
Design Methodologies for Enabling Self-awareness
in Autonomous Systems

Armin Sadighi∗, Bryan Donyanavard†, Thawra Kadeed‡, Kasra Moazzemi†, Tiago Mück†, Ahmed Nassar†,
Amir M. Rahmani†§, Thomas Wild∗, Nikil Dutt†, Rolf Ernst‡, Andreas Herkersdorf∗, and Fadi Kurdahi†

∗Chair for Integrated Systems, Technische Universität München, München, Germany
§Institute of Computer Technology, TU Wein, Vienna, Austria

†Center for Embedded and Cyber-physical Systems (CECS), University of California, Irvine, USA
‡Institute of Computer and Network Engineering, TU Braunschweig, Germany

Abstract—This paper deals with challenges and possible solu-
tions for incorporating self-awareness principles in EDA design
flows for autonomous systems. We present a holistic approach
that enables self-awareness across the software/hardware stack,
from systems-on-chip to systems-of-systems (autonomous car)
contexts. We use the Information Processing Factory (IPF)
metaphor as an exemplar to show how self-awareness can be
achieved across multiple abstraction levels, and discuss new
research challenges. The IPF approach represents a paradigm
shift in platform design by envisioning the move towards a
consequent platform-centric design in which the combination of
self-organizing learning and formal reactive methods guarantee
the applicability of such cyber-physical systems in safety-critical
and high-availability applications.

I. INTRODUCTION

In 2001, IBM declared the hardware/software complexity

of networked IT (information technology) systems as the

grand challenge for continued progress in this industry for

the coming decades [1]. IBMs Autonomic Computing initia-

tive was inspired by the way nature deals with complexity

which is dominantly founded on the principle of emergent

self-organization and self-awareness: a hierarchy of system

constituents following few, simple rules which manifest a

sophisticated system behavior through hidden causalities. The

goal of Autonomic Computing was to integrate such self-

x functions (where x stands for -control, -management, -

organization, -healing, etc.) into IT equipment in order to attain

higher degrees of autonomy in complex system operation.

Like IT systems, emerging Cyber-Physical Systems (CPS)

and the Internet of Things (IoT) application domains exhibit

a several-orders-of-magnitude increase in complexity, both

in the number of devices, as well as in their dynamic and

unpredictable interactions. Applying autonomy in this context

demands a radically new strategy to conquer and control this

runaway complexity. Towards this end, this paper focuses

on novel EDA design methodologies enabling the adop-

tion of self-awareness and self-organization paradigms into

autonomous Multi-Processor System-on-Chip (MPSoC) plat-

forms deployed in CPS and IoT applications. This approach

exploits self-awareness principles in order to conquer com-

plexity, achieve predictability and strengthen the robustness

of system design. It represents a conceptual shift in platform

design as exemplified by our Information Processing Factory

(IPF) paradigm [2], with robust and independent platform

operation capabilities focusing on futuristic platform-centric

design, rather than the traditional focus on semiconductor

devices and software technology.

To set the context, consider the trend towards highly au-

tomated driving, where performance requirements demand

the use of highly complex manycore and massively paral-

lel processors for critical applications. This includes signal

processing, machine learning and automatic control with a

rapidly growing set of data representing the vehicle state

and its surroundings, other traffic participants and a global

traffic context that must be processed in the vehicle or in

the cloud. Traditional safety-critical systems in vehicles were

much simpler and could be backed by simple monitoring

functions to achieve fail-safe function behavior. Error scenar-

ios in automated driving are far more complex when fail-

safe requirements are upgraded to fail-operational behavior,

because operation has to continue even under failure. This is

especially true in SAE J3016 level-3 (and above) of automated

driving, where the human driver is temporarily or permanently

unavailable as a fail-over option. For highly automated driving,

monitoring is not only required to enable fault detection and

avoidance, but also to enforce operational boundaries on the

system. An upcoming standard called Road Vehicles - Safety

of the Intended Functionality (SOTIF) ISO/WD PAS 21448,

provides guidance to address safety violations by a fault-

free system due to unintended behaviors or technological

limitations. As a consequence, automated driving increases

diagnostic and monitoring requirements enabling early fault

detection and failure avoidance, just as envisioned by the IPF

approach described in this paper.

