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Günther Koliander, Dominic Schuhmacher, and Franz Hlawatsch, Fellow, IEEE

Abstract—We study the compression of data in the case where
the useful information is contained in a set rather than a
vector, i.e., the ordering of the data points is irrelevant and the
number of data points is unknown. Our analysis is based on
rate-distortion theory and the theory of finite point processes.
We introduce fundamental information-theoretic concepts and
quantities for point processes and present general lower and
upper bounds on the rate-distortion function. To enable a
comparison with the vector setting, we concretize our bounds
for point processes of fixed cardinality. In particular, we analyze
a fixed number of unordered Gaussian data points and show that
we can significantly reduce the required rates compared to the
best possible compression strategy for Gaussian vectors. As an
example of point processes with variable cardinality, we study
the best possible compression of Poisson point processes. For the
specific case of a Poisson point process with uniform intensity
on the unit square, our lower and upper bounds are separated
by only a small gap and thus provide a good characterization of
the rate-distortion function.

Index Terms—Source coding, data compression, point process,
rate-distortion theory, Shannon lower bound.

I. INTRODUCTION

The continuing growth of the amount of data to be stored
and analyzed in many applications calls for efficient methods
for representing and compressing large data records [1]. In
the literature on data compression, one aspect was hardly
considered: the fact that we are often interested in sets and not
in ordered lists, i.e., vectors, of data points. Our goal in this
paper is to study the optimal compression of finite sets, also
called point patterns, in an information-theoretic framework.
More specifically, we consider a sequence of independent and
identically distributed (i.i.d.) point patterns, and we want to
calculate the minimal rate—i.e., number of representation bits
per point pattern—for a given upper bound on the expected
distortion. For this analysis, we need distributions on point
patterns. Fortunately, these and other relevant mathematical
tools are provided by the theory of (finite) point processes
(PPs) [2], [3].

The theory and applications of PPs have a long history, and
in most fields using this concept—such as, e.g., forestry [4],
epidemiology [5], and astronomy [6]—significant amounts of
data in the form of point patterns are collected, stored, and
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processed. Thus, we believe that lossy source coding may be of
great interest in these fields. Furthermore, the recently studied
problem of super-resolution [7], [8] or more generally atomic
norm minimization [9] results in a point pattern in a continuous
alphabet and is often described by some statistical properties.
In this setting, one frequently deals with noisy signals, and
thus an additional distortion resulting from lossy compression
may be acceptable.

As a more explicit example, consider a database of minutiae
patterns in fingerprints [10], [11]. Minutiae are endpoints and
bifurcations of ridge lines on the finger. Typical data consists
of x- and y-positions of points in some relative coordinate sys-
tem and may well include further information such as the angle
of the orientation field at the minutiae or the minutia types. For
simplicity, we consider here only the positions; any additional
information can be incorporated by a suitable adaptation of
the distortion measure. A fingerprint of good quality typically
contains about 40–100 minutiae [10]. For many minutia-based
algorithms for fingerprint matching, the order in which the
minutiae are stored is irrelevant [11] and a fingerprint can
thus be represented as a point pattern. Furthermore, different
pressures applied during the acquisition of a fingerprint lead to
varying local deformations and thus varying minutiae for the
same finger. Hence, in most applications, a small additional
distortion due to compression will be acceptable. Because the
exact locations as well as the number of minutiae acquired for
the same finger may vary, the squared OSPA metric as defined
further below in (71) appears well suited for measuring the
distortion between minutiae patterns.

A. Prior Work

Information-theoretic work on PPs is scarce. An extension
of entropy to PPs is available [3, Sec. 14.8], but apparently
the mutual information between PPs was never analyzed in
detail (although it is defined by the general quantization-
based definition of mutual information [12, eq. (8.54)] or its
equivalent form in (15) below). A similar quantity was recently
considered for a special case in [13, Th. VI.1]. However,
this quantity deviates from the general definition of mutual
information, because the joint distribution in [13, eq. (5)]
implies a fixed association between the points in the two PPs
involved.

Source coding results for PPs are available almost exclu-
sively for (infinite) Poisson PPs on R [14]–[17]. However, that
setting considers only a single PP rather than an i.i.d. sequence
of PPs. More specifically, the sequence considered for rate-
distortion (RD) analysis in [14]–[17] is the growing vector of
the smallest n points of the PP. This approach was also adopted
in [18], where the motivation was similar to that of the present
paper but the main objective was to study the asymptotic
behavior of the RD function as the cardinality of the data set
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grows infinite. It was shown in [18] that the expected distortion
divided by the number of points in the data set converges to
zero even for zero-rate coding. Although we are interested in
the nonasymptotic scenario, the motivation given in [18] and
the fact that the per-element distortion increases significantly
less fast than in the vector case are of relevance to our work.

In channel coding, PPs were used in optical communications
[19], [20] and for general timing channels [21]. However, the
PPs considered are again on R and in most cases Poisson PPs.

A different source coding setting for point patterns was
presented in [22], [23] . There, the goal was not to reconstruct
the points, but to find a covering (consisting of intervals) of
all points. There is a tradeoff between the description length
of the covering set and its Lebesgue measure, both of which
are desired to be as small as possible.

For discrete alphabets, an algorithm compressing multisets
was presented in [24]. However, from an information-theoretic
viewpoint, the collection of all (multi-)sets in a discrete alpha-
bet is just another discrete set and thus sufficiently addressed
by the standard theory for discrete sources.

To the best of our knowledge, the RD function for i.i.d.
sequences of PPs has not been studied previously. In full
generality, such a study requires the definition of a distortion
function between sets of possibly different cardinality. A
pertinent and convenient definition of a distortion function
between point patterns was proposed in [25] in the context
of target tracking (see (71) below) .

B. Contribution and Paper Organization

In this paper, we are interested in lossy compression of i.i.d.
sequences of PPs of possibly varying cardinality. We obtain
bounds on the RD function in a general setting and analyze the
benefits that a set-theoretic viewpoint provides over a vector
setting. Our results and methods are based on the measure-
theoretic fundamentals of RD theory [26].

As the information-theoretic analysis of PPs is not well
established, we present expressions of the mutual information
between dependent PPs, which can be used in upper bounds on
the RD function. Our main contribution is the establishment
of upper and lower bounds on the RD function of finite PPs
on Rd. The upper bounds are based either on the RD theorem
for memoryless sources [26] or on codebooks constructed by
a variant of the Linde-Buzo-Gray algorithm [27]. The lower
bounds are based on the characterization of mutual information
as a supremum [28], which is closely related to the Shannon
lower bound [29, eq. (4.8.8)]. To illustrate our results, we
compare the setting of a PP of fixed cardinality with that
of a vector of the same dimension and find that the RD
function in the PP setting is significantly lower. Furthermore,
we concretize our bounds for Poisson PPs and, in particular,
consider a Poisson PP on the unit square in R2, for which
our bounds convey an accurate characterization of the RD
function.

The paper is organized as follows. In Section II, we present
some fundamentals of PP theory. In particular, we introduce
pairs of dependent PPs, which are relevant to an information-
theoretic analysis but not common in the statistical literature.
In Section III, the mutual information between PPs is studied

in detail, and some tools from measure-theoretic RD theory
that can be used in the analysis of PPs are introduced. In
Sections IV and V, we present lower and upper bounds on
the RD function of PPs in a general setting. These bounds
are applied to PPs of fixed cardinality in Section VI and to
Poisson PPs in Section VII. In Section VIII, we summarize
our results and suggest future research directions.

C. Notation

Boldface lowercase letters denote vectors. A vector x =
(xT

1 · · · xT
k )T ∈ (Rd)k with xi ∈ Rd will often be denoted

as (x1, . . . ,xk) or, more compactly, as x1:k. Sets are denoted
by capital letters, e.g., A. The set A + x is defined as
{y + x : y ∈ A}. The complement of a set A is denoted
as Ac, and the cardinality as |A|. The indicator function
1A is given by 1A(x) = 1 if x ∈ A and 1A(x) = 0 if
x /∈ A. The Cartesian product A1 × A2 × · · · × Ak of sets
Ai, i = 1, . . . , k is denoted as

∏k
i=1Ai. Sets of sets are

denoted by calligraphic letters (e.g., A). Multisets, i.e., sets
with not necessarily distinct elements, are distinguished from
sets in that we use A,B,C to denote sets and X,Y, Z to
denote multisets. For a set A and a multiset X , we denote
by X ∩ A the multiset {x ∈ X : x ∈ A}, which conforms
to the classical intersection if X is a set but contains x ∈ A
more than once if X contains x more than once. Similarly,
the cardinality |X| of a multiset X gives the total number
of the (not necessarily distinct) elements in X . The set of
nonnegative integers {0} ∪ N is denoted as N0, the set of
positive real numbers as R+, and the set of nonnegative real
numbers as R≥0. Sans serif letters denote random quantities,
e.g., x is a random vector and X is a random multiset (or
PP). We write Ex[·] for the expectation operator with respect
to the random variable x and simply E[·] for the expectation
operator with respect to all random variables in the argument.
Pr[x ∈ A] denotes the probability that x ∈ A. L d denotes the
d-dimensional Lebesgue measure and Bd the Borel σ-algebra
on Rd. For measures µ, ν on the same measurable space,
µ� ν means that µ is absolutely continuous with respect to
ν, i.e., that ν(A) = 0 implies µ(A) = 0 for any measurable set
A. A random vector x on Rd is understood to be measurable
with respect to Bd. The differential entropy of a continuous
random vector x with probability density function g is denoted
as h(x) or h(g), and the entropy of a discrete random variable
x is denoted as H(x). The logarithm to the base e is denoted
log. For a function f : A → B and a set C ⊆ B, f−1(C)
denotes the inverse image {x ∈ A : f(x) ∈ C}. Finally, we

indicate by, e.g.,
(42)
= that the equality holds due to (42).

II. POINT PROCESSES AS RANDOM SETS OF VECTORS

In this section, we present basic definitions and results
from PP theory. In the classical literature on this subject, PPs
are defined as random counting measures [3, Def. 9.1.VI].
Although this approach is very general and mathematically
elegant, we will use a more applied viewpoint and interpret
PPs as random multisets, i.e., collections of a random number
of random vectors that are not necessarily distinct. These
multisets are assumed to be finite in the sense that they have
a finite cardinality with probability one.
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Definition 1: A point pattern X on Rd is defined as a finite
multiset X ⊆ Rd, i.e., |X| < ∞ . The collection of all point
patterns X on Rd is denoted as N .

Our goal is to compress point patterns under certain con-
straints limiting an expected distortion. To this end, we have
to define random elements X on N and, in turn, a σ-algebra.

Definition 2: We denote by S the σ-algebra on N generated
by the collections of multisets Nk(B) ,

{
X ∈ N : |X∩B| =

k
}

for all B ∈ Bd and all k ∈ N0.

A. Finite Point Processes

The random variables X on (N ,S) are called finite (spatial)
PPs on Rd, hereafter simply referred to as PPs. Following [2,
Sec. 5.3], a PP X can be constructed by three steps:

1) Let |X| be a discrete random variable on N0 with proba-
bility mass function p|X|.

2) For each k ∈ N, let x
(k)
X be a random vector on

(Rd)k with probability measure P (k)
X and the following

symmetry property: x
(k)
X = (x1, . . . , xk) with xi ∈ Rd

has the same distribution as (xτ(1), . . . , xτ(k)) for any
permutation τ on {1, . . . , k}.

3) The random variable X is defined by first choosing a real-
ization k of the random cardinality |X| according to p|X|.
Then, for |X| = k 6= 0, a realization x1:k = (x1, . . . ,xk)

of x
(k)
X is chosen according to P (k)

X , and this realization
is converted to a point pattern via the mapping

φk : (Rd)k → N ; x1:k 7→ {x1, . . . ,xk} . (1)

For |X| = 0, we set X = ∅. More compactly, this
procedure corresponds to constructing X as

X =

{
∅ if |X| = 0
φk
(
x

(k)
X

)
if |X| = k .

Remark 3: In principle, it is not necessary to start with
symmetric random vectors x(k)

X . Indeed, the mapping φk erases
any order information the vector x

(k)
X might have, and thus

we would obtain a PP even for nonsymmetric x
(k)
X . However,

for our information-theoretic analysis, it will turn out to be
useful to have access to the symmetric random vectors x

(k)
X

and the symmetric probability measures P (k)
X . Note that this

does not imply a restriction on the PPs we consider, as any
random vector can be symmetrized before using it in the PP
construction.

The probability measure on (N ,S) induced by X is denoted
as PX and satisfies

PX(A) = Pr[X ∈ A]

= p|X|(0)1A(∅) +
∑
k∈N

p|X|(k)P
(k)
X

(
φ−1
k (A)

)
(2)

for any measurable setA ⊆ N (i.e.,A ∈ S). This construction
indeed results in a measurable X [3, Ch. 9]. According to (2),

an integral with respect to PX (or, equivalently, an expectation
with respect to X) can be calculated as1∫
N
g(X) dPX(X) = E[g(X)]

= p|X|(0)g(∅) +
∑
k∈N

p|X|(k)E
[
g
(
φk(x

(k)
X )
)]

= p|X|(0)g(∅) +
∑
k∈N

p|X|(k)

∫
(Rd)k

g(φk(x1:k)) dP
(k)
X (x1:k)

(3)

for any integrable function g : N → R. In particular, by (3)
with g(X) = 1A(X)g̃(X), we obtain∫
A
g̃(X) dPX(X) = p|X|(0)1A(∅)g̃(∅) +

∑
k∈N

p|X|(k)

×
∫
φ−1
k (A)

g̃(φk(x1:k)) dP
(k)
X (x1:k) (4)

for any A ∈ S.

B. Pairs of Point Processes

For information-theoretic considerations, it is convenient to
have a simple definition of the joint distribution of two PPs.
Thus, similar to the construction of X, we define a pair of
(generally dependent) PPs (X,Y) as random elements on the
product space N ×N as follows.

1) Let (|X|, |Y|) be a discrete random variable on N0×N0 =
N2

0 with probability mass function p|X|,|Y|.
2) For each (k, `) ∈ N2

0\{(0, 0)}, let (x, y)
(k,`)
X,Y be a random

vector on (Rd)k+` with probability measure P (k,`)
X,Y and

the following symmetry property: (x, y)
(k,`)
X,Y = (x1, . . . ,

xk, y1, . . . , y`) with xi, yj ∈ Rd has the same distribution
as (xτX(1), . . . , xτX(k), yτY(1), . . . , yτY(`)) for any permuta-
tions τX on {1, . . . , k} and τY on {1, . . . , `}. Note that
for the cases k = 0 and ` = 0, we have (x, y)

(0,`)
X,Y = (y1,

. . . , y`) and (x, y)
(k,0)
X,Y = (x1, . . . , xk), respectively.

