles than expansion coefficients).

This iterative algorithm is stopped after L≤K iterations, where
L is either predetermined or chosen adaptively by the criterion that
‖ρ`‖ becomes smaller than some threshold. The result is the coeffi-
cient vector α(s)

OMP =
(
α
(s)
OMP,1 · · · α

(s)
OMP,K

)T whose elements α(s)
OMP,k

are α(s)
OMP,k`

= (cL)` for ` = 1, . . . , L and zero otherwise. Thus,

only L elements ofα(s)
OMP are nonzero. As a consequence, in the first

consensus iteration in the LC, each sensor broadcasts only L ≤K
nonzero coefficients (along with their indices k`) to its neighbors.
In the consensus update (10), all coefficients that were not transmit-
ted by a neighbor are treated as zero. In the course of progressing
consensus iterations, since the sets of the indices k` corresponding
to nonzero coefficients at different sensors are not exactly equal in
general, the number of nonzero coefficients β̂(s)

k,i to be broadcast will
increase somewhat beyond L. However, as verified experimentally
in Section 5, this number tends to be still well below K.

5. SIMULATION RESULTS

We simulated a network consisting of ten sensors located in a 2-D
surveillance region of dimension 20 km× 20 km. The state vec-
tor is xn , (xn yn ẋn ẏn)

T, where xn and yn are the positions
and ẋn and ẏn the velocities of the target in the two coordinate
directions. Fig. 1 shows the surveillance region, the sensor net-
work, and the target trajectory used for all simulation runs. The
state vector is assumed to evolve according to the near-constant-
velocity model xn = Fxn−1 + Gun [20, Sec. 6.3.2]. Here, the
4×4 matrix F and the 4×2 matrix G are defined as in [20, Sec.
6.3.2] (the time scan duration involved in these matrices is chosen as
T =40s), and the 2-D driving process un is modeled as an iid zero-
mean Gaussian random process with variance σ2

u = 10−3 m2/s4.
The initial prior pdf f(x0) is an uncorrelated Gaussian pdf with
mean (7.5 km −7.5 km −2m/s 2m/s)T, position standard devia-
tion 100m, and velocity standard deviation 2m/s.

The sensors produce range and bearing measurements with de-
tection probability P (s)

d (xn) = 0.9. The target-originated measure-
ments are corrupted by zero-mean Gaussian noise with range stan-
dard deviation 150m and bearing standard deviation 1◦. The clutter
measurements are uniformly distributed in the surveillance region
with mean number of clutter measurements µ(s)=5. We performed
1000 simulation runs using the target trajectory shown in Fig. 1 and
different realizations of measurements and particles.
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Fig. 2. Simulation results for L=10: (a) Localization RMSE (with-
out lost tracks) versus time, (b) average number of real values broad-
cast per sensor and consensus iteration versus time.

The proposed distributed PDAF (abbreviated OMP-PDAF) calcu-
lates L expansion coefficients at each sensor by means of L OMP it-
erations. For comparison, we also simulated a distributed PDAF that
uses LS fits to calculate L significant expansion coefficients (abbre-
viated LS-PDAF). More specifically, LS-PDAF first computes a full
LS fit but keeps only the L coefficients with the highest absolute val-
ues, and then calculates a new LS fit using only the corresponding L
atoms. In both filters, the LC uses a 2-D Fourier dictionary withK=
25 atoms given by [10] ψk(xn) = ψ̃k̃1(xn)ψ̃k̃2(yn), with an index
transformation that maps k ∈ {1, . . . , 25} to (k̃1, k̃2)∈ {1, . . . , 5}2.
Here, the 1-D atoms ψ̃k̃(x) are given by

ψ̃k̃(x) =


1, k̃=1,

cos
(
2π
da

(k̃−1)x
)
, k̃=2, 3,

sin
(
2π
da

(k̃−3)x
)
, k̃=4, 5,

where da = 20 km is the width of the surveillance area in each co-
ordinate direction. (Note that we use a 2-D, rather than 4-D, dictio-
nary because the sensors produce range and bearing measurements
and thus the LLFs depend only on the xn and yn components of the
state.) Furthermore, the LC uses Metropolis weights γs,s′ [9,10] and
performs I = 100 consensus iterations. As a performance bench-
mark, we also simulated a centralized multisensor PDAF, abbrevi-
ated C-PDAF, which has access to all the sensor measurements and
thus uses in (4) the exact GLF f(zn|xn) given by (2) and (1).