The key methodological innovation is a new approach to

control platform dynamics at runtime by combining self-

organizing machine learning techniques with formal reactive

control methods providing platform worst-case real-time and

safety guarantees, as embodied in our IPF paradigm [2],

instead of using a single, static, operating point determined

at design time. The authors are involved in parallel projects

targeting self-aware vehicles for autonomous driving which

will provide use cases for IPF research.

1532978-3-9819263-0-9/DATE18/ c©2018 EDAA

II. RELATED WORK

Biologically-inspired mechanisms are at the roots of several

research initiatives of which we summarize a short list in

the sequel. Even though this list is by no means complete,

it captures the most relevant related work in the context of

this paper.

The DFG SPP1183 “Organic Computing“ initiative [3], [4]

has been most instrumental for developing and advancing self-

organizing systems engineering in Germany. One key aspect

of self-organizing systems is trust, raising the question of

how to trust a system that changes all the time and reacts

autonomously and potentially in unforeseeable ways due to

emergent behaviors [5]. This question was addressed in the

DFG Research Unit OC-Trust for the related case of Organic

Computing. OC-Trust addressed trust, trustworthiness, and

trust management as main challenges.

A similar observer/controller-based approach controlling

emergent behavior is adopted in the EU-FP7 EPiCS (Engineer-

ing Proprioception in Computing Systems) project. It exploits

self-awareness and self-expression in the compute platform,

middleware software, distributed network infrastructure as

well as application programs [6].

Self-expression describes the ability to autonomously adapt

the system behavior under changing conditions. Both Or-

ganic and Proprioceptive Computing define general principles

which need be applied in the proposed IPF, however certain

methods are needed to reach the necessary robustness. More

importantly, our IPF approach requires to provision hard real-

time guarantees for critical tasks in the presence of changing

platform properties which cannot be directly observed, calling

for controlled system adaptation.

Within the EPSRC project entitled “Bio-Inspired Adaptive

Architectures and Systems“, a group from the University of

York investigates the benefits of self-optimization to grace-

fully improve power-efficiency and performance of many-

core systems [7]. These systems are thus able to cope with

permanent and transient faults and continually seek to attain

a more optimal system configuration by using a set of online

optimization mechanisms on spare processing cores. Another

work in self-aware architectures was contributed by Ipek and

Martinez [8] where artificial neural network machine learning

techniques were used to predict system performance as a

function of resource allocation decisions at runtime. Similar to

the other discussed projects, these two groups do not consider

critical or mixed-critical applications.

The SElf-AwarE Computing (SEEC) framework at MIT [9],

[10] attempts to reduce the programming burden of MPSoCs

with a self-aware programming model. Applications explicitly

specify system goals (for power and performance) and a

unified decision engine attempts to adapt algorithms, software

and hardware to optimally meet the set goals. A central

concept of SEEC is the Observe-Decide-Act control cycle

which is executed in cyclic time intervals in which a certain

amount of application-specific work has to be accomplished.

SEEC uses on-chip self-monitoring to guarantee predictable

behavior on power-aware systems [11].

III. OPERATION POINT MANAGEMENT FOR

MIXED-CRITICALITY APPLICATIONS

A primary objective of the IPF paradigm is to demonstrate

the feasibility of a hybrid (real-time predictive control com-

bined with self-aware machine learning) approach to oper-

ate complex MPSoC-based hardware and software layers of

CPS (and systems-of-systems) on platforms with dynamically

changing platform properties and externally imposed mixed

criticality workloads. Both platform uncertainties and sys-

tem dynamics represent huge challenges to reach guarantees.

Platform uncertainty arises from variability in semiconductor

production and long term aging effects and from imprecise

models used at design time. Application uncertainty can have

different sources such as lack of application knowledge due to

missing data or system complexity, or lack of trust. System dy-

namics can arise from platform dynamics, such as temperature

variation, from short term computational workload dynamics,

or from longer term application software change and evolution.