3) The random variable (X,Y) is defined by first choosing
a realization (k, `) of the random cardinalities (|X|, |Y|)
according to p|X|,|Y|. Then, for (|X|, |Y|) = (k, `)
with k 6= 0 or ` 6= 0, a realization (x1:k,y1:`) =

(x1, . . . ,xk,y1, . . . ,y`) of (x, y)
(k,`)
X,Y is chosen accord-

ing to P
(k,`)
X,Y , and this realization is converted to a pair

of point patterns via the mapping

φk,` : (Rd)k+` → N 2;

(x1:k,y1:`) 7→
(
{x1, . . . ,xk}, {y1, . . . ,y`}

) (5)

if (k, `) ∈ N2, or

φ0,` : (Rd)` → N 2; y1:` 7→
(
∅, {y1, . . . ,y`}

)
(6)

if k = 0 and ` ∈ N, or

φk,0 : (Rd)k → N 2; x1:k 7→
(
{x1, . . . ,xk}, ∅

)
(7)

1This expression can be shown by the standard measure-theoretic approach
of defining an integral in turn for indicator functions, simple functions,
nonnegative measurable functions, and finally all integrable functions [2,
Sec. A1.4].
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if k ∈ N and ` = 0. For (k, `) = (0, 0), we set (X,Y) =
(∅, ∅). More compactly, the overall procedure corresponds
to constructing (X,Y) as

(X,Y) =


(∅, ∅) if (|X|, |Y|) = (0, 0)

φk,`
(
(x, y)

(k,`)
X,Y

)
if (|X|, |Y|) = (k, `)

6= (0, 0) .

As we will often use inverse images of the mapping φk,` in
our proofs, we state some properties of φ−1

k,`(A) for A ⊆ N 2

in Appendix A.
The probability measure on (N 2,S⊗S) induced by (X,Y)

will be denoted as PX,Y and satisfies

PX,Y(A) = p|X|,|Y|(0, 0)1A
(
(∅, ∅)

)
+

∑
(k,`)∈N2

0

(k,`)6=(0,0)

p|X|,|Y|(k, `)P
(k,`)
X,Y

(
φ−1
k,`(A)

)
(8)

for any measurable A ⊆ N 2 (i.e., A ∈ S ⊗S). An integral
with respect to PX,Y (or, equivalently, an expectation with
respect to (X,Y)) can be calculated as∫

N 2

g(X,Y ) dPX,Y(X,Y ) = E[g(X,Y)]

= p|X|,|Y|(0, 0)g(∅, ∅)

+
∑

(k,`)∈N2
0

(k,`)6=(0,0)

p|X|,|Y|(k, `)E
[
g
(
φk,`

(
(x, y)

(k,`)
X,Y

))]
= p|X|,|Y|(0, 0)g(∅, ∅) +

∑
(k,`)∈N2

0

(k,`)6=(0,0)

p|X|,|Y|(k, `)

×
∫

(Rd)k+`
g
(
φk,`(x1:k,y1:`)

)
dP

(k,`)
X,Y (x1:k,y1:`) (9)

for any integrable function g : N 2 → R. As in the single-PP
case, g(X,Y ) = 1A((X,Y ))g̃(X,Y ) results in an integral
expression similar to (4) for any measurable set A ⊆ N 2.

The symmetry of the random vectors (x, y)
(k,`)
X,Y implies that

the corresponding probability measures P (k,`)
X,Y are symmetric

in the following sense. Let τX and τY be permutations on
{1, . . . , k} and {1, . . . , `}, respectively, and define

ψτX,τY : (Rd)k+` → (Rd)k+`;

(x1:k,y1:`) 7→ (xτX(1), ...,xτX(k),yτY(1), ...,yτY(`)) .
(10)

Then, for any measurable A ⊆ (Rd)k+`

P
(k,`)
X,Y (A) = P

(k,`)
X,Y (ψτX,τY(A)) . (11)

We will also be interested in marginal probabilities. For
a pair of PPs (X,Y), the marginal PP X is defined by the
probability measure PX(A) = PX,Y(A×N ) for all measurable
sets A ⊆ N . The corresponding probability measures P (k)

X for
k ∈ N satisfy

p|X|(k)P
(k)
X (B) = p|X|,|Y|(k, 0)P

(k,0)
X,Y (B)

+
∑
`∈N

p|X|,|Y|(k, `)P
(k,`)
X,Y

(
B × (Rd)`

)
(12)

for Borel sets B ⊆ (Rd)k, where for k ∈ N0

p|X|(k) =
∑
`∈N0

p|X|,|Y|(k, `) . (13)

The definition of the marginal PP Y is analogous. We caution
that the probability measures P (k)

X and P
(`)
Y are in general

not the marginals of P (k,`)
X,Y . Indeed, P (k)

X depends on P
(k,`)
X,Y

for all ` ∈ N0 with p|X|,|Y|(k, `) 6= 0 and, similarly, P (`)
Y

depends on P
(k,`)
X,Y for all k ∈ N0 with p|X|,|Y|(k, `) 6= 0. In

particular, the probability measures of the marginals x(k,`)
X,Y and

y
(k,`)
X,Y of (x, y)

(k,`)
X,Y generally are not equal to P (k)

X and P (`)
Y ,

respectively.
We will often consider the case of i.i.d. PPs. Two PPs X

and Y are independent if PX,Y = PX × PY, i.e., Pr[(X,Y) ∈
AX × AY] = Pr[X ∈ AX] Pr[Y ∈ AY] for all AX,AY ∈
S. Furthermore, X and Y are identically distributed if their
measures PX and PY are equal.

All definitions and results in this subsection can be readily
generalized to more than two PPs. In particular, we will
consider sequences of i.i.d. PPs in Section III-D.

C. Point Processes of Fixed Cardinality

There are two major differences between spatial PPs and
random vectors: first, the number of elements in a point pattern
is a random quantity whereas the dimension of a random
vector is deterministic; second, there is no inherent order
of the elements of a point pattern. PPs of fixed cardinality
differ from random vectors only by the second property.
More specifically, we say that a PP X is of fixed cardinality
|X| = k if p|X|(k) = Pr[|X| = k] = 1 for some given
k ∈ N (we do not consider the trivial case k = 0). The
set of all possible realizations of X is denoted as Nk, i.e.,
Nk , {X ∈ N : |X| = k}. The probability measure PX

for a PP X of fixed cardinality |X| = k simplifies to (cf. (2))
PX(A) = P

(k)
X

(
φ−1
k (A)

)
, i.e., it is simply the induced measure

of P (k)
X under the mapping φk.

Similarly, a pair of PPs (X,Y) is called of fixed cardinality
(|X|, |Y|) = (k, `) if p|X|,|Y|(k, `) = 1 for some given
k, ` ∈ N, i.e., Pr[|X| = k] = 1 and Pr[|Y| = `] = 1.
The corresponding probability measure PX,Y satisfies (cf. (8))
PX,Y(A) = P

(k,`)
X,Y

(
φ−1
k,`(A)

)
. Because p|X|,|Y|(k′, `′) = 0 for

(k′, `′) 6= (k, `), (13) implies p|X|(k) = p|X|,|Y|(k, `) = 1 and,
similarly, p|Y|(`) = p|X|,|Y|(k, `) = 1. Thus, (12) simplifies
to P (k)

X (B) = P
(k,`)
X,Y

(
B × (Rd)`

)
for Borel sets B ⊆ (Rd)k.

Analogously, we obtain P
(`)
Y (B) = P

(k,`)
X,Y

(
(Rd)k × B

)
for

Borel sets B ⊆ (Rd)`. Hence, the probability measures of the
marginals x(k,`)

X,Y and y
(k,`)
X,Y of (x, y)

(k,`)
X,Y are given by P (k)

X and
P

(`)
Y , respectively.

D. Point Processes of Equal Cardinality

A setting of particular interest to our study are pairs of
PPs that have equal but not necessarily fixed cardinality. More
specifically, we say that a pair of PPs (X,Y) has equal cardi-
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nality if p|X|,|Y|(k, `) = 0 for k 6= `, i.e., Pr[|X| = |Y|] = 1.
The corresponding probability measure PX,Y satisfies (cf. (8))

PX,Y(A) = p|X|,|Y|(0, 0)1A
(
(∅, ∅)

)
+
∑
k∈N

p|X|,|Y|(k, k)P
(k,k)
X,Y

(
φ−1
k,k(A)

)
.

A significant simplification can be observed for the marginal
probabilities. Because p|X|,|Y|(k, `) = 0 for k 6= `, (13) implies
p|X|(k) = p|X|,|Y|(k, k), and (12) simplifies to P

(k)
X (B) =

P
(k,k)
X,Y

(
B × (Rd)k

)
for k ∈ N. Thus, the probability measure

of the marginal x(k,k)
X,Y of (x, y)

(k,k)
X,Y is given by P (k)

X and we
will write more compactly x

(k)
X , x

(k,k)
X,Y . Analogously, we

define y
(k)
Y , y

(k,k)
X,Y , and thus can rewrite (x, y)

(k,k)
X,Y as

(x, y)
(k,k)
X,Y =

(
x

(k)
X , y

(k)
Y

)
. (14)

III. MUTUAL INFORMATION AND RATE-DISTORTION
FUNCTION FOR POINT PROCESSES

Mutual information is a general concept that can be applied
to arbitrary probability spaces although it is most commonly
used for continuous or discrete random vectors. To obtain
an intuition about the mutual information between PPs, we
will analyze several special settings that will also be relevant
later. The basic definition of mutual information is for discrete
random variables [12, eq. (2.28)] and readily extended to
arbitrary random variables by quantization [12, eq. (8.54)]. By
the Gelfand-Yaglom-Perez theorem [30, Lem. 5.2.3], mutual
information can be expressed in terms of a Radon-Nikodym
derivative: for two random variables2 X and Y on the same
probability space,

I(X;Y) =

∫
log

(
dPX,Y

d(PX × PY)
(X,Y )

)
dPX,Y(X,Y ) (15)

if PX,Y � PX × PY and I(X;Y) =∞ else.

A. General Expression of Mutual Information

Using (15), we can express the mutual information between
PPs as a sum of Kullback-Leibler divergences (KLDs). We
recall that the KLD between two probability measures µ and
ν on the same measurable space Ω is given as [31, Sec. 1.3]

DKL(µ‖ν) =

{∫
Ω

log
(

dµ
dν (x)

)
dµ(x) if µ� ν

∞ else .
(16)

As a preliminary result, we present a characterization of the
Radon-Nikodym derivative dPX,Y

d(PX×PY) for a pair of PPs (X,Y).
A proof is given in Appendix B.

Lemma 4: Let (X,Y) be a pair of PPs. The following two
properties are equivalent:

(i) PX,Y � PX × PY;
(ii) For all k, ` ∈ N such that p|X|,|Y|(k, `) 6= 0, we

have P
(k,`)
X,Y � P

(k)
X × P

(`)
Y ; for all k ∈ N such that

p|X|,|Y|(k, 0) 6= 0, we have P (k,0)
X,Y � P

(k)
X ; and for all

` ∈ N such that p|X|,|Y|(0, `) 6= 0, we have P (0,`)
X,Y � P

(`)
Y .

2We will use (15) mainly for PPs and thus use the notation of PPs. However,
it is also valid for random vectors.

Furthermore, if the equivalent properties (i) and (ii) hold, then

dPX,Y

d(PX × PY)
= θX,Y

where θX,Y : N 2 → R≥0 satisfies3

θX,Y(∅, ∅) =
p|X|,|Y|(0, 0)

p|X|(0)p|Y|(0)
(17a)

θX,Y(φk(x1:k), ∅) =
p|X|,|Y|(k, 0)

p|X|(k)p|Y|(0)

dP
(k,0)
X,Y

dP
(k)
X

(x1:k)

(17b)

θX,Y(∅, φ`(y1:`)) =
p|X|,|Y|(0, `)

p|X|(0)p|Y|(`)

dP
(0,`)
X,Y

dP
(`)
Y

(y1:`)

(17c)

θX,Y(φk(x1:k), φ`(y1:`)) =
p|X|,|Y|(k, `)

p|X|(k)p|Y|(`)

×
dP

(k,`)
X,Y

d
(
P

(k)
X × P (`)

Y

) (x1:k,y1:`) .

(17d)

Here, the right-hand sides of (17) are understood to be zero if
p|X|,|Y|(k, `) = 0.

Using Lemma 4, we can decompose the mutual informa-
tion between PPs into KLDs between measures associated
with random vectors. The following theorem is proved in
Appendix C.

Theorem 5: The mutual information I(X;Y) for a pair of
PPs (X,Y) is given by

I(X;Y) = I(|X|; |Y|) +
∑
k∈N

p|X|,|Y|(k, 0)DKL

(
P

(k,0)
X,Y

∥∥P (k)
X

)
+
∑
`∈N

p|X|,|Y|(0, `)DKL

(
P

(0,`)
X,Y

∥∥P (`)
Y

)
+
∑
k∈N

∑
`∈N

p|X|,|Y|(k, `)DKL

(
P

(k,`)
X,Y

∥∥P (k)
X × P (`)

Y

)
.

(18)

Note that in general DKL

(
P

(k,`)
X,Y

∥∥P (k)
X × P (`)

Y

)
cannot be

represented as a mutual information because the probability
measures P

(k)
X and P

(`)
Y are not the marginals of P

(k,`)
X,Y .

However, for a pair of PPs of fixed cardinality or of equal
cardinality, a representation as mutual information is possible.

B. Mutual Information for Point Processes of Fixed
Cardinality

For a pair of PPs (X,Y) of fixed cardinality, i.e.,
p|X|,|Y|(k, `) = 1 for some k, ` ∈ N (see Section II-C), we can
relate the mutual information to the mutual information be-
tween random vectors. Indeed, since P (k,`)

X,Y , P (k)
X , and P (`)

Y are
the probability measures of (x, y)

(k,`)
X,Y and its marginals, x(k,`)

X,Y

and y
(k,`)
X,Y , respectively, we obtain DKL

(
P

(k,`)
X,Y

∥∥P (k)
X ×P

(`)
Y

)
=

3Note that the functions φk are not one-to-one and thus, e.g., for
x1:k 6= x̃1:k with φk(x1:k) = φk(x̃1:k) = X , (17b) might seem to
give contradictory values for θX,Y(X, ∅). However, due to our symmetry
assumptions on P

(k,`)
X,Y , P (k)

X , and P
(`)
Y (see Sections II-A and II-B), all

Radon-Nikodym derivatives on the right-hand side of (17) can be chosen
symmetric and thus the values of θX,Y given in (17) are consistent.
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I
(
x

(k,`)
X,Y ; y

(k,`)
X,Y

)
. Inserting this into (18) while recalling that

p|X|,|Y|(k
′, `′) = 0 for (k′, `′) 6= (k, `) and noting that

I(|X|; |Y|) = 0, Theorem 5 simplifies significantly.
Corollary 6: Let (X,Y) be a pair of PPs of fixed cardinality

(|X|, |Y|) = (k, `) for some k, ` ∈ N. Then

I(X;Y) = I
(
x

(k,`)
X,Y ; y

(k,`)
X,Y

)
.

We can also start with an arbitrary random vector(
x(k), y(`)

)
on (Rd)k+` without assuming any symmetry prop-

erties. In that case, the mutual information between x(k) and
y(`) cannot be completely described by the associated pair of
PPs

(
φk(x(k)), φ`(y(`))

)
but we also have to consider random

permutations, i.e., discrete random variables tx and ty that
specify the order of the vectors in x(k) and y(`), respectively.
More specifically, for a point pattern X = {x1, . . . ,xk}
where the indices are chosen according to a predefined total
order (e.g., lexicographical) of the elements, a permutation
τ specifies the vector4 τ(X) , (xτ(1), . . . ,xτ(k)) ∈ (Rd)k.
Using this convention, the random vector x(k) can be equiva-
lently represented by the associated PP φk(x(k)) and a random
permutation tx specifying the order of the elements relative to
the predefined total order, i.e., x(k) = tx

(
φk(x(k))

)
. Applying

further the tie-break rule that tx(i) < tx(j) if x(k)
i = x

(k)
j and

i < j, there is a one-to-one relation between the random vector
x(k) and the pair

(
φk(x(k)), tx

)
. Similarly, we can represent

y(`) by the pair
(
φ`(y(`)), ty

)
. This leads to the following

expression of the mutual information between PPs of fixed
cardinality.