Fig. 2(a) shows the localization root-mean-square error (RMSE)
versus time for L=10. In the calculation of the RMSE, simulation
runs where the target track was lost were omitted; such a track loss
was declared if the localization error norm exceeded 1 km at least
at one time point n. (The percentage of lost tracks will be shown
separately later.) It can be seen that both OMP-PDAF and LS-PDAF
perform similar to C-PDAF, with OMP-PDAF performing slightly
better than LS-PDAF in certain time intervals. The peaks in the lo-
calization RMSE around times n=28, 50, and 83 can be attributed
to the three target maneuvers visible in Fig. 1.

The average number of real values broadcast by one sensor during
one consensus iteration is a measure of the amount of communica-
tion required. For L= 10, Fig. 2(b) shows this average number of
real values, averaged over all consensus iterations and sensors, ver-
sus time. At most times, only about 15 real values are broadcast in
OMP-PDAF whereas about 24—i.e., almost all of the 25 available
coefficients—are broadcast in LS-PDAF. Thus, the use of the OMP
leads to a reduction of communication by about 38%.

Fig. 3(a) shows the time-averaged localization RMSE, again with-
out lost tracks, versusL. The RMSEs for OMP-PDAF and LS-PDAF
are not shown for L below 4 and 7, respectively, because for these
values of L a high percentage of lost tracks (see Fig. 3(c)) renders
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Fig. 3. Simulation results for different values of L: (a) Time-
averaged localization RMSE, (b) time-averaged number of real val-
ues broadcast per sensor and consensus iteration, (c) TLR, (d) aver-
age runtime per time step.

the RMSE meaningless. It is seen in Fig. 3(a) that OMP-PDAF per-
forms similar to, or slightly better than, LS-PDAF in the practically
interesting L range between 7 and 12. For L ≥ 7, OMP-PDAF
and LS-PDAF perform quite close to C-PDAF. Fig. 3(b) depicts the
average number of real values broadcast by one sensor during one
consensus iteration, averaged over all times, consensus iterations,
and sensors, versus L. For L between 4 and 14, OMP-PDAF is seen
to require significantly less communication than LS-PDAF.

Fig. 3(c) shows the track loss rate (TLR), i.e., the percentage of
simulation runs where a track loss occurred, versus L. The TLR
of C-PDAF is always exactly zero. For L ≥ 7, OMP-PDAF and
LS-PDAF exhibit a similar TLR, which moreover is quite low for
L≥9 (mostly about 4%). However, for L between 4 and 6, the TLR
of OMP-PDAF is still reasonably low whereas that of LS-PDAF is
high or very high. This means that OMP-PDAF allows for smaller
values of L without incurring an excessive risk of track loss.

Finally, Fig. 3(d) displays the average runtime per time (filtering)
step n versus L. In the practically interesting L range between 5 and
10, OMP-PDAF is slightly more complex than LS-PDAF, and for
higher L it is significantly more complex.

We can conclude that for a certain range of the design parameter
L (between 5 and 12), OMP-PDAF requires significantly less com-
munication than LS-PDAF while exhibiting a similar or even better
tracking performance and only a moderately higher complexity.

6. CONCLUSION
The proposed distributed particle-based probabilistic data associa-
tion filter extends the likelihood consensus based distributed particle
filter to scenarios with clutter and missed detections. A reduction
of intersensor communication is achieved by using the orthogonal
matching pursuit (OMP) for a sparse approximation of the local like-
lihood functions. Our simulation results show that the OMP leads to
an attractive and flexible tradeoff between tracking performance and
communication cost. The extension of the proposed method to mul-
tiple targets is an interesting direction for future research.
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[6] P. M. Djurić, J. H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai,
M. F. Bugallo, and J. Mı́guez, “Particle filtering,” IEEE Signal
Process. Mag., vol. 20, no. 5, pp. 19–38, Sept. 2003.

[7] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp,
“A tutorial on particle filters for online nonlinear/non-Gaussian
Bayesian tracking,” IEEE Trans. Signal Process., vol. 50, no.
2, pp. 174–188, Feb. 2002.

[8] F. Zhao and L. Guibas, Wireless Sensor Networks: An Informa-
tion Processing Approach, Morgan Kaufmann, San Francisco,
CA, 2004.
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