Platform control needs to consider input parameters such as,

e.g., required computational workload, maximum temperature,

or circuit delay to control output parameters, such as admitted

load, load distribution, on-chip message routing, task schedul-

ing parameters, supply voltage, clock frequency etc.

The platform has a state characterized by parameter values.

The set of these state parameters forms the Operating Point

(OP). The notion of an MPSoC operating point, its observa-

tion, control, and its successive adaptation are central aspects

of this approach. A CPU core OP is, e.g., characterized by the

task (set) mapped to a particular core, the scheduling policy

as well as the core supply voltage and frequency (or DVFS

policy with multiple Vdd and clock frequencies). The MPSoC

or platform OP is the aggregate of all individual CPU, memory,

accelerator and I/O unit OPs including their interaction.

Fig. 1 provides an abstract notion of the platform OP and

permitted system variations depicting a two (out of the in

Fig. 1: Current operation point (COP) and its controllable deviation
space

Design, Automation And Test in Europe (DATE 2018) 1533

Fig. 2: Transition between control points for sake of system optimization

general n-) dimensional parameter space. The Current OP

(COP) is the result of system optimizations to ensure the

system will work correctly and efficiently. Minor changes

around this COP will not defeat system efficiency if the system

is robust enough. Larger OP changes due to changed state pa-

rameters (workload, frequency) will reduce system efficiency

but are still acceptable up to a (maximum) dashed boundary

beyond which the system will no more be controllable and/or

crucial guarantees will be violated. Thus, Fig. 1 outlines

the classical design where all possible behaviors may only

lead to OPs in the dashed bounds. It should be clear that

considering system dynamics and uncertainties will require

large dashed bounds, resulting in an over-dimensioned design.

No real-world system would be developed with such a strategy.

Instead, the dashed boundary would be optimized (tightened)

to the actual demands as shown in the shaded region of Fig. 1.

While in current design practice the abstract concept of an

OP is not explicitly formulated, it is an underlying principle of

critical systems design: the design must have enough “safety

margin“ to provide guarantees even under deviations from

normal operating conditions. This requirement not only applies

at design time, but prevails throughout the system lifetime.

Ensuring this margin is an important task of maintenance

which would replace or repair system parts or reconfigure

the software if the margins are compromised. With increasing

system variability and lifetime, relying on maintenance and

updates alone is no option anymore, because this would be

too inflexible and costly.

The IPF project investigates reducing maintenance needs

by self-adaptation to save cost and extend a system’s lifetime.

Maintenance will still be necessary if self-adaptation is not

possible anymore, e.g. in case of component failure. In critical

system design, self-adaptation must consider the required mar-

gins. Unfortunately, available margins are not easily observ-

able in a system under operation but must indirectly be derived

from system operation and measurement. Therefore traditional

self-diagnosis is not sufficient. For that purpose, an online

system model with COP is needed, together with a strategy

to incrementally adapt the COP to conserve the margins. This

model must be continuously updated avoiding modeling errors,

e.g., by methods from system identification [12]. Developing

such an incremental process will be one of the core challenges

of this US/German IPF collaboration. Once introduced, such

a process can also be used to improve the efficiency of mixed

criticality systems.

In order to quantify the quality of a given OP and to com-

pare performance characteristics between different OPs, we

investigate weighted, multi-objective cost functions (OPcost).

The general idea being: the lower the average frequency and

supply voltage of MPSoC modules, the closer the actual CPU

core utilization, task execution time and timing slack are to

currently set targets for utilization, execution time and slack

(i.e., margin). Hence a particular COP is more effective when

the cost metric OPcost of a platform is lowered. The OPcost

metric shall also be used to initiate and assess OP changes,

i.e., transitions from a COP to a Next Operation Point (NOP).

Fig. 2 suggests that system control shall assess and explore

the OPcost-based platform state update for the NOP separated

for critical tasks (CT) and non-critical, best effort tasks (BE).

NOP adoptions for BE tasks may be attained by means of

periodic or threshold-triggered rule-table actions of either

hardware or software-based machine learning (ML) entities.