Lemma 7: Let (X,Y) be a pair of PPs of fixed cardinality
(|X|, |Y|) = (k, `) for some k, ` ∈ N. Furthermore, let(
x(k), y(`)

)
be a random vector on (Rd)k+` such that (X,Y)

has the same distribution as
(
φk(x(k)), φ`(y(`))

)
. Then

I(X;Y) = I
(
x(k); y(`)

)
− I
(
tx;φ`(y

(`))
∣∣φk(x(k))

)
− I
(
x(k); ty

∣∣φ`(y(`))
)

(19)

= I
(
x(k); y(`)

)
− I
(
tx;φ`(y

(`))
∣∣φk(x(k))

)
− I
(
φk(x(k)); ty

∣∣φ`(y(`))
)

− I
(
tx; ty

∣∣φk(x(k)), φ`(y
(`))
)

(20)

where tx and ty are the random permutations associated with
the vectors in x(k) and y(`), respectively.

Proof: Due to the one-to-one relation between x(k) and(
φk(x(k)), tx

)
, and between y(`) and

(
φ`(y(`)), ty

)
, we have

I
(
x(k); y(`)

)
= I

(
φk(x(k)), tx;φ`(y(`)), ty

)
. Using the chain

rule for mutual information [30, Cor. 5.5.3] three times, we
thus obtain

I
(
x(k); y(`)

)
= I
(
φk(x(k));φ`(y

(`))
)

+ I
(
tx;φ`(y

(`))
∣∣φk(x(k))

)
+ I
(
x(k); ty

∣∣φ`(y(`))
)

(21)

= I
(
φk(x(k));φ`(y

(`))
)

+ I
(
tx;φ`(y

(`))
∣∣φk(x(k))

)
+ I
(
φk(x(k)); ty

∣∣φ`(y(`))
)

+ I
(
tx; ty

∣∣φk(x(k)), φ`(y
(`))
)
.

(22)

4Here and in what follows, we use the same symbol τ for both the
permutation on {1, . . . , k} and the associated mapping τ : N → (Rd)k ,
and we refer to both as permutation.

Because the distributions of (X,Y) and
(
φk(x(k)), φ`(y(`))

)
are equal, we have I(X;Y) = I

(
φk(x(k));φ`(y(`))

)
. Hence,

(21) implies (19) and (22) implies (20).

C. Mutual Information for Point Processes of Equal
Cardinality

If (X,Y) is a pair of PPs of equal cardinality (see Sec-
tion II-D), the mutual information I(X;Y) still simplifies
significantly compared to the general case.

Corollary 8: Let (X,Y) be a pair of PPs of equal cardinality,
i.e., p|X|,|Y|(k, `) = 0 for k 6= `. Then

I(X;Y) = H(|X|) +
∑
k∈N

p|X|(k) I
(
x

(k)
X ; y

(k)
Y

)
. (23)

Proof: We have |X| = |Y| and thus (see [12, eq. (2.42)])
I(|X|; |Y|) = H(|X|). Furthermore, we have p|X|,|Y|(k, `) = 0
for k 6= `. Thus, by Theorem 5, we obtain

I(X;Y) = H(|X|)

+
∑
k∈N

p|X|,|Y|(k, k)DKL

(
P

(k,k)
X,Y

∥∥P (k)
X × P (k)

Y

)
.

According to (13), p|X|(k) = p|X|,|Y|(k, k). Because P
(k,k)
X,Y ,

P
(k)
X , and P

(k)
Y are the probability measures of (x, y)

(k,k)
X,Y

and its marginals, x
(k)
X and y

(k)
Y , respectively, (14) implies

DKL

(
P

(k,k)
X,Y

∥∥P (k)
X × P (k)

Y

)
= I

(
x

(k)
X ; y

(k)
Y

)
, which concludes

the proof.
As in the case of fixed cardinality, we can start with arbitrary

vectors
(
x(k), y(k)

)
without assuming symmetry. Combining

Corollary 8 with the expression of mutual information pro-
vided by Lemma 7, this approach yields the following result.

Theorem 9: Let (X,Y) be a pair of PPs of equal cardinality,
i.e., p|X|,|Y|(k, `) = 0 for k 6= `. For every k ∈ N,
let
(
x(k), y(k)

)
be random vectors such that (X(k),Y(k)) ,(

φk(x(k)), φk(y(k))
)

and
(
φk(x

(k)
X ), φk(y

(k)
Y )
)

have the same
distribution. Then

I(X;Y)

= H(|X|) +
∑
k∈N

p|X|(k)
(
I
(
x(k); y(k)

)
− I
(
t(k)
x ;Y(k)

∣∣X(k)
)

− I
(
x(k); t(k)

y

∣∣Y(k)
))

(24)

= H(|X|) +
∑
k∈N

p|X|(k)
(
I
(
x(k); y(k)

)
− I
(
t(k)
x ;Y(k)

∣∣X(k)
)

− I
(
X(k); t(k)

y

∣∣Y(k)
)
− I
(
t(k)
x ; t(k)

y

∣∣X(k),Y(k)
))

(25)

where t
(k)
x and t

(k)
y are the random permutations associated

with the vectors in x(k) and y(k), respectively.

Proof: Because the distributions of (X(k),Y(k)) and(
φk(x

(k)
X ), φk(y

(k)
Y )
)

are equal, we have I(X(k);Y(k)) =

I
(
φk(x

(k)
X );φk(y

(k)
Y )
)
. Using this equality and applying

Lemma 7 to the pair of PPs (X(k),Y(k)), we obtain

I
(
φk(x

(k)
X );φk(y

(k)
Y )
)

= I
(
x(k); y(k)

)
− I
(
t(k)
x ;Y(k)

∣∣X(k)
)
− I
(
x(k); t(k)

y

∣∣Y(k)
)
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= I
(
x(k); y(k)

)
− I
(
t(k)
x ;Y(k)

∣∣X(k)
)
− I
(
X(k); t(k)

y

∣∣Y(k)
)

− I
(
t(k)
x ; t(k)

y

∣∣X(k),Y(k)
)
.

On the other hand, applying Corollary 6 to the pair
of PPs of fixed cardinality

(
φk(x

(k)
X ), φk(y

(k)
Y )
)
, we have

I
(
φk(x

(k)
X );φk(y

(k)
Y )
)

= I
(
x

(k)
X ; y

(k)
Y

)
. Combining these

equalities and inserting into (23) concludes the proof.

D. Rate-Distortion Function for Point Processes

We summarize the main concepts of RD theory [12, Sec. 10]
in the PP setting. For two point patterns X,Y ∈ N , let
ρ : N × N → R≥0 be a measurable distortion function, i.e.,
ρ(X,Y ) quantifies the distortion incurred by changing X to
Y . A source generates i.i.d. copies X[j], j ∈ N of a PP on
Rd. Loosely speaking, the RD function R(X[j])j∈N, ρ(D) gives
the smallest possible encoding rate for maximum expected
distortion D. In mathematical terms, R(X[j])j∈N, ρ(D) is the
infimum of all R > 0 such that for all ε > 0 there
exists an n ∈ N and a source code, i.e., a measurable
mapping gn : Nn → Nn, satisfying log(|gn(Nn)|) ≤ nR and
E
[

1
n

∑n
j=1 ρ

(
X[j],Y[j]

)]
≤ D+ ε, where (Y[1], . . . ,Y[n]) =

gn(X[1], . . . ,X[n]) ∈ Nn.
Following common practice, we will write R(X[j])j∈N, ρ(D)

briefly as R(D). Furthermore, we specify the source by only
one PP X and tacitly assume that (X[j])j∈N consists of i.i.d.
PPs with the same distribution as X.

Remark 10: In the vector case, ρ(x,y) is usually defined
based on x − y, e.g., the squared-error distortion ρ(x,y) =
‖x − y‖2. However, in the case of point patterns X and Y ,
this convenient construction is not possible because there is no
meaningful definition of X−Y as a difference between point
patterns. This results in a significantly more involved analysis
and construction of source codes.

For simplicity, we will assume ρ(X,X) = 0 for all
X ∈ N . Moreover, we will use some general theorems for the
characterization of RD functions, which can also be applied
to the setting of PPs. These theorems require that there exists
a reference point pattern A∗ ∈ N such that E[ρ(X, A∗)] <∞.
This condition is satisfied, e.g., if the distortion between
X ∈ N and the empty set is a linear function of the cardinality
|X| (cf. (71)), i.e., ρ(X, ∅) = c|X|, and the PP X has finite
expected cardinality E[|X|] <∞.

The RD theorem for general i.i.d. sources [26, Th. 7.2.4 and
Th. 7.2.5] states that for a given source PP X and distortion
function ρ, the RD function can be calculated as

R(D) = inf
(X̃,Y):E[ρ(X̃,Y)]≤D

I(X̃;Y) (26)

where the infimum is taken over all pairs of PPs (X̃,Y) such
that X̃ has the same distribution as X and E[ρ(X̃,Y)] ≤ D. The
expression (26) is useful for the derivation of upper bounds
on the RD function (see Section V). Another characterization
of the RD function that is more useful for the derivation of
lower bounds (see Section IV) is [28, Th. 2.3]

R(D) = max
s≥0

max
αs(·)>0

(∫
N

logαs(X) dPX(X)− sD
)

(27)

where the inner maximization is over all positive functions
αs : N → R+ satisfying∫

N
αs(X)e−sρ(X,Y ) dPX(X) ≤ 1 (28)

for all Y ∈ N . Let us assume that the measures P (k)
X are abso-

lutely continuous with respect to (L d)k with Radon-Nikodym

derivatives dP
(k)
X

d(L d)k
= f

(k)
X , i.e., the x(k)

X are continuous random
vectors. Then, (27) and (28) can equivalently be written as
follows. Using (3) with g(X) = logαs(X), (27) becomes

R(D) = max
s≥0

max
αs(·)>0

(
p|X|(0) logαs(∅) +

∑
k∈N

p|X|(k)

×
∫

(Rd)k
logαs(φk(x1:k)) f

(k)
X (x1:k) dx1:k − sD

)
(29)

where dx1:k is short for d(L d)k(x1:k) and the inner maxi-
mization is over all positive functions αs : N → R+ satisfying
(using (3) with g(X) = αs(X)e−sρ(X,Y ) in (28))

p|X|(0)αs(∅)e−sρ(∅,Y ) +
∑
k∈N

p|X|(k)

×
∫

(Rd)k
αs(φk(x1:k))e−sρ(φk(x1:k),Y )f

(k)
X (x1:k) dx1:k ≤ 1

(30)
for all Y ∈ N .

IV. LOWER BOUNDS

Lower bounds on the RD function are notoriously hard to
obtain. The only well-established lower bound is the Shannon
lower bound, which is based on the characterization of the RD
function given in (27), (28). More specifically, by omitting in
(27) the maximization over αs and using any specific positive
function αs satisfying (28) yields the lower bound

R(D) ≥ max
s≥0

(∫
N

logαs(X) dPX(X)− sD
)
.

The standard approach [29, Sec. 4] is to set αs(X) ,
1

fX(X)γ(s) , where fX = dPX

dQ is the Radon-Nikodym derivative
of PX with respect to some background measure Q on the
given measurable space (N ,S) that satisfies PX � Q, and
γ(s), s ≥ 0 is a suitably chosen function.

In this standard approach, γ(s) is chosen independently
of the cardinality of X , which is too restrictive for the
construction of useful lower bounds for PPs. Hence, we take
a slightly different approach and define αs(X) , 1

fX(X)γ|X|(s)

with appropriate functions γ|X|(s) that depend on |X|. More
specifically, we propose the following bound.

Theorem 11: Let X be a PP on Rd and assume that for
all k ∈ N, the measures P (k)

X are absolutely continuous with

respect to (L d)k with Radon-Nikodym derivatives dP
(k)
X

d(L d)k
=

f
(k)
X , i.e., x(k)

X are continuous random vectors with probability
density functions f (k)

X . For any measurable sets Ak ⊆ (Rd)k
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satisfying P
(k)
X (Ak) = 1, i.e., f (k)

X (x1:k) = 0 for (L d)k-
almost all x1:k ∈ (Ak)c, the RD function is lower-bounded
according to

R(D) ≥
∑
k∈N

p|X|(k)h
(
f

(k)
X

)
+ max

s≥0

(
−
∑
k∈N0

p|X|(k) log γk(s)− sD
)

(31)

where γk are any functions satisfying

γk(s) ≥

{
e−sρ(∅,Y ) if k = 0∫
Ak
e−sρ(φk(x1:k),Y ) dx1:k if k ∈ N

(32)

for all Y ∈ N and s ≥ 0.

Proof: The characterization of the RD function in (29)
implies that for any αs satisfying (30),

R(D) ≥ max
s≥0

(
p|X|(0) logαs(∅) +

∑
k∈N

p|X|(k)

×
∫

(Rd)k
logαs(φk(x1:k)) f

(k)
X (x1:k) dx1:k − sD

)
(a)
= max

s≥0

(
p|X|(0) logαs(∅) +

∑
k∈N

p|X|(k)

×
∫
Ak

logαs(φk(x1:k)) f
(k)
X (x1:k) dx1:k − sD

)
(33)

where (a) holds because we assumed that f (k)
X (x1:k) = 0 for

(L d)k-almost all x1:k ∈ (Ak)c. Using functions γk satisfying
(32), we construct αs as

αs(φk(x1:k)) ,


1

f
(k)
X (x1:k)γk(s)

if f (k)
X (x1:k) 6= 0

1 if f (k)
X (x1:k) = 0

(34)

for x1:k ∈ (Rd)k and

αs(∅) ,
1

γ0(s)
. (35)

Due to (32), the functions γk satisfy

p|X|(0)
1

γ0(s)
e−sρ(∅,Y )

+
∑
k∈N

p|X|(k)

∫
Ak

1

γk(s)
e−sρ(φk(x1:k),Y ) dx1:k

≤ p|X|(0) +
∑
k∈N

p|X|(k)

= 1

for all Y ∈ N , which is recognized as the condition (30)
evaluated for the functions αs given by (34) and (35). Inserting
(34) and (35) into (33) gives

R(D) ≥ max
s≥0

(
p|X|(0) log

1

γ0(s)
+
∑
k∈N

p|X|(k)

×
∫
Ak

f
(k)
X (x1:k) log

(
1

f
(k)
X (x1:k)γk(s)

)
dx1:k − sD

)

= max
s≥0

(
− p|X|(0) log γ0(s)

+
∑
k∈N

p|X|(k)
(
h
(
f

(k)
X

)
− log γk(s)

)
− sD

)
which is equivalent to (31).

V. UPPER BOUNDS

We will use two different approaches to calculate upper
bounds on the RD function. The first is based on the RD the-
orem, i.e., expression (26), whereas the second uses concrete
codes and the operational interpretation of the RD function.

A. Upper Bounds Based on the Rate-Distortion Theorem

Let X be a PP defined by the cardinality distribution p|X|
and the random vectors x

(k)
X (see Section II-A). To calculate

upper bounds, we can construct an arbitrary pair of PPs (X̃,Y)
(see Section II-B) such that X̃ has the same distribution as
X and E[ρ(X̃,Y)] ≤ D. According to (26), we then have
R(D) ≤ I(X̃;Y). However, it is often easier to construct
vectors (x(k), y(k)) that do not satisfy the symmetry properties
we assumed in the construction of pairs of PPs in Section II-B.
The following corollary to Theorem 9 shows that in the
case where x

(k)
X is a “symmetrized” version of x(k), we can

construct upper bounds on R(D) based on (x(k), y(k)).

Corollary 12: Let X be a PP on Rd defined by the cardinality
distribution p|X| and the random vectors x(k)

X . Furthermore, for
each k ∈ N, let (x(k), y(k)) be a random vector on (Rd)2k such
that X(k) , φk(x(k)) has the same distribution as φk(x

(k)
X ).

Finally, assume that∑
k∈N

p|X|(k)E
[
ρ
(
X(k),Y(k)

)]
≤ D (36)

with Y(k) , φk(y(k)). Then

R(D)

≤ H(|X|) +
∑
k∈N

p|X|(k)
(
I
(
x(k); y(k)

)
− I
(
t(k)
x ;Y(k)

∣∣X(k)
)

− I
(
x(k); t(k)

y

∣∣Y(k)
))

(37)

= H(|X|) +
∑
k∈N

p|X|(k)
(
I
(
x(k); y(k)

)
− I
(
t(k)
x ;Y(k)

∣∣X(k)
)

− I
(
X(k); t(k)

y

∣∣Y(k)
)
− I
(
t(k)
x ; t(k)

y

∣∣X(k),Y(k)
))

where t
(k)
x and t

(k)
y are the random permutations associated

with the vectors in x(k) and y(k), respectively.

Proof: We construct a pair of PPs (X̃,Y) of equal
cardinality. First, we define the cardinality distribution as
p|X̃|,|Y|(k, `) = 0 for k 6= ` and p|X̃|,|Y|(k, k) = p|X|(k) for k ∈
N0. Next, we define the random vectors

(
x

(k)

X̃
, y

(k)
Y

)
such that

(X(k),Y(k)) =
(
φk(x(k)), φk(y(k))

)
and

(
φk(x

(k)

X̃
), φk(y

(k)
Y )
)
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have the same distribution. By (24) and (25), we then obtain
for the pair of PPs (X̃,Y)

I(X̃;Y)

= H(|X|) +
∑
k∈N

p|X|(k)
(
I
(
x(k); y(k)

)
− I
(
t(k)
x ;Y(k)

∣∣X(k)
)

− I
(
x(k); t(k)

y

∣∣Y(k)
))

(38)

= H(|X|) +
∑
k∈N

p|X|(k)
(
I
(
x(k); y(k)

)
− I
(
t(k)
x ;Y(k)

∣∣X(k)
)

− I
(
X(k); t(k)

y

∣∣Y(k)
)
− I
(
t(k)
x ; t(k)

y

∣∣X(k),Y(k)
))
. (39)

Furthermore, because X(k) has the same distribution as
φk(x

(k)
X ), the construction of (X̃,Y) implies that φk(x

(k)

X̃
)

has the same distribution as φk(x
(k)
X ) too, and, in turn, the

PPs X̃ and X have the same distribution. Since (36) implies
E[ρ(X̃,Y)] =

∑
k∈N p|X|(k)E

[
ρ
(
X(k),Y(k)

)]
≤ D, we obtain

by (26) that R(D) ≤ I(X̃;Y), which in combination with (38)
and (39) concludes the proof.

B. Codebook-Based Upper Bounds

It is well known [12, Sec. 10.2] that the RD function for a
given PP can be easily upper-bounded based on its operational
interpretation if we are able to construct good source codes.
Let X be a PP and assume that there exists a source code
g : N → N such that |g(N )| = M . If E[ρ(X, g(X))] ≤ D̃,
then the RD function at D̃ satisfies

R(D̃) ≤ logM . (40)

The construction of good source codes, even in the vector
case, is a difficult optimization task. In the case of PPs, this
task is further complicated by the absence of a meaningful
vector space structure of sets; even the definition of a “mean”
of point patterns is not straightforward. Our construction is
motivated by the Lloyd algorithm [32], which, for a given
number M of codewords (i.e., elements in g(N )), alternately
finds M “centers” Xj ∈ N and constructs an associated par-
tition {Aj}j=1,...,M of N . The resulting centers X1, . . . , XM

can be used as codewords and the associated source code g is
defined as

g : N → N ; X 7→ arg min
Xj∈{X1,...,XM}

ρ(X,Xj) .

That is, a point pattern X ∈ N is encoded into the center
point pattern Xj that is closest to X in the sense of mini-
mizing ρ(X,Xj). In our setting, the Lloyd algorithm can be
formalized as follows:
• Input: PP X; distortion function ρ : N × N → R≥0;

number M ∈ N of codewords.
• Initialization: Draw M different initial codewords Xj ∈
N according to the distribution of X.

• Step 1: Find a partition of N into M disjoint subsets Aj
such that the distortion incurred by changing X ∈ Aj
to Xj is less than or equal to the distortion incurred by
changing X to any other Xj′ , j′ 6= j, i.e., ρ(X,Xj) ≤
ρ(X,Xj′) for all j′ 6= j and all X ∈ Aj .

• Step 2: For each j ∈ {1, . . . ,M}, find a new code-
word associated with Aj that has the smallest expected
distortion from all point patterns in Aj , i.e., a “center
point pattern” Xj (replacing the previous Xj) satisfying
Xj = arg minX̃∈N EX|X∈Aj [ρ(X, X̃)].

• Repeat Step 1 and Step 2 until some convergence criterion
is satisfied.

• Output: codebook {X1, . . . , XM}.
Unfortunately, closed-form solutions for Steps 1 and 2 do

not exist in general. A workaround is an approach known
in vector quantization as Linde-Buzo-Gray (LBG) algorithm
[27]. Here, a codebook is constructed based on a given set A
of source realizations. We can generate the set A by drawing
i.i.d. samples of X. Adapted to our setting, the algorithm can
be stated as follows:
• Input: a set A ⊆ N containing |A| < ∞ point patterns;

distortion function ρ : N × N → R≥0; number M of
codewords.

• Initialization: Randomly choose M different initial code-
words Xj ∈ A.

• Step 1: Find a partition of A into M disjoint subsets Aj
such that the distortion incurred by changing X ∈ Aj
to Xj is less than or equal to the distortion incurred by
changing X to any other Xj′ , j′ 6= j, i.e., ρ(X,Xj) ≤
ρ(X,Xj′) for all j′ 6= j and all X ∈ Aj .

• Step 2: For each j ∈ {1, . . . ,M}, find a new codeword
associated withAj that has the smallest average distortion
from all point patterns in Aj , i.e., a “center point pattern”
Xj ∈ N (replacing the previous Xj) satisfying

Xj = arg min
X̃∈N

1

|Aj |
∑
X∈Aj

ρ(X, X̃) . (41)

• Repeat Step 1 and Step 2 until some convergence criterion
is satisfied.

• Output: codebook {X1, . . . , XM}.
Step 1 can be performed by calculating |A|M times a distor-

tion ρ(X,Xj). However, Step 2 is typically computationally
unfeasible: in many cases, finding a center point pattern of
a finite collection Aj of point patterns according to (41) is
equivalent to solving a multi-dimensional assignment problem,
which is known to be NP-hard. Hence, we will have to resort
to approximate or heuristic solutions. Note that we do not
have to solve the optimization problem exactly to obtain upper
bounds on the RD function. We merely have to construct a
source code that can be analyzed, no matter what heuristics or
approximations were used in its construction. A convergence
analysis of the proposed algorithm appears to be difficult, as
even the convergence behavior of the Lloyd algorithm in Rd
is not completely understood [33], [34].

VI. POINT PROCESSES OF FIXED CARDINALITY

In this section, we present lower and upper bounds on
the RD function for PPs of fixed cardinality as discussed in
Section II-C. We thus restrict our analysis to source codes
and distortion functions on the subset Nk = {X ∈ N : |X| =
k} ⊆ N . The assumption of fixed cardinality leads to more
concrete bounds and enables a comparison with the vector
viewpoint.
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A. Lower Bound

For a PP X of fixed cardinality, the RD lower bound in
Theorem 11 simplifies as follows.

Corollary 13: Let X be a PP on Rd of fixed cardinality
|X| = k, i.e., p|X|(k) = 1 for some k ∈ N. Assume that the
measure P (k)

X is absolutely continuous with respect to (L d)k

with Radon-Nikodym derivative dP
(k)
X

d(L d)k
= f

(k)
X . Then the RD

function is lower-bounded according to

R(D) ≥ h
(
f

(k)
X

)
+ max

s≥0
(− log γk(s)− sD)

where γk is any function satisfying

γk(s) ≥
∫

(Rd)k
e−sρ(φk(x1:k),Y ) dx1:k

for all Y ∈ Nk.

We can obtain a simpler bound by considering a specific
distortion function. For point patterns X = {x1, . . . ,xk}
and Y = {y1, . . . ,yk} of equal cardinality k, we define the
distortion function as

ρ2(X,Y ) , min
τ

k∑
i=1

‖xi − yτ(i)‖2 (42)

where the minimum is taken over all permutations τ on
{1, . . . , k}. This is a natural counterpart of the classical
squared-error distortion function of vectors. We note that a
generalization to sets X,Y of different cardinalities (and the
inclusion of a normalization factor 1/k) leads to the squared
optimal subpattern assignment (OSPA) metric defined in [25].
The idea of the following lower bound is that a source code
for PPs can be extended to a source code for vectors, by
additionally specifying an ordering.

Theorem 14: Let X be a PP on Rd of fixed cardinality |X| =
k and let x(k) be a random vector on (Rd)k such that φk(x(k))
has the same distribution as X. Then the RD function for X
and distortion function ρ2 is lower-bounded in terms of the RD
function Rvec for x(k) and squared-error distortion according
to

R(D) ≥ Rvec(D)− log k! . (43)

Proof: Let D > 0 be fixed. For any R > R(D) and
ε > 0, the operational definition of the RD function (see
Section III-D) implies that there exists an n ∈ N and a source
code gn : Nn → Nn such that log(|gn(Nn)|) ≤ nR and

E
[

1

n

n∑
j=1

ρ2

(
X[j],Y[j]

)]
≤ D + ε (44)

where (Y[1], . . . ,Y[n]) = gn(X[1], . . . ,X[n]) ∈ Nn and
the X[j] are i.i.d. copies of X. We define a vector source
code gvec,n : ((Rd)k)n → ((Rd)k)n for sequences of length
n in (Rd)k by the following procedure. For a sequence(
x1:k[1], . . . ,x1:k[n]

)
with x1:k[j] ∈ (Rd)k, we first map

each vector x1:k[j] to the corresponding point pattern X[j] =
φk
(
x1:k[j]

)
=
{
x1[j], . . . ,xk[j]

}
. Then we use the source

code gn to obtain an encoded sequence of point patterns(
Y [1], . . . , Y [n]

)
= gn

(
X[1], . . . , X[n]

)
. Finally, we map

each point pattern Y [j] =
{
y1[j], . . . ,yk[j]

}
to a vec-

tor
(
yτ [j](1)[j], . . . ,yτ [j](k)[j]

)
by a permutation τ [j] such

that the squared error
∑k
i=1

∥∥xi[j] − yτ [j](i)[j]
∥∥2

is mini-
mized, i.e., τ [j] = arg minτ̃ [j]

∑k
i=1

∥∥xi[j] − yτ̃ [j](i)[j]
∥∥2

.
Based on this construction, the elements

(
yτ [1](1)[1], . . . ,

yτ [1](k)[1], . . . ,yτ [n](1)[n], . . . ,yτ [n](k)[n]
)

in the range of
gvec,n are sequences in gn(Nn) with the elements of each
component Y [j] ordered according to some permutation
τ [j]. As there are k! possible orderings for each com-
ponent, we have

∣∣gvec,n
(
(Rd)kn

)∣∣ ≤ (k!)n|gn(Nn)| ≤
(k!)nenR ≤ en(R+log k!). Furthermore, for

(
y1:k[1], . . . ,

y1:k[n]
)

= gvec,n
(
x1:k[1], . . . ,x1:k[n]

)
, we have

n∑
j=1

∥∥x1:k[j]− y1:k[j]
∥∥2

=

n∑
j=1

min
τ̃ [j]

k∑
i=1

∥∥xi[j]− yτ̃ [j](i)[j]
∥∥2

(42)
=

n∑
j=1

ρ2(X[j], Y [j])

and thus for
(
y(k)[1], . . . , y(k)[n]

)
= gvec,n

(
x(k)[1], . . . ,

x(k)[n]
)
, where the x(k)[j] are i.i.d. copies of x(k),

E
[

1

n

n∑
j=1

∥∥x(k)[j]− y(k)[j]
∥∥2
]

= E
[

1

n

n∑
j=1

ρ2

(
X[j],Y[j]

)]
(44)
≤ D + ε .

Hence, for an arbitrary R̃ , R + log k! > R(D) +
log k! and ε > 0, we constructed a source code gvec,n

such that log
(∣∣gvec,n

(
(Rd)kn

)∣∣) ≤ nR̃ and the ex-
pected average distortion between

(
x(k)[1], . . . , x(k)[n]

)
and

gvec,n
(
x(k)[1], . . . , x(k)[n]

)
is less than or equal to D + ε.

According to the operational definition of the RD function
in Section III-D, we hence obtain Rvec(D) ≤ R(D) + log k!.

The offset log k! corresponds to the maximal information
that a vector contains in addition to the information present in
the set, i.e., the maximal information provided by the ordering
of the k elements. Indeed, the “information content” of the
ordering is maximal if all of the k! possible orderings are
equally likely, in which case it is given by log k!. For D → 0,
the bound (43) shows that the asymptotic behavior of the RD
function R(D) for small distortions is similar to the vector
case, i.e., Rvec(D). In particular, we expect that an analysis
of the RD dimension [35] of PPs can be based on (43) and
the asymptotic tightness of the Shannon lower bound in the
vector case [36]. On the other hand, (43) does not allow us to
analyze the RD function for k →∞, as the resulting bounds
quickly fall below zero.

Let us combine the bound (43) with the classical Shannon
lower bound for a random vector x(k) with probability density
function fx(k) and squared-error distortion, which is given by
[29, eq. (4.8.8)]

Rvec(D) ≥ h
(
fx(k)

)
− kd

2

(
1 + log

(
2πD

kd

))
. (45)

In particular, for a PP X on Rd of fixed cardinality |X| =

k whose measure P (k)
X is absolutely continuous with respect



11

to (L d)k with Radon-Nikodym derivative dP
(k)
X

d(L d)k
= f

(k)
X ,

setting x(k) = x
(k)
X , and combining (45) with Theorem 14

gives

R(D) ≥ h
(
f

(k)
X

)
− kd

2

(
1 + log

(
2πD

kd

))
− log k! . (46)

The same result can also be obtained by concretizing Corollary
13 for the distortion function ρ2.

B. Upper Bound Based on the Rate-Distortion Theorem

We can also concretize the upper bounds from Section V
for PPs of fixed cardinality. Corollary 12 becomes particularly
simple.

Corollary 15: Let X be a PP on Rd of fixed cardinality
|X| = k. Denote by x

(k)
X the associated symmetric random

vector on (Rd)k. Furthermore, let (x(k), y(k)) be any random
vector on (Rd)2k such that φk(x(k)) has the same distribution
as φk(x

(k)
X ). Finally, assume that

E
[
ρ2

(
φk(x(k)), φk(y(k))

)]
≤ D . (47)

Then the RD function for distortion function ρ2, at distortion
D, is upper-bounded according to

R(D) ≤ I
(
x(k); y(k)

)
− I
(
t(k)
x ;φk(y(k))

∣∣φk(x(k))
)

− I
(
x(k); t(k)

y

∣∣φk(y(k))
)

(48)

where t
(k)
x and t

(k)
y are the random permutations associated

with the vectors in x(k) and y(k), respectively.