Applying an ML action anyway results in a change of MPSoC

operation parameters and, thus, in adopting a new NOP. Such

a change in the operating point for BE tasks (which, per

definition, cannot violate a critical system-level requirement

as BE tasks are“best effort“) may however improve/increase

the stability regions for critical tasks (see bigger dark blue

circles on the right of Fig. 2). This would open new system

optimization opportunities for critical tasks. Controlled tran-

sitions between COP(CT) and NOP(CT) must be safe by all

means. Of course we must avoid by all means threats to the

real-time and safety critical system functions, if the transition

is too fast or leads to a NOP outside the controllable state.

Fig. 2 again illustrates the anticipated effect. Using machine

learning-based analysis and applied actions make the platform

1534 Design, Automation And Test in Europe (DATE 2018)

move to a new NOP for best effort tasks. System control

and reactive resource management will assess NOP’ (Next

Operation Point Candidates) for critical tasks and, if the

predictions proved to be safe, the NOP’(CT) candidate will

be adopted as NOP(CT). In general, we need to investigate

mechanisms to ensure constructive emergent behaviors within

deterministically bounded operation corridors at MPSoC hard-

ware/software levels. Thus, a solution must be found that

still guarantees timing and safety under possible prediction

errors. If the update and optimization steps are small enough,

the system stays in an efficient state and keeps the required

guarantees at all times.

IV. INFORMATION PROCESSING FACTORY

We use the metaphor of an Information Processing Factory

(IPF) to draw similarities between microelectronics systems

and factories [2] as follows: in a factory, all the components

must adapt to the current workload. This includes logistics

of supplies such as material, energy, water and waste, the

manufacturing equipment, the transport, the control and in-

frastructure (such as heating, air-conditioning, illumination).

This adaptation cannot be done offline and must instead be

done in real time without interrupting the baseline operations.

Future microelectronic systems (e.g., MPSoCs) should operate

in a similar manner. Parallel to the baseline operation of

the system, a platform operation layer (POL) is continuously

monitoring and controlling the performance and health status

of the system. This layer monitors the system using a network

of on-chip infrastructure that senses cross-layer metrics such

as temperature, aging, energy, performance, reliability, and se-

curity and accordingly orchestrates the operations of different

system components such as application, storage, I/O and even

non-electronic functions (e.g. micromechanics, microfluidics,

etc.). In performing this orchestration, the POL will consider

both the current status (COP) as well as prediction of future

states including the expected evolution of the platform (i.e.

NOP as well as NOP’(CT) candidates in Fig. 2).

This IPF analogy implies that clusters of component-

specific, uncorrelated control occurrences are unable to cope

with the complexity coordinating the operations of large scale

systems with multi-criteria objective functions. Similarly, a

centralized controller model is also inadequate in this case be-

cause it cannot scale. Our goal is to demonstrate that a hybrid

hierarchical approach, sporting as much modularity as possible

and as much centralized as necessary, is a much more effective

means of achieving the desired goal while maintaining cost

efficiency, low overhead, and scalability. To be more specific,

the IPF design flow envisions a multi-layer control system

conceptually described in Figure 3. Information provided by

Sensor (S) is gathered and merged into self-organization,

self-awareness (SO/SA) control processing instances across

different hardware/software abstraction layers comprising an

MPSOC-based CPS system. These SO/SA instances generate

actuation directives affecting the MPSoC system components

at same or lower levels of abstraction. SO/SA instances will be

endowed with well-defined degrees of autonomy to optimize

Fig. 3: Multi-Layer SO/SA stack

metrics such as performance, power, and reliability within

its own scope of operation. The coordination among these

SO/SA instances can be established through awareness of the

actuation-to-implication causalities triggered by an action (for

example, the impact of frequency scaling or task scheduling

on power consumption and performance).

The SO/SA paradigm is not limited in scope to optimization

of CPS operational parameters/metrics. In fact, self- and

group-awareness can also enable higher level tasks such as

self-protection of both the MPSoC and the overall CPS system.