We can simplify (47) by using the following relation of ρ2

to the squared-error distortion of vectors:

ρ2

(
φk(x1:k), φk(y1:k)

)
= min

τ

k∑
i=1

‖xi − yτ(i)‖2

≤
k∑
i=1

‖xi − yi‖2

= ‖x1:k − y1:k‖2 . (49)

Thus, E
[
‖x(k) − y(k)‖2

]
≤ D implies (47). This shows

that the upper bound I
(
x(k); y(k)

)
on the RD function of a

random vector x(k) based on an arbitrary random vector y(k)

satisfying E
[
‖x(k) − y(k)‖2

]
≤ D, is also an upper bound

on the RD function of the corresponding fixed-cardinality PP
X = φk(x(k)).

C. Codebook-Based Upper Bounds

We can also obtain upper bounds by constructing explicit
source codes using the variation of the LBG algorithm pro-
posed in Section V-B. We will specify the two iteration steps of
that algorithm for point patterns of fixed cardinality k. In Step
1, for a given set A ⊆ Nk of point patterns and M center point
patterns X∗j , we have to associate each point pattern X ∈ A
with the center point pattern X∗j with minimal distortion
ρ2(X,X∗j ). This requires an evaluation of ρ2(X,X∗j ) for each
X ∈ A and each j ∈ {1, . . . ,M}. If several distortions
ρ2(X,X∗j ) are minimal for a given X , we choose the one
with the smallest index j. All point patterns X ∈ A that are

associated with the center point pattern X∗j are collected in
the set Aj . In Step 2, for each subset Aj ⊆ A, we have to
find an updated center point pattern X∗j of minimal average
distortion from all point patterns in Aj , i.e.,

X∗j = arg min
X̃∈Nk

1

|Aj |
∑
X∈Aj

ρ2(X, X̃) . (50)

We can reformulate (50) as the task of finding an “optimal”
permutation (corresponding to an ordering) τ∗X of each point
pattern X ∈ Aj according to the following lemma. A proof
is given in Appendix D.

Lemma 16: Let Aj ⊆ Nk be a finite collection of point pat-
terns in Rd of fixed cardinality k ∈ N, i.e., for all X ∈ Aj , we
have X =

{
x

(X)
1 , . . . ,x

(X)
k

}
with x

(X)
i ∈ Rd. Then a center

point pattern5 X∗j = arg minX̃∈Nk
1
|Aj |

∑
X∈Aj ρ2(X, X̃) is

given as

X∗j = {x∗1, . . . ,x∗k} with x∗i =
1

|Aj |
∑
X∈Aj

x
(X)
τ∗X(i) (51)

where the collection of permutations {τ∗X}X∈Aj is given by

{τ∗X}X∈Aj = arg min
{τX}X∈Aj

k∑
i=1

∑
X∈Aj

∑
X′∈Aj

∥∥x(X)
τX(i)−x

(X′)
τX′ (i)

∥∥2
.

(52)

By Lemma 16, the minimization problem in (50) is equiv-
alent to a multi-dimensional assignment problem (MDAP).
Indeed, a collection of permutations {τX}X∈Aj corresponds
to a choice of k cliques6

Ci ,
{
x

(X)
τX(i) : X ∈ Aj

}
, i = 1, . . . , k . (53)

Thus, for each point pattern X ∈ Aj , τX assigns each of the
k vectors in X to one of k different cliques, such that no two
vectors in X are assigned to the same clique. Each resulting
clique hence contains |Ci| = |Aj | vectors—one from each
X ∈ Aj—and each vector x ∈ X belongs to exactly one
clique for all X ∈ Aj . Note that the union of all X ∈ Aj is the
same as the union of all cliques Ci, i.e.,

⋃
X∈Aj X =

⋃k
i=1 Ci.

The relation between the cliques Ci and the point patterns
X ∈ Aj is illustrated in Figure 1. We define the cost of a
clique Ci as the sum∑
x∈Ci

∑
x′∈Ci

‖x− x′‖2 =
∑
X∈Aj

∑
X′∈Aj

∥∥x(X)
τX(i) − x

(X′)
τX′ (i)

∥∥2
.

(54)
Finding the collection of cliques {C∗i }i=1,...,k with minimal
sum cost, i.e.,

{C∗i }i=1,...,k = arg min
{Ci}i=1,...,k

k∑
i=1

∑
x∈Ci

∑
x′∈Ci

‖x− x′‖2 (55)

is then equivalent to finding the optimal collection of per-
mutations in (52). Moreover, according to its definition in
(54), the cost of a clique can be decomposed into a sum of

5The center point pattern is not necessarily unique.
6An MDAP can also be formulated as a graph-theoretic problem where a

clique corresponds to a complete subgraph [37].
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x1

x2
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x4
z1

z2
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Fig. 1. Cliques Ci for Aj = {X,Y, Z}, k = 4, and permutations
{τX′}X′∈Aj = {τX , τY , τZ} with τX(1) = 2, τX(2) = 1, τX(3) = 3,
τX(4) = 4; τY (1) = 3, τY (2) = 4, τY (3) = 2, τY (4) = 1; and
τZ(1) = 4, τZ(2) = 1, τZ(3) = 2, τZ(4) = 3. Note that, e.g., τY (4) = 1
expresses the fact that y1 ∈ C4.

squared distances, each between two of its members. Thus, the
minimization in (55) is an MDAP with decomposable costs.

Although finding an exact solution to such an MDAP is
unfeasible for large k and large clique sizes |Ci| = |Aj |,
there exist various heuristic algorithms producing approximate
solutions [37]–[39]. Because we are mainly interested in the
case of a large clique size, we will merely use a variation
of the basic single-hub heuristic and the multi-hub heuristic
presented in [37]. Since these heuristic algorithms are used
in Step 2 of the proposed LBG-type algorithm, we will label
the corresponding steps as 2.1–2.3. The classical single-hub
heuristic is based on assigning the vectors x

(X)
i in each point

pattern X ∈ Aj to the k different cliques (using a permutation
τX ) by minimizing the sum of squared distances between the
vectors x(X)

τ(i) and the vectors x(X1)
i of one “hub” point pattern

X1. More specifically, the algorithm (corresponding to Step 2
of the LBG algorithm) is given as follows.
• Input: a collection Aj of point patterns; each point pattern
X ∈ Aj contains k points in Rd.

• Initialization: Choose a point pattern X1 ∈ Aj (called
the hub) and define τX1

(i) = i for i = 1, . . . , k.
• Step 2.1: For each X =

{
x

(X)
1 , . . . ,x

(X)
k

}
∈ Aj \{X1},

find the best assignment between the vectors in X and
X1, i.e., a permutation

τX = arg min
τ

k∑
i=1

∥∥x(X)
τ(i) − x

(X1)
i

∥∥2
. (56)

• Step 2.2: Define the clique Ci according to (53), i.e.,

Ci ,
{
x

(X)
τX(i) : X ∈ Aj

}
, i = 1, . . . , k . (57)

• Step 2.3: Define the (approximate) center point pattern
X̂∗j as the union of the centers (arithmetic means) of all
cliques, i.e.,

X̂∗j ,
k⋃
i=1

{
x̄Ci

}
with x̄Ci ,

1

|Ci|
∑
x∈Ci

x . (58)

• Output: approximate center point pattern X̂∗j .
The above heuristic requires only |Aj | − 1 optimal as-

signments between point patterns. However, the accuracy of

the resulting approximate center point pattern X̂∗j strongly
depends on the choice of the hub X1 and can be very poor
for certain choices of X1. The more robust multi-hub heuristic
[37] performs the single-hub algorithm with all the X ∈ Aj
as alternative hubs X1, which can be shown to increase the
complexity to (|Aj |−1)|Aj |

2 optimal assignments, i.e., by a
factor of |Aj |/2. We here propose a different heuristic that
has almost the same complexity as the single-hub heuristic
but is more robust. The idea of our approach is to replace the
best assignment to the single hub X1 by an optimal assignment
to the approximate center point pattern of the subsets defined
in the preceding steps. More specifically, we start with a hub
X1 ∈ Aj and, as in the single-hub heuristic, search for the
best assignment τX2 (see (56) with X = X2) between the
vectors in a randomly chosen X2 ∈ Aj \ {X1} and X1.
Then, we calculate the center point pattern X̂2 of X1 and
X2 as in (57) and (58) but with Aj replaced by {X1, X2}.
In the next step, we choose a random X3 ∈ Aj \ {X1, X2}
and find the optimal assignment τX3 between the vectors in
X3 and X̂2. An approximate center point pattern X̂3 of X1,
X2, and X3 is then calculated as in (57) and (58) but with
Aj replaced by {X1, X2, X3}. Equivalently, we can calculate
X̂3 as a “weighted” center point pattern of X3 and X̂2. We
proceed in this way with all the point patterns in Aj , always
calculating the optimal assignment τXr (r = 4, 5, . . . ) between
the vectors in Xr and the approximate center point pattern
X̂r−1 of the previous r−1 point patterns. A formal statement
of the algorithm is as follows.
• Input: a collection Aj of point patterns; each point pattern
X ∈ Aj contains k points in Rd.

• Initialization: (Randomly) order the point patterns X ∈
Aj , i.e., choose a sequence (X1, . . . , X|Aj |) where the
Xr are all the elements of Aj . Set the initial subset center
point pattern X̂1 to X1.

• For r = 2, . . . , |Aj |:
– Step 2.1: Find the best assignment between the vec-

tors in Xr and X̂r−1, i.e., a permutation τXr =

arg minτ
∑k
i=1

∥∥x(Xr)
τ(i) − x

(X̂r−1)
i

∥∥2
.

– Step 2.2: Generate an updated (approximate) subset
center point pattern X̂r =

{
x

(X̂r)
1 , . . . ,x

(X̂r)
k

}
accord-

ing to

x
(X̂r)
i =

1

r

r∑
s=1

x
(Xs)
τXs (i) =

(r − 1)x
(X̂r−1)
i + x

(Xr)
τXr (i)

r

(59)
for i = 1, . . . , k.

• Output: approximate center point pattern X̂∗j = X̂|Aj |.
As in the case of the single-hub heuristic, we only have to
perform |Aj | − 1 optimal assignments. The complexity of the
additional center update (59) is negligible. On the other hand,
the multi-hub algorithm can be easily parallelized whereas our
algorithm works only sequentially.

D. Example: Gaussian Distribution

As an example, we consider the case of a PP X on Rd of
fixed cardinality |X| = k whose points are independently dis-
tributed according to a standard Gaussian distribution on Rd,



13

i.e., x(k)
X ∈ (Rd)k has i.i.d. zero-mean Gaussian entries with

variance 1. We want to compare the lower bound (43) to the
upper bounds presented in Sections VI-B and VI-C and to the
RD function for the vector setting, i.e., to the RD function of a
standard Gaussian vector x(k) in (Rd)k. In the PP setting, we
use the distortion ρ2 (see (42)), while in the vector setting, we
use the conventional squared-error distortion. The RD function
for x(k) in the vector setting can be calculated in closed form;
assuming D ≤ kd, it is equal to

Rvec(D) =
kd

2
log

(
kd

D

)
. (60)

This result was shown (see [12, Sec. 10.3.2]) by using the RD
theorem for the vector case, i.e., (26) with obvious modifica-
tions, and choosing x(k) = y(k) + w(k), where w(k) has i.i.d.
zero-mean Gaussian entries with variance D/(kd), y(k) has
i.i.d. zero-mean Gaussian entries with variance 1 − D/(kd),
and y(k) and w(k) are independent. This choice can be shown
to achieve the infimum in the RD theorem and hence the
mutual information I(x(k); y(k)) is equal to the RD function.

In the PP setting, inserting (60) into (43) results in the lower
bound

R(D) ≥ kd

2
log

(
kd

D

)
− log k! . (61)

For the calculation of the upper bound (48), we use a
similar approach as in the vector case. Let X be a PP of fixed
cardinality |X| = k, where x

(k)
X has i.i.d. zero-mean Gaussian

entries with variance 1. We choose x(k) = y(k) + w(k),
where w(k) has i.i.d. zero-mean Gaussian entries with variance
σ2 < 1, y(k) has i.i.d. zero-mean Gaussian entries with
variance 1 − σ2, and y(k) and w(k) are independent. The
random vectors x

(k)
X and x(k) have the same distribution, and

the first term on the right-hand side in (48) is here obtained
as

I
(
x(k); y(k)

)
=
kd

2
log

(
1

σ2

)
. (62)

The second term on the right-hand side in (48) can be dropped,
which in general results in a looser upper bound. However,
in our example, this term can be shown to be zero and thus
dropping it does not loosen the bound. The third term can be
rewritten as

−I
(
x(k); t(k)

y

∣∣φk(y(k))
)

= −H
(
t(k)
y

∣∣φk(y(k))
)

+H
(
t(k)
y

∣∣φk(y(k)), x(k)
)
. (63)

Because all the elements y
(k)
i of y(k) are i.i.d. and thus sym-

metric, the associated random permutation t
(k)
y is uniformly

distributed. Furthermore, this symmetry implies that t
(k)
y is

independent of the values of the elements of φk(y(k)). Thus,

H
(
t(k)
y

∣∣φk(y(k))
)

= H
(
t(k)
y

)
= log k! . (64)

Furthermore, the entropy H
(
t
(k)
y

∣∣φk(y(k)), x(k)
)

is shown in
Appendix E to be bounded for any ε > 0 according to

H
(
t(k)
y

∣∣φk(y(k)), x(k)
)

≤
(
k(k − 1)

2
Fχ2

(
9ε2

2(1− σ2)
; d

)
+ 1− Fχ2

(
ε2

σ2
; kd

))
× log k! +H2(p0(ε)) + (1− p0(ε)) log(k!− 1) (65)

where Fχ2( · ; d) denotes the cumulative distribution function
of a χ2 distribution with d degrees of freedom, H2(·) is
the binary entropy function, and p0(ε) = 1/

(
1 + (k! −

1) exp
(
− 3ε2

2σ2

))
. Inserting (64) and (65) into (63) and, in turn,

inserting (62) and (63) into (48), we obtain

R(D) ≤ kd

2
log

(
1

σ2

)
− log k! +

(
k(k − 1)

2

× Fχ2

(
9ε2

2(1− σ2)
; d

)
+ 1− Fχ2

(
ε2

σ2
; kd

))
log k!

+H2(p0(ε)) + (1− p0(ε)) log(k!− 1) (66)

provided that (47) is satisfied. Due to (49), this is the case
if E

[
‖x(k) − y(k)‖2

]
≤ D. Because E

[
‖x(k) − y(k)‖2

]
=

E
[
‖w(k)‖2

]
= dkσ2, we thus choose σ2 = D/(kd).

By choosing ε appropriately, we can show that the upper
bound (66) converges to the lower bound (61) as D → 0,
i.e., that the lower bound (61) is asymptotically tight. Indeed,
choosing ε > 0 such that ε→ 0 and ε/σ →∞ as D → 0, we
obtain Fχ2

(
9ε2

2(1−σ2) ; d
)
→ 0, Fχ2

(
ε2

σ2 ; kd
)
→ 1, and p0(ε)→

1. Thus, (66) gives

R(D) ≤ kd

2
log

(
kd

D

)
− log k! + o(1) (67)

where o(1) is a function that converges to zero as D → 0.
In Figure 2, we show the upper bound (66) for d = 2,
cardinalities k = 4 and k = 30, and ε = σ3/4 = (D/(kd))3/8

in comparison to the lower bound (61) and the vector RD
function (60). We see that as D → 0, our upper and lower
bounds are tight. However, as the upper bound was designed
for small values of D, it is not useful for larger values of D.