It must be noted, however, that empowering multiple SO/SA

entities with some or complete autonomy may lead to differing

or even contradictory control decisions. Such cases must

be strictly avoided especially in safety-critical systems. One

possible way to achieve that is to reject NOP’(CT) candidates

that would put critical tasks at risk. Our goal is to demonstrate

that self-awareness of implications among concurrent SO/SA

instances can indeed prevent such situations from occurring.

The following subsections A-D will reveal in conjunction

with Fig. 3 the major constituents of such a SO/SA hierarchy

at different hardware/software abstraction levels and how we

anticipate their inter-working.

A. Application

The Cognitive Runtime Management project from UC

Irvine focuses on two layers: (1) the application/ecosystem

layer where a wireless system is presented as an example of

an application-aware cognitive power management employing

a Q-learning based paradigm to optimize power management

policy for a target application performance level (e.g. Bit error

rate), and (2) the application monitoring and checking layer,

comprised of a hardware-accelerated non-uniform verification
architecture (NUVA), optimized to monitor a rich set of user-

defined properties (or properties automatically extracted using

Design, Automation And Test in Europe (DATE 2018) 1535

Fig. 4: Intra- and inter-system dependencies of mobile applications

specification mining) defined in an expressive specification

language (such as parameterized automata) [13].

To manage the power, performance and reliability in a

complex system such as the mobile device (or base station),

there are several point techniques, each dealing with one or

more knobs and having a limited scope as shown in Fig. 4.

Some techniques may focus on the modem while others on

the source codec (e.g., video, gaming). Other techniques may

apply inside the processor (e.g., cache power management)

while others may exploit the mobile-basestation protocols, the

network protocols, or the client-server interaction at the appli-

cation level. The SO/SA paradigm described in Fig. 3 allows

each of these techniques to run with some degree of autonomy

while the interdependencies between them is managed through

high level monitoring and actuation-to-implication awareness.

B. Deterministic On-Chip Interconnect Resource Management

TU Braunschweig has a long history of contributions to

systems self-organization. Most recently, Networks-on-Chip

(NoCs) for mixed criticality systems [14] using active re-

source management including error detection and correction

mechanisms [15] have been developed. The results shall be

combined with an in-field monitoring, safety analysis and self-

configuration framework that was developed as a contribution

to a larger DFG Research Group in self-aware vehicles [16].

Both results will be combined in IPF. TU Braunschweig is

developing algorithms to analyze the margin of critical tasks

and proposes incremental NOP changes as shown in Fig. 1

and 2. These functions will be located in the OS / middleware

layer of Fig. 3. The NoC and its resource management requires

specific hardware functions on the MPSoC architecture layer

where monitoring functions will be installed, as well. On

the Applications layer, use cases for autonomous driving will

be implemented which are currently developed in the DFG

research group.

C. Self-awareness at the Middleware Software and Applica-
tion Layer

The CPSoC (Cyber Physical System on Chip) project from

UC Irvine [17] is an exemplar sensor-rich many-core com-

puting platform that intrinsically couples on-chip and cross-

layer physical and virtual sensing and actuation applied across

different layers of the hardware/software system stack to

adaptively achieve desired objectives and Quality-of-Service

(QoS). The CPSoC project came out of the NSF Variability

Expedition project [18]. The CPSoC platform takes advantage

of an Adaptive-Reflective Middleware which sits between

applications and the operating system kernel. The middleware

implements closed-loop resource management policies and

embeds hierarchical system models that use sensory data to

predict how the system state may change given new actuation

actions. The middleware offers scalable and autonomous re-

source management by leveraging formal supervisory control

theory combining the strengths of classical control theory

with state-of-the-art heuristic approaches to efficiently achieve

changing run-time goals [19]. It also provides robustness and

stability guarantees to the power management unit by using

an adaptive control theoretic technique called Gain Scheduling

which decomposes the entire nonlinear operating region of

the DVFS controller into linear sub-regions and adaptively

switches between static linear feedback controllers designed

for each operating sub-region [20].