We also considered codebook-based upper bounds following
(40). Using the LBG-type algorithm presented in Sections V-B
and VI-C, we constructed codebooks for fixed-cardinality PPs
with k = 4 and k = 30 i.i.d. Gaussian points. As input to the
LBG algorithm, we used |A| = 100 ·M random realizations
of the source PP. In Step 2 of the algorithm, we employed
the multi-hub heuristic as well as the modified single-hub
heuristic proposed in Section VI-C. The expected distortion
D̃ = E[ρ2(X, g(X))] for each constructed source code g
was calculated using Monte Carlo integration [40, Ch. 3].
In Figure 3, we show the resulting upper bounds on the RD
function based on codebooks of up to M = 2048 codewords
in comparison to the lower bound (61) and the vector RD
function (60). Unfortunately, for larger values of M , Step 1 in
the LBG algorithm becomes computationally unfeasible. It can
be seen that the PP setting can significantly reduce the required
rates compared to the vector setting also for large values of
D. Furthermore, using the significantly less computationally
demanding modified single-hub heuristic does not result in
increased upper bounds compared to the multi-hub heuristic.

VII. POISSON POINT PROCESSES

Poisson PPs, the most prominent and widely used class of
PPs, are characterized by a complete randomness property.
A PP X on Rd is a Poisson PP if the number of points in
each Borel set A ⊆ Rd is Poisson distributed with parameter
λ(A)—where the measure λ is referred to as the intensity
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Fig. 2. Lower bound on the RD function according to (61) and upper bound on the RD function according to (66) with ε = σ3/4 = (D/(kd))3/8 for a PP
of fixed cardinality k (left: k = 4; right: k = 30) and with x

(k)
X following a multivariate standard normal distribution. For comparison, also the corresponding

vector RD function (60) is shown.
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Fig. 3. Numerical codebook-based upper bounds on the RD function of a PP of fixed cardinality k (left: k = 4; right: k = 30) and with x
(k)
X following a

multivariate standard normal distribution. The codebook construction underlying the upper bounds used the multi-hub heuristic (MH) or the proposed modified
single-hub heuristic (MSH). For comparison, also the corresponding vector RD function (60) and the lower bound (61) are shown. (The latter is shown only
for k = 4, because for k = 30 it is below 0 in the regime where code construction is feasible.)

measure of X—and for any disjoint Borel sets A,B ⊆ Rd, the
number of points in A is independent of the number of points
in B. For a formal definition see [2, Sec. 2.4]. We will assume
that X is a finite Poisson PP, which satisfies λ(Rd) < ∞. In
this setting, we easily obtain the cardinality distribution p|X|
and the measures P (k)

X . Let us express the intensity measure
as λ = νλ0, where ν , λ(Rd) ∈ R≥0 and λ0 , λ/ν is a
probability measure. We then obtain

p|X|(k) =
e−ννk

k!
for k ∈ N0 (68)

and moreover it can be shown that (see [2, Sec. 5.3])

P
(k)
X = λk0 for k ∈ N . (69)

Note that (69) implies that for a given cardinality |X| = k, the
vectors xi ∈ X are i.i.d. with probability measure λ0.

In the following, we will often consider Poisson PPs with
intensity measure λ = νλ0, where λ0 is absolutely con-
tinuous with respect to L d with Radon-Nikodym derivative
gX = dλ0

dL d . According to (69), this implies that the probability
measures P

(k)
X are absolutely continuous with respect to

(L d)k with Radon-Nikodym derivative

dP
(k)
X

d(L d)k
(x1:k) = f

(k)
X (x1:k) =

k∏
i=1

gX(xi) (70)

i.e., the x
(k)
X are continuous random vectors with probability

density function
∏k
i=1 gX(xi).

A. Distortion Function
For a Poisson PP X, there is a nonzero probability that |X| =

k for each k ∈ N0. Thus, for an RD analysis, we have to
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define a distortion function between point patterns of different
cardinalities. We choose the squared OSPA distance [25] (up
to a normalization factor7). For X = {x1, . . . ,xk} and Y =
{y1, . . . ,y`} with k ≤ `, we define the unnormalized squared
OSPA (USOSPA) distortion

ρ
(c)
2 (X,Y ) , (`− k) c2 + min

τ

k∑
i=1

min
{
‖xi − yτ(i)‖2, c2

}
(71)

where c > 0 is a parameter (the cut-off value) and the outer
minimum is taken over all permutations τ on {1, . . . , `}. For
k > `, we define ρ

(c)
2 (X,Y ) , ρ

(c)
2 (Y,X). According to

(71), the USOSPA distortion is constructed by first penalizing
the difference in cardinalities via the term |` − k| c2. Then
an optimal assignment between the points of X and Y is
established based on the Euclidean distance, and the minima
of the squared distances and c2 are summed. To bound the RD
function, we will use the following bounds on the USOSPA
distortion, which are proved in Appendix F.

Lemma 17: Let X = {x1, . . . ,xk} ∈ N and Y =
{y1, . . . ,y`} ∈ N . Then for k ≥ `

ρ
(c)
2 (X,Y ) ≥

k∑
i=1

`
min
j=1

min{‖xi − yj‖2, c2} (72)

and for k ≤ `

ρ
(c)
2 (X,Y ) ≥ (`−k)c2 +

k∑
i=1

`
min
j=1

min{‖xi−yj‖2, c2} . (73)

B. Lower Bounds for Poisson Point Processes

Based on Theorem 11 and Lemma 17, we can formulate
lower bounds on the RD function of Poisson PPs. A proof of
the following result is given in Appendix G.

Theorem 18: Let X be a Poisson PP on Rd with intensity
measure λ = νλ0, where λ0 is absolutely continuous with
respect to L d with probability density function gX = dλ0

dL d .
Furthermore, let A be a Borel set satisfying

∫
A
gX(x) dx = 1,

i.e., gX(x) = 0 for L d-almost all x ∈ Ac. Then the RD
function of X using distortion ρ(c)

2 is lower-bounded as

R(D) ≥ ν h(gX) + max
s≥1/c2

(
−
∑
k∈N

e−ννk

k!

× log
(

min
{

(L d(A))k, γ̃k(s)
})
− sD

)
(74)

where

γ̃k(s) ,

(
e−sc

2

L d(A)

+ k

(
−e−sc

2

L d(Uc) +

∫
Uc

e−s‖x‖
2

dx

))k
(75)

with Uc , {x ∈ Rd : ‖x‖ ≤ c}.

7In [25], the OSPA is normalized by the maximal number of points in
either pattern. This normalization is unfavorable for our RD analysis as it
would cause the distortion, and in turn the RD function, to converge to zero
for large patterns.

Note that the PP X enters the bound (74) only via ν and
the differential entropy h(gX). In particular, the functions γ̃k
in (75) do not depend on X. However, they do depend on the
set A.

Example 19: Let X be a Poisson PP on R2 with intensity
measure λ = νL 2|[0,1)2 , i.e., the points are independently
and uniformly distributed on the unit square. In this setting,
we have gX = 1[0,1)2 and we can choose A = [0, 1)2 in
Theorem 18. The differential entropy h(gX) is zero, because
the density gX = 1[0,1)2 takes on the values zero or one.
Furthermore, we have d = 2, and thus, using L 2(A) = 1,
L 2(Uc) = πc2, and

∫
Uc
e−s‖x‖

2

dx = π
s

(
1 − e−sc

2)
, (75)

reduces to

γ̃k(s) =

(
e−sc

2

(
1− πc2k − πk

s

)
+
πk

s

)k
.

We further obtain

log
(

min
{

(L 2(A))k, γ̃k(s)
})

= min
{
k log L 2(A), log γ̃k(s)

}
= min{0, log γ̃k(s)}

i.e., we can upper-bound log
(

min
{

(L 2(A))k, γ̃k(s)
})

either
by zero (which corresponds to omitting the kth summand
in (74)) or by log γ̃k(s). In particular, we can omit all
but the first kmax ∈ N0 summands in the lower bound
(74) and, in the remaining summands, bound the factors
log
(

min
{

(L 2(A))k, γ̃k(s)
})

by log γ̃k(s). We then obtain

R(D) ≥ max
s≥1/c2

(
−
kmax∑
k=1

e−ννk

k!
log γ̃k(s)− sD

)

= max
s≥1/c2

(
−
kmax∑
k=1

e−ννk

(k − 1)!

× log

(
e−sc

2

(
1− πc2k − πk

s

)
+
πk

s

)
− sD

)
(76)

where we used h(gX) = 0.
Let us next investigate the convexity properties of the

right-hand side in (76). The second derivative of log γ̃k(s)
is obtained as

(log γ̃k(s))′′

=
(
πk2

(
(1− πc2k)(c4s3 − c2s2 − 2se−sc

2

+ 2s)

− c2s2 + e−sc
2

πk(1− esc
2

)2
))

× s−2esc
2(
πc2ks+ πk − πkesc

2

− s
)−2

. (77)

It can be shown that (log γ̃k(s))′′ > 0 if s ≥ 3/c2 and
k ≤ 1/(2πc2). Hence, log γ̃k is convex in that case. In
particular, choosing kmax ≤ 1/(2πc2), we have that log γ̃k
is a convex function for k ≤ kmax and s ≥ 3/c2, and thus the
sum on the right-hand side in (76) is—as a sum of concave
functions—concave. Hence, if we restrict the maximization in
(76) to s ≥ 3/c2, we obtain a lower bound for given values
of c, kmax ≤ 1/(2πc2), ν, and D that we can compute using
standard numerical algorithms. In Figure 4, we show this lower
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Fig. 4. Lower and upper bounds on the RD function for a Poisson PP with
uniform intensity measure λ = 10 ·L 2|[0,1)2 on [0, 1)2, using the USOSPA
distortion with cut-off value c = 0.1.

bound for c = 0.1, kmax = b1/(2πc2)c = 15, ν = 10, and
various values of D.

For kmax > 1/(2πc2), the right-hand side in (76) is not
guaranteed to be concave. However, we can still use numerical
solvers to try to find local maxima of (76) that give even better
results. In particular, we show in Figure 4 also an optimized
lower bound for kmax = 50.

C. Upper Bound for Poisson Point Processes

Next, we establish an upper bound on the RD function of
a Poisson PP X. In the following theorem, which is proven
in Appendix H, we apply Corollary 12 to vectors (x(k), y(k))

where x(k) has the same distribution as x
(k)
X .

Theorem 20: Let X be a Poisson PP on Rd with intensity
measure λ = νλ0, where λ0 is absolutely continuous with
respect to L d with probability density function gX = dλ0

dL d .
Furthermore, let λY be a probability measure on Rd and let
y(k) be random vectors on (Rd)k with probability measure
(λY)k for each k ∈ N. Define the joint distribution of
(x(k), y(k)) by a given conditional probability density function
gx(k)|y(k)(x1:k |y1:k) on (Rd)k for each y1:k ∈ (Rd)k. Assume
that the resulting random vector x(k) has the same distribution
as x

(k)
X (see (70)), i.e.,

k∏
i=1

gX(xi) =

∫
(Rd)k

gx(k)|y(k)(x1:k |y1:k) dλkY(y1:k) (78)

and that∑
k∈N

e−ννk

k!
E
[
ρ

(c)
2

(
φk(x(k)), φk(y(k))

)]
≤ D (79)

where

E
[
ρ

(c)
2

(
φk(x(k)), φk(y(k))

)]
=

∫
(Rd)k

∫
(Rd)k

ρ
(c)
2 (φk(x1:k), φk(y1:k))

× gx(k)|y(k)(x1:k |y1:k) dλkY(y1:k) dx1:k .

Then

R(D) ≤ ν − ν log ν + ν h(gX)

+
∑
k∈N

e−ννk

k!

(
log k!− h

(
x(k)

∣∣ y(k)
))

(80)

where

h
(
x(k)

∣∣ y(k)
)

=

∫
(Rd)k

h
(
x(k)

∣∣ y(k) = y1:k

)
dλkY(y1:k) (81)

with

h
(
x(k)

∣∣ y(k) = y1:k

)
= −

∫
(Rd)k

gx(k)|y(k)(x1:k |y1:k)

× log gx(k)|y(k)(x1:k |y1:k) dx1:k .
(82)

In the proof of Theorem 20 in Appendix H, we do not make
use of the conditional mutual informations in (37). Although
this loosens the bound in general, it does not if we use a con-
ditional probability density function gx(k)|y(k)(x1:k |y1:k) that
does not depend on the ordering of the elements y1, . . . ,yk.
Indeed, this additional assumption can be shown to imply
that the conditional mutual informations in (37) are zero and
thus can be dropped without loosening the bound. This is
in stark contrast to the setting we encountered in Section
VI-D, where the conditional mutual informations are required
to obtain a useful upper bound. Indeed, these two settings
illustrate different proof strategies: Either the joint distribution
of x(k) and y(k) is carefully constructed to gain conditional
independence of the orderings, or we have to analyze the
conditional mutual informations in (37) in detail. Next, we
use Theorem 20 with such a carefully constructed conditional
probability density function to obtain upper bounds on the RD
function of the Poisson PP discussed in Example 19.

Example 21: Let X be a Poisson PP on R2 with intensity
measure λ = νL 2|[0,1)2 , i.e., gX = 1[0,1)2 . To use Theo-
rem 20, we have to define a measure λY and conditional
probability density functions gx(k)|y(k)(x1:k |y1:k) such that
(78) is satified, i.e., in our case,∫

(R2)k
gx(k)|y(k)(x1:k |y1:k) dλkY(y1:k) =

k∏
i=1

1[0,1)2(xi) .

(83)
To this end, for N ∈ N satisfying N ≥ 1/(

√
2c) (this

condition will be used later), we define λY as

λY(C) =
1

N2

N∑
j1=1

N∑
j2=1

δqj1,j2 (C) (84)

for C ∈ B2, where δx denotes the point measure at x
and qj1,j2 =

(
2j1−1

2N , 2j2−1
2N

)
. Hence, λY corresponds to a

discrete uniform distribution with the N2 possible realizations
qj1,j2 , j1, j2 ∈ {1, . . . , N}. Furthermore, consider a set of k
index pairs

{(
j

(i)
1 , j

(i)
2

)}
i=1,...,k

⊆ {1, . . . , N}2. The function
gx(k)|y(k)(x1:k |y1:k) is then defined for yi = q

j
(i)
1 ,j

(i)
2

by

gx(k)|y(k)
(
x1:k

∣∣ (q
j
(1)
1 ,j

(1)
2
, . . . , q

j
(k)
1 ,j

(k)
2

))
=

1

k!

∑
τ

k∏
i=1

N2
1Q

j
(τ(i))
1 ,j

(τ(i))
2

(xi) (85)
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=
N2k

k!