D. Self-Awareness at the MPSoC Hardware Layer

The ASoC (Autonomic System on Chip) project (TU

München and University of Tübingen) [21] [22] within the

DFG SPP1183“Organic Computing“ investigated the applica-

tion of hardware and software reinforcement machine learn-

ing techniques (learning classifier systems) [23] on homoge-

neous multicore processors for optimizing workload balancing,

power consumption and resilience against intermittent core

failures. Self-organized RISC core behavior was accomplished

through hardware-centric reinforcement-based learning classi-

fier tables (LCTs) [24].

In this context, a key challenge is to extend the

reinforcement-based machine learning control towards mixed-

criticality applications, including hard real-time constraints.

Towards this goal, we anticipate the interworking of LCT-

based control with predictable reactive resource control as

1536 Design, Automation And Test in Europe (DATE 2018)

described in Section IV-B. Furthermore, the combination of

LCT with Cyber Physical SoC (CPSoC) leads towards a

hierarchical learning environment with goal-oriented supervi-

sory control properties and allows the online generation of

new LCT evaluation rules on the device at runtime. With

respect to Fig. 3 this will be the establishment of connections

between MPSoC Architecture and OS/Middleware layers. An

interesting problem here is to investigate the relation between

the learning layers and the influences they can have on each

other. A possible scenario for this case would be that each

layer learns and acts on its own without any collaboration with

the other layer. The more challenging, yet more promising

approach, is to find suitable collaboration models between the

layers. In context of the IPF project this open problem will

also be addressed by investigating a top down approach, in

which the Middleware layer in Fig. 1 sends information to

the hardware layer, as well as a collaborative approach, in

which both layers are actively in connection with each other

and share information, hence acting toward the best operating

point possible for the whole system stack.

V. CONCLUSION

The existing dilemma in developing and adopting design

methodologies for autonomous systems is that including all

possible uncertainties and dynamics of a processing platform

and its operational environment already at design time is

either impossible or leads to unacceptable overengineered

designs. On the other hand, strictly limiting the allowed

design space to design-time decision making, will constrain

the possible applications and their dynamics, error handling

options, flexibility and life time of a system. Thus, in order

to conquer the complexity of future MPSoCs and Cyber-

Physical Systems, several challenges must be embraced, such

as change management of the running application portfolio

as well as dynamic runtime reconfiguration of the computing,

interconnect and memory resources.

A promising approach to tackle system complexity in gen-

eral is the use of self-awareness which is defined as the

ability (of a computing system) to recognize its own state,

possible actions and the result of these actions on itself and

its environment. The IPF paradigm described in this paper

presented an approach that exploits self-awareness in order

to solve the dilemma by introducing a hybrid hierarchical

approach across multiple hardware/software abstraction layers,

which is highly scalable and modular and can be incorporated

in different applications. Moreover the combination of self-

organizing learning and formal reactive methods will guar-

antee the use of such systems in safety-critical and high-

availability applications like autonomous driving.

ACKNOWLEDGMENT

We acknowledge financial support from the following: NSF

Grant CCF-1704859; the Marie Curie Actions of the European

Union’s H2020 Programme; DFG Grants ER168/32-1 and

HE4584/7-1.

REFERENCES

[1] J. O. Kephart, “Research challenges of autonomic computing,” in Pro-
ceedings. 27th International Conference on Software Engineering, 2005.
ICSE 2005., May 2005, pp. 15–22.

[2] N. D. Dutt, F. J. Kurdahi, R. Ernst, and A. Herkersdorf, “Conquering
mpsoc complexity with principles of a self-aware information processing
factory,” in CODES, 2016, pp. 37:1–37:4.

[3] C. Müller-Schloer, “Organic computing - on the feasibility of controlled
emergence,” in CODES + ISSS 2004., Sept 2004, pp. 2–5.

[4] C. Müller-Schloer et al., Organic Computing A Paradigm Shift for
Complex Systems. Springer, 2011.

[5] J.-P. Steghöfer et al., Autonomic and Trusted Computing: 7th Inter-
national Conference, ATC 2010, Xi’an, China, October 26-29, 2010.
Proceedings. Springer Berlin Heidelberg, 2010, pp. 62–76.