∑
τ

1∏k
i=1Qj(τ(i))1 ,j

(τ(i))
2

(x1:k) (86)

where Qj1,j2 ,
[
− 1

2N ,
1

2N

)2
+ qj1,j2 and the sum is over all

permutations τ on {1, . . . , k}. Note that {Qj1,j2}j1,j2=1,...,N

constitutes a partition of [0, 1)2 into N2 squares. Further-
more, note that N2

1Q
j
(τ(i))
1 ,j

(τ(i))
2

is the probability den-

sity function of a uniform random vector on the square
Q
j
(τ(i))
1 ,j

(τ(i))
2

. Thus, the distribution specified by (85) can be
interpreted as first randomly choosing an assignment (rep-
resented by τ ) between {xi}i=1,...,k and

{
q
j
(i)
1 ,j

(i)
2

}
i=1,...,k

,
and then distributing xi uniformly and independently on the
square Q

j
(τ(i))
1 ,j

(τ(i))
2

with center q
j
(τ(i))
1 ,j

(τ(i))
2

. In particular,
gx(k)|y(k)

(
x1:k

∣∣ (q
j
(1)
1 ,j

(1)
2
, . . . , q

j
(k)
1 ,j

(k)
2

))
does not depend on

the ordering of the points q
j
(1)
1 ,j

(1)
2
, . . . , q

j
(k)
1 ,j

(k)
2

.
By Lemma 27 in Appendix I, λY defined by (84) and

gx(k)|y(k) defined by (85) satisfy (83). Furthermore, by Lem-
ma 28 in Appendix I, the left-hand side of (79) is given as

∑
k∈N

e−ννk

k!
E
[
ρ

(c)
2

(
φk(x(k)), φk(y(k))

)]
=

ν

6N2
. (87)

Thus, condition (79) is satisfied for D ≥ ν/(6N2) and, in
particular, for D = ν/(6N2).

Finally, we will simplify the bound (80) for our setting.
We first recall that the differential entropy h(gX) is zero
(see Example 19). Furthermore, according to Lemma 29 in
Appendix I, the conditional differential entropy h

(
x(k)

∣∣ y(k)
)

can be lower-bounded by

h
(
x(k)

∣∣ y(k)
)
≥
(
N2

k

)
k!

N2k
log k!− k logN2 . (88)

Inserting D = ν/(6N2), h(gX) = 0, and (88) into (80), we
obtain

R

(
ν

6N2

)
≤ ν − ν log ν +

∑
k∈N

e−ννk

k!

(
log k! + k logN2

)
−

N2∑
k=1

e−ννk
(
N2

k

)
N2k

log k! (89)

where we used that
(
N2

k

)
= 0 for k > N2. By Lemma 30 in

Appendix I with Ñ = N , (89) implies

R

(
ν

6N2

)
≤ ν + ν log

N2

ν
+

N2∑
k=1

e−ννk log k!

(
1

k!
−
(
N2

k

)
N2k

)

+

(
1−

N2−2∑
k=0

e−ννk

k!

)
ν2 . (90)

The bound (90) can be calculated explicitly for various N .
However, for large N , this is computationally intensive. The
computational complexity can be reduced by omitting the

summands with k > N2
max, where Nmax ≤ N , in the last

sum in (89), which results in

R

(
ν

6N2

)
≤ ν − ν log ν +

∑
k∈N

e−ννk

k!

(
log k! + k logN2

)
−
N2

max∑
k=1

e−ννk
(
N2

k

)
N2k

log k! . (91)

Again using Lemma 30 in Appendix I, this time with Ñ =
Nmax, we finally obtain

R

(
ν

6N2

)
≤ ν + ν log

N2

ν
+

N2
max∑
k=1

e−ννk log k!

(
1

k!
−
(
N2

k

)
N2k

)

+

(
1−

N2
max−2∑
k=0

e−ννk

k!

)
ν2 . (92)

In Figure 4, this upper bound is depicted for the case ν = 10,
c = 0.1, Nmax = min{N, 10}, and N ranging from 8 to 207
(corresponding to D = ν/(6N2) ranging from 3.9 · 10−5 to
2.6 · 10−2).

VIII. CONCLUSION

We established lower and upper bounds on the RD function
of finite PPs. Our bounds provide insights into the behavior of
the RD function and demonstrate that the RD function based
on the PP viewpoint can be significantly lower than the RD
function based on the vector viewpoint. Furthermore, the PP
viewpoint allows sets of different sizes to be considered in
a single source coding scenario. Our lower bounds are based
on the general RD characterization in [28]. Our upper bounds
are based either on the RD theorem and an expression of the
mutual information between PPs or on a concrete source code.

To enable a comparison with the vector viewpoint, we
considered PPs of fixed cardinality with a specific distor-
tion function. For consistency with the classical squared-
error distortion, we used a squared-error distortion between
optimally assigned point patterns. To obtain upper bounds,
we established a relation between the mutual informations for
random vectors and for PPs. We further proposed a Lloyd-type
algorithm for the construction of source codes. We applied our
upper bounds to a PP of fixed cardinality where all points are
Gaussian and i.i.d. The result implies that the RD function in
the PP setting is significantly smaller than that of a Gaussian
vector of the same dimension. Furthermore, we showed that
our upper bound converges to the lower bound as the distortion
goes to zero.

The complexity of our proposed Lloyd-type algorithm does
not scale well in the codebook size and the cardinality of the
point patterns. An efficient heuristic scheme for computing
the “center point pattern” for a large collection of point
patterns would significantly reduce the complexity but does
not seem to be available. We note that our algorithm can be
easily generalized to PPs of variable cardinality by sorting the
collection of point patterns representing the source according
to their cardinality and then performing the algorithm for each
cardinality separately. However, an algorithm that is able to
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find center point patterns directly for point patterns of different
cardinality may result in better source codes. A first approach
in this direction was presented in [41]. Another possible
extension of our codebook construction is to encode several
successive point patterns jointly, resulting in a source code
of length greater than one. This is expected to yield tighter
upper bounds, but also to result in a higher computational
complexity.

As an example of PPs with variable cardinality, we studied
Poisson PPs along with an unnormalized squared OSPA dis-
tortion function. For a Poisson PP of uniform intensity on the
unit square in R2, our lower and upper bounds are separated
by only a small gap and thus provide a good characterization
of the RD function. For the construction of the upper bound,
we used a uniform quantization. This quantization can also
be employed to construct source codes and is a first, simple
constructive approach to the generation of source codes for
PPs. We expect that—similar to the vector case—finding a
good systematic source code construction for general PPs is
challenging.

The specific PPs we considered in this paper were only
the most basic ones. A large variety of other PPs have been
defined in the literature [42, Ch. 3]. In particular, statistical
dependencies between the points should result in even lower
RD functions but will also require a significantly more compli-
cated analysis. Furthermore, in certain applications, distortion
functions that are not based on optimal assignments (e.g., the
Hausdorff distance [25]) may be more appropriate. Finally,
we restricted our analysis to memoryless sources, i.e., i.i.d.
sequences of PPs. Modeling sources with memory would
require mathematical results on random sequences of point
patterns (e.g., Markov chains [43, Sec. 7]). An information-
theoretic analysis of these sequences appears to be an inter-
esting direction for future research.

APPENDIX A
PROPERTIES OF φk,`

Lemma 22: For k ∈ N, let φk be defined as in (1), and for
(k, `) ∈ N2

0 \ {(0, 0)}, let φk,` be defined as in (5)–(7). Then
for AX,AY ∈ S, we have

φ−1
k,`(AX ×AY) =



φ−1
k (AX)× φ−1

` (AY)

if k, ` 6= 0 (93a)
φ−1
k (AX) if k 6= 0, ` = 0, ∅ ∈ AY

(93b)
∅ if k 6= 0, ` = 0, ∅ /∈ AY

(93c)
φ−1
` (AY) if k = 0, ` 6= 0, ∅ ∈ AX

(93d)
∅ if k = 0, ` 6= 0, ∅ /∈ AX .

(93e)

Proof: Case k, ` 6= 0: According to (5), a vec-
tor (x1:k,y1:`) belongs to φ−1

k,`(AX × AY) if and only if
{x1, . . . ,xk} ∈ AX and {y1, . . . ,y`} ∈ AY. By (1), this in
turn is equivalent to x1:k ∈ φ−1

k (AX) and y1:` ∈ φ−1
` (AY).

This proves (93a).

Case k 6= 0, ` = 0, ∅ ∈ AY: According to (7), a vector x1:k

belongs to φ−1
k,0(AX ×AY) if and only if {x1, . . . ,xk} ∈ AX

and ∅ ∈ AY. As we assumed ∅ ∈ AY, this is, by (1), equivalent
to x1:k ∈ φ−1

k (AX). This proves (93b).
Case k 6= 0, ` = 0, ∅ /∈ AY: According to (7), a vector x1:k

belongs to φ−1
k,0(AX ×AY) if and only if {x1, . . . ,xk} ∈ AX

and ∅ ∈ AY. Because we assumed ∅ /∈ AY, there is no x1:k

that belongs to φ−1
k,0(AX ×AY). This proves (93c).

The remaining cases, (93d) and (93e), follow by symmetry.

Lemma 23: Let A ⊆ (Rd)k+`. Then

φ−1
k,`(φk,`(A)) =

⋃
τX,τY

ψτX,τY(A) (94)

where ψτX,τY is given by (10), and the union is over all permu-
tations τX and τY on {1, . . . , k} and {1, . . . , `}, respectively.

Proof: We first show φ−1
k,`(φk,`(A)) ⊆

⋃
τX,τY

ψτX,τY(A).
To this end, let

(x1:k,y1:`) ∈ φ−1
k,`(φk,`(A)) . (95)

We have to show that (x1:k,y1:`) ∈ ψτX,τY(A) for some
permutations τX, τY. By the definition of the inverse image,
(95) implies that φk,`(x1:k,y1:`) belongs to φk,`(A). This
does not necessarily imply (x1:k,y1:`) ∈ A, but there must
exist a vector (x̃1:k, ỹ1:`) ∈ A such that φk,`(x̃1:k, ỹ1:`) =
φk,`(x1:k,y1:`), i.e., ({x̃1, . . . , x̃k}, {ỹ1, . . . , ỹ`}) = ({x1,
. . . ,xk}, {y1, . . . ,y`}). This equality implies that there exist
permutations τX and τY such that (x1:k,y1:`) = (x̃τX(1), . . . ,
x̃τX(k), ỹτY(1), . . . , ỹτY(`)), i.e., (x1:k,y1:`) ∈ ψτX,τY(A).

It remains to show φ−1
k,`(φk,`(A)) ⊇

⋃
τX,τY

ψτX,τY(A) or,
equivalently, φ−1

k,`(φk,`(A)) ⊇ ψτX,τY(A) for all permuta-
tions τX and τY. To this end, let (x1:k,y1:`) ∈ ψτX,τY(A).
Thus, (x1:k,y1:`) = (x̃τX(1), . . . , x̃τX(k), ỹτY(1), . . . , ỹτY(`))
for some (x̃1:k, ỹ1:`) ∈ A. In particular, this equality implies
that ({x̃1, . . . , x̃k}, {ỹ1, . . . , ỹ`}) = ({x1, . . . ,xk}, {y1, . . . ,
y`}), or, equivalently, φk,`(x̃1:k, ỹ1:`) = φk,`(x1:k,y1:`). The
latter equality implies (x1:k,y1:`) ∈ φ−1

k,`(φk,`(A)).

APPENDIX B
PROOF OF LEMMA 4

We first present a preliminary result.

Lemma 24: Let (X,Y) be a pair of PPs. For A ∈ S ⊗ S,
we have

PX × PY(A)

= p|X|(0)p|Y|(0)1A
(
(∅, ∅)

)
+
∑
k∈N

p|X|(k)p|Y|(0)P
(k)
X

(
φ−1
k,0(A)

)
+
∑
`∈N

p|X|(0)p|Y|(`)P
(`)
Y

(
φ−1

0,`(A)
)

+
∑
k∈N

∑
`∈N

p|X|(k)p|Y|(`)
(
P

(k)
X × P (`)

Y

)(
φ−1
k,`(A)

)
. (96)

Proof: We first note that both sides of (96) are finite
measures on S⊗S. Because finite measures can be uniquely
extended to a product σ-algebra based on their values on
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rectangles, it suffices to consider sets A = AX × AY with
AX,AY ∈ S. For such A, we have

PX × PY(AX ×AY)

= PX(AX)PY(AY)

(2)
=

(
p|X|(0)1AX

(∅) +
∑
k∈N

p|X|(k)P
(k)
X

(
φ−1
k (AX)

))
×
(
p|Y|(0)1AY

(∅) +
∑
`∈N

p|Y|(`)P
(`)
Y

(
φ−1
` (AY)

))
= p|X|(0)1AX

(∅)p|Y|(0)1AY
(∅)

+ p|Y|(0)1AY
(∅)
∑
k∈N

p|X|(k)P
(k)
X

(
φ−1
k (AX)

)
+ p|X|(0)1AX

(∅)
∑
`∈N

p|Y|(`)P
(`)
Y

(
φ−1
` (AY)

)
+
∑
k∈N

∑
`∈N

p|X|(k)p|Y|(`)

× P (k)
X

(
φ−1
k (AX)

)
P

(`)
Y

(
φ−1
` (AY)

)
(93)
= p|X|(0)p|Y|(0)1AX×AY

(
(∅, ∅)

)
+
∑
k∈N

p|X|(k)p|Y|(0)P
(k)
X

(
φ−1
k,0(AX ×AY)

)
+
∑
`∈N

p|X|(0)p|Y|(`)P
(`)
Y

(
φ−1

0,`(AX ×AY)
)

+
∑
k∈N

∑
`∈N

p|X|(k)p|Y|(`)

×
(
P

(k)
X × P (`)

Y

)(
φ−1
k,`(AX ×AY)

)
.

This shows that (96) holds for all rectangles and thus con-
cludes the proof.

B.1 Equivalence of (i) and (ii)

Next, we show that properties (i) and (ii) in Lemma 4 are
equivalent.

(i)⇒ (ii): We first assume that (i) holds, i.e., PX,Y � PX×
PY. We want to show that this implies (ii). To this end, let
P

(k)
X × P (`)

Y (A) = 0 for k, ` ∈ N with p|X|,|Y|(k, `) 6= 0 and a
Borel set A ⊆ (Rd)k+`. Because P (k)

X and P (`)
Y are symmetric

measures, this implies (see (11)) P (k)
X ×P (`)

Y

(
ψτX,τY(A)

)
= 0

for all permutations τX, τY. By (94), this implies

P
(k)
X × P (`)

Y

(
φ−1
k,`(φk,`(A))

)
=
∑
τX,τY

P
(k)
X × P (`)

Y

(
ψτX,τY(A)

)
= 0 . (97)

Because φk′,`′ and φk,` have disjoint images for (k′, `′) 6=
(k, `), we obtain φ−1

k′,`′(φk,`(A)) = ∅, which implies

P
(k′)
X × P (`′)

Y

(
φ−1
k′,`′(φk,`(A))

)
= 0 if k′, `′ ∈ N and

(k′, `′) 6= (k, `) (98a)

P
(k′)
X

(
φ−1
k′,0(φk,`(A))

)
= 0 if k′ ∈ N and

(k′, 0) 6= (k, `) (98b)

P
(`′)
Y

(
φ−1

0,`′(φk,`(A))
)

= 0 if `′ ∈ N and

(0, `′) 6= (k, `) . (98c)

Furthermore, (∅, ∅) /∈ φk,`(A) and thus

1φk,`(A)

(
(∅, ∅)

)
= 0 . (98d)

By (96) with A = φk,`(A), (97) and (98) imply PX ×
PY(φk,`(A)) = 0. Due to the assumed absolute continuity
PX,Y � PX × PY, this implies PX,Y(φk,`(A)) = 0 and in
turn, by (8) with A = φk,`(A), P (k,`)

X,Y

(
φ−1
k,`(φk,`(A))

)
= 0

(recall that we assumed p|X|,|Y|(k, `) 6= 0). Because A ⊆
φ−1
k,`(φk,`(A)), we obtain P

(k,`)
X,Y (A) = 0. Thus, we showed

that for k, ` ∈ N with p|X|,|Y|(k, `) 6= 0, P (k)
X × P (`)

Y (A) = 0

implies P (k,`)
X,Y (A) = 0, i.e., we have P (k,`)

X,Y � P
(k)
X ×P (`)

Y . If
k = 0 or ` = 0, the proof follows analogously.

(ii) ⇒ (i): For the converse direction, we assume that (ii)
holds. In order to show (i), assume that PX × PY(A) = 0 for
A ∈ S⊗S. By (96), this implies

p|X|(0)p|Y|(0)1A((∅, ∅)) = 0 (99a)

P
(k)
X

(
φ−1
k,0(A)

)
= 0 if k ∈ N and

p|X|(k)p|Y|(0) 6= 0 (99b)

P
(`)
Y

(
φ−1

0,`(A)
)

= 0 if ` ∈ N and
p|X|(0)p|Y|(`) 6= 0 (99c)

P
(k)
X × P (`)

Y

(
φ−1
k,`(A)

)
= 0 if k, ` ∈ N and

p|X|(k)p|Y|(`) 6= 0 . (99d)

By (13), we have that for any (k, `) ∈ N2
0, both p|X|(k) and

p|Y|(`) are nonzero if p|X|,|Y|(k, `) 6= 0. Thus, the conditions in
(99) are implied by corresponding conditions on p|X|,|Y|(k, `),
and we obtain

p|X|,|Y|(0, 0)1A((∅, ∅)) = 0

P
(k)
X

(
φ−1
k,0(A)

)
= 0 if k ∈ N and p|X|,|Y|(k, 0) 6= 0

P
(`)
Y

(
φ−1

0,`(A)
)

= 0 if ` ∈ N and p|X|,|Y|(0, `) 6= 0

P
(k)
X × P (`)

Y

(
φ−1
k,`(A)

)
= 0 if k, ` ∈ N and

p|X|,|Y|(k, `) 6= 0 .

By the absolute continuity assumptions in (ii), these equations
imply P

(k,`)
X,Y

(
φ−1
k,`(A)

)
= 0 for any (k, `) ∈ N2

0 \ {(0, 0)}
with p|X|,|Y|(k, `) 6= 0. Thus, all summands on the right-hand
side of (8) are zero, which implies PX,Y(A) = 0. Hence, we
showed that PX × PY(A) = 0 implies PX,Y(A) = 0, i.e.,
PX,Y � PX × PY, which is (i).

B.2 Proof that dPX,Y

d(PX×PY) = θX,Y

We have to show that for all A ∈ S⊗S

PX,Y(A) =

∫
A
θX,Y(X,Y ) d(PX × PY)(X,Y ) . (100)

Again, because finite measures can be uniquely extended to
a product σ-algebra based on their values on rectangles, it
suffices to consider sets A = AX × AY with AX,AY ∈ S.
With this choice, it follows from (8) that the left-hand side in
(100) can be rewritten as

PX,Y(AX ×AY)

= p|X|,|Y|(0, 0)1AX×AY

(
(∅, ∅)

)
+

∑
(k,`)∈N2

0

(k,`)6=(0,0)

p|X|,|Y|(k, `)P
(k,`)
X,Y

(
φ−1
k,`(AX ×AY)

)
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(93)
= p|X|,|Y|(0, 0)1AX

(∅)1AY
(∅)

+ 1AY
(∅)
∑
k∈N

p|X|,|Y|(k, 0)P
(k,0)
X,Y

(
φ−1
k (AX)

)
+ 1AX

(∅)
∑
`∈N

p|X|,|Y|(0, `)P
(0,`)
X,Y

(
φ−1
` (AY)

)
+
∑
k∈N

∑
`∈N

p|X|,|Y|(k, `)P
(k,`)
X,Y

(
φ−1
k (AX)× φ−1

` (AY)
)
.

(101)

The right-hand side in (100) can be rewritten as∫
AX×AY

θX,Y(X,Y ) d(PX × PY)(X,Y )

=

∫
AY

∫
AX

θX,Y(X,Y ) dPX(X) dPY(Y )

(a)
=

∫
AY

(
p|X|(0)1AX

(∅)θX,Y(∅, Y ) +
∑
k∈N

p|X|(k)

×
∫
φ−1
k (AX)

θX,Y(φk(x1:k), Y ) dP
(k)
X (x1:k)

)
dPY(Y )

(102)

where we used (4) with g̃(X) = θX,Y(X,Y ) in (a). The
integral over the first summand in (102) can be rewritten as∫

AY

p|X|(0)1AX
(∅)θX,Y(∅, Y ) dPY(Y )

= p|X|(0)1AX
(∅)
∫
AY

θX,Y(∅, Y ) dPY(Y )

(a)
= p|X|(0)1AX

(∅)
(
p|Y|(0)1AY

(∅)θX,Y(∅, ∅)

+
∑
`∈N

p|Y|(`)

∫
φ−1
` (AY)

θX,Y(∅, φ`(y1:`)) dP
(`)
Y (y1:`)

)
(17)
= p|X|,|Y|(0, 0)1AX

(∅)1AY
(∅)

+ 1AX
(∅)
∑
`∈N

∫
φ−1
` (AY)

p|X|,|Y|(0, `) dP
(0,`)
X,Y (y1:`) (103)

where we used (4) with g̃(Y ) = θX,Y(∅, Y ) in (a). The integral
over the remaining summands in (102) can be rewritten as∫
AY

p|X|(k)

∫
φ−1
k (AX)

θX,Y(φk(x1:k), Y ) dP
(k)
X (x1:k) dPY(Y )

=

∫
φ−1
k (AX)

p|X|(k)

∫
AY

θX,Y(φk(x1:k), Y ) dPY(Y ) dP
(k)
X (x1:k)

(a)
=

∫
φ−1
k (AX)

p|X|(k)

(
p|Y|(0)1AY

(∅)θX,Y(φk(x1:k), ∅)

+
∑
`∈N

p|Y|(`)

∫
φ−1
` (AY)

θX,Y(φk(x1:k), φ`(y1:`))

× dP
(`)
Y (y1:`)

)
dP

(k)
X (x1:k)

(b)
= 1AY

(∅)
∫
φ−1
k (AX)

p|X|,|Y|(k, 0) dP
(k,0)
X,Y (x1:k)

+
∑
`∈N

∫
φ−1
k (AX)×φ−1

` (AY)

p|X|,|Y|(k, `) dP
(k,`)
X,Y (x1:k,y1:`)

(104)

where we used (4) with g̃(Y ) = θX,Y(φk(x1:k), Y ) in (a) and

plugged in (17) in (b). Inserting (103) and (104) into (102),
we obtain∫

AX×AY

θX,Y(X,Y ) d(PX × PY)(X,Y )

= p|X|,|Y|(0, 0)1AX
(∅)1AY

(∅)

+ 1AX
(∅)
∑
`∈N

∫
φ−1
` (AY)

p|X|,|Y|(0, `) dP
(0,`)
X,Y (y1:`)

+ 1AY
(∅)
∑
k∈N

∫
φ−1
k (AX)

p|X|,|Y|(k, 0) dP
(k,0)
X,Y (x1:k)

+
∑
k∈N

∑
`∈N

∫
φ−1
k (AX)×φ−1

` (AY)

p|X|,|Y|(k, `)

× dP
(k,`)
X,Y (x1:k,y1:`) .

This is seen to coincide with (101), and thus the equality (100)
holds.

APPENDIX C
PROOF OF THEOREM 5

We first note that due to the equivalence of (i) and (ii)
in Lemma 4, PX,Y � PX × PY if and only if P (k,0)

X,Y �
P

(k)
X , P (0,`)

X,Y � P
(`)
Y , and P

(k,`)
X,Y � P

(k)
X × P

(`)
Y for all

(k, `) ∈ N2
0 \ {(0, 0)} with p|X|,|Y|(k, `) 6= 0. Thus, if any

of the aforementioned absolute continuities do not hold, (15)
and (16) imply that both sides in (18) are infinite, which
concludes the proof for this case. Otherwise, (i) and (ii) in
Lemma 4 hold and we can express the mutual information and
all relevant KLDs in (18) using Radon-Nikodym derivatives.
We recall from Lemma 4 that in this case dPX,Y

d(PX×PY) (X,Y ) =

θX,Y(X,Y ), where θX,Y satisfies (17). Thus, using (15), we
obtain I(X;Y) =

∫
N 2 log θX,Y(X,Y ) dPX,Y(X,Y ). Using (9)

with g(X,Y ) = log θX,Y(X,Y ), we obtain further

I(X;Y)

= p|X|,|Y|(0, 0) log θX,Y(∅, ∅) +
∑

(k,`)∈N2
0

(k,`)6=(0,0)

p|X|,|Y|(k, `)

×
∫

(Rd)k+`
log θX,Y

(
φk,`(x1:k,y1:`)

)
dP

(k,`)
X,Y (x1:k,y1:`) .

Inserting for θX,Y the expressions (17) yields

I(X;Y)

= p|X|,|Y|(0, 0) log

(
p|X|,|Y|(0, 0)

p|X|(0)p|Y|(0)

)
+
∑
k∈N

p|X|,|Y|(k, 0)

×
∫

(Rd)k
log

(
p|X|,|Y|(k, 0)

p|X|(k)p|Y|(0)

dP
(k,0)
X,Y

dP
(k)
X

(x1:k)

)
dP

(k,0)
X,Y (x1:k)

+
∑
`∈N

p|X|,|Y|(0, `)

×
∫

(Rd)`
log

(
p|X|,|Y|(0, `)

p|X|(0)p|Y|(`)

dP
(0,`)
X,Y

dP
(`)
Y

(y1:`)

)
dP

(0,`)
X,Y (y1:`)

+
∑
k∈N

∑
`∈N

p|X|,|Y|(k, `)

∫
(Rd)k+`

log

(
p|X|,|Y|(k, `)

p|X|(k)p|Y|(`)

×
dP

(k,`)
X,Y

d
(
P

(k)
X × P (`)

Y

) (x1:k,y1:`)

)
dP

(k,`)
X,Y (x1:k,y1:`)
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=
∑
k∈N0

∑
`∈N0

p|X|,|Y|(k, `) log

(
p|X|,|Y|(k, `)

p|X|(k)p|Y|(`)

)
+
∑
k∈N

p|X|,|Y|(k, 0)

×
∫

(Rd)k
log

(
dP

(k,0)
X,Y

dP
(k)
X

(x1:k)

)
dP

(k,0)
X,Y (x1:k)

+
∑
`∈N

p|X|,|Y|(0, `)

×
∫

(Rd)`
log

(
dP

(0,`)
X,Y

dP
(`)
Y

(y1:`)

)
dP

(0,`)
X,Y (y1:`)

+
∑
k∈N

∑
`∈N

p|X|,|Y|(k, `)

×
∫

(Rd)k+`
log

(
dP

(k,`)
X,Y

d
(
P

(k)
X × P (`)

Y

) (x1:k,y1:`)

)
× dP

(k,`)
X,Y (x1:k,y1:`) .

The result (18) now follows by recognizing that∑
k∈N0

∑
`∈N0

p|X|,|Y|(k, `) log

(
p|X|,|Y|(k, `)

p|X|(k)p|Y|(`)

)
= I(|X|; |Y|)

and by using (16) in the remaining terms.

APPENDIX D
PROOF OF LEMMA 16

We have to show that X∗j as defined in (51), (52) satis-
fies

∑
X∈Aj ρ2(X,X∗j ) ≤

∑
X∈Aj ρ2(X, X̃) for all X̃ ∈

Nk. To this end, we first construct an upper bound on∑
X∈Aj ρ2(X,X∗j ) based on (52). According to (52), the

collection of permutations {τ∗X}X∈Aj satisfies

k∑
i=1

∑
X∈Aj

∑
X′∈Aj

1

2|Aj |
∥∥x(X)

τ∗X(i) − x
(X′)
τ∗
X′ (i)

∥∥2

= min
{τX}X∈Aj

k∑
i=1

∑
X∈Aj

∑
X′∈Aj

1

2|Aj |
∥∥x(X)

τX(i) − x
(X′)
τX′ (i)

∥∥2
.

(105)

Setting

x̄i ,
1

|Aj |
∑
X∈Aj

x
(X)
τX(i) for i ∈ {1, . . . , k} (106)

we can rewrite the two inner sums on the right-hand side of
(105) as

1

2|Aj |
∑
X∈Aj

∑
X′∈Aj

∥∥x(X)
τX(i) − x

(X′)
τX′ (i)

∥∥2

=
1

2|Aj |
∑
X∈Aj

∑
X′∈Aj

∥∥(x(X)
τX(i) − x̄i

)
+
(
x̄i − x

(X′)
τX′ (i)

)∥∥2

=
1

2|Aj |
∑

X′∈Aj

∑
X∈Aj

∥∥x(X)
τX(i) − x̄i

∥∥2

+
1

|Aj |
∑
X∈Aj

∑
X′∈Aj

(
x

(X)
τX(i) − x̄i

)T(
x̄i − x

(X′)
τX′ (i)

)
+

1

2|Aj |
∑
X∈Aj

∑
X′∈Aj

∥∥x̄i − x
(X′)
τX′ (i)

∥∥2

=
1

2

∑
X∈Aj

∥∥x(X)
τX(i) − x̄i

∥∥2

+

(
1

|Aj |
∑
X∈Aj

x
(X)
τX(i) − x̄i︸ ︷︷ ︸

=0

)T( ∑
X′∈Aj

(
x̄i − x

(X′)
τX′ (i)

))

+
1

2

∑
X′∈Aj

∥∥x̄i − x
(X′)
τX′ (i)

∥∥2

=
∑
X∈Aj

∥∥x(X)
τX(i) − x̄i

∥∥2
. (107)

Similarly, using x∗i = 1
|Aj |

∑
X∈Aj x

(X)
τ∗X(i) (see (51)), we can

rewrite the two inner sums on the left-hand side of (105) as

1

2|Aj |
∑
X∈Aj

∑
X′∈Aj

∥∥x(X)
τ∗X(i)−x

(X′)
τ∗
X′ (i)

∥∥2
=
∑
X∈Aj

∥∥x(X)
τ∗X(i)−x

∗
i

∥∥2
.

(108)
Inserting (107) and (108) into (105) yields

k∑
i=1

∑
X∈Aj

∥∥x(X)
τ∗X(i)−x

∗
i

∥∥2
= min
{τX}X∈Aj

k∑
i=1

∑
X∈Aj

∥∥x(X)
τX(i)−x̄i

∥∥2
.

(109)
Let us recall (42) in our setting, i.e.,

ρ2(X,X∗j ) = min
τX

k∑
i=1

∥∥x(X)
τX(i) − x∗i

∥∥2

and thus∑
X∈Aj

ρ2(X,X∗j ) =
∑
X∈Aj

min
τX

k∑
i=1

∥∥x(X)
τX(i) − x∗i

∥∥2

≤
∑
X∈Aj

k∑
i=1

∥∥x(X)
τ∗X(i) − x∗i

∥∥2

(109)
= min
{τX}X∈Aj

∑
X∈Aj

k∑
i=1

∥∥x(X)
τX(i) − x̄i

∥∥2
.

(110)

We next want to relate the upper bound (110) on∑
X∈Aj ρ2(X,X∗j ) to

∑
X∈Aj ρ2(X, X̃