[6] T. Becker et al., “Epics: Engineering proprioception in computing
systems,” in 2012 IEEE 15th International Conference on Computational
Science and Engineering, Dec 2012, pp. 353–360.

[7] N. Dahir, P. Campos, G. Tempesti, M. Trefzer, and A. Tyrrell, “Char-
acterisation of feasibility regions in fpgas under adaptive dvfs,” in FPL,
Sept 2015, pp. 1–4.

[8] R. Bitirgen, E. Ipek, and J. F. Martinez, “Coordinated management
of multiple interacting resources in chip multiprocessors: A machine
learning approach,” in MICRO, ser. MICRO 41. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 318–329.

[9] H. Hoffmann et al., “Eec: A framework for self-aware computing,”
Massachusetts Institute of Technology, Cambridge,, Tech. Rep., oct 2010.

[10] H. Hoffmann et al., “Application heartbeats: A generic interface for
specifying program performance and goals in autonomous computing
environments,” in ICAC, ser. ICAC ’10. ACM, 2010, pp. 79–88.

[11] H. Hoffmann, “Coadapt: Predictable behavior for accuracy-aware ap-
plications running on power-aware systems,” in 2014 26th Euromicro
Conference on Real-Time Systems, July 2014, pp. 223–232.

[12] L. Ljung, “Perspectives on system identification,” Annual Reviews in
Control, vol. 34, no. 1, pp. 1–12, 2010.

[13] A. Nassar, F. J. Kurdahi, and W. Elsharkasy, “Nuva: Architectural
support for runtime verification of parametric specifications over multi-
cores,” in CASES, 2015, pp. 137–146.

[14] A. Kostrzewa, S. Tobuschat, and R. Ernst, “Self-aware network-on-chip
control in real-time systems,” IEEE Design Test, vol. PP, no. 99, pp. 1–1,
2017.

[15] E. A. Rambo, C. Seitz, S. Saidi, and R. Ernst, “Bridging the gap between
resilient networks-on-chip and real-time systems,” IEEE Transactions on
Emerging Topics in Computing, vol. PP, no. 99, pp. 1–1, 2017.

[16] J. Schlatow et al., “Self-awareness in autonomous automotive systems,”
in Design, Automation Test in Europe Conference Exhibition (DATE),
2017, March 2017, pp. 1050–1055.

[17] S. Sarma, N. Dutt, P. Gupta, A. Nicolau, and N. Venkatasubramanian,
“On-chip self-awareness using cyberphysical-systems-on-chip (cpsoc),”
in 2014 International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS), Oct 2014, pp. 1–3.

[18] P. Gupta et al., “Underdesigned and opportunistic computing in presence
of hardware variability,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 32, no. 1, pp. 8–23, Jan 2013.

[19] A. Rahmani, B. Donyanavard, T. Mück, K. Moazemmi, A. Jantsch,
O. Mutlu, and N. Dutt, “SPECTR: Formal Supervisory Control and Co-
ordination for Many-core Systems Resource Management,” in ASPLOS,
2018.

[20] B. Donyanavard, A. Rahmani, T. Mück, K. Moazemmi, and N. Dutt,
“Gain Scheduled Control for Nonlinear Power Management in CMPs,”
in DATE, 2018.

[21] A. Bernauer, O. Bringmann, and W. Rosenstiel, “Generic self-adaptation
to reduce design effort for system-on-chip,” in 2009 Third IEEE Inter-
national Conference on Self-Adaptive and Self-Organizing Systems, Sept
2009, pp. 126–135.

[22] J. Zeppenfeld and A. Herkersdorf, “Applying autonomic principles for
workload management in multi-core systems on chip,” in ICAC. ACM,
2011, pp. 3–10.

[23] M. V. Butz, Rule-Based Evolutionary Online Learning Systems.
Springer, ISBN 978-3-540-25379-2, 2006.

[24] J. Zeppenfeld, A. Bouajila, W. Stechele, and A. Herkersdorf, “Learning
classifier tables for autonomic systems on chip.” vol. 2, 01 2008, pp.
771–778.

Design, Automation And Test in Europe (DATE 2018) 1537

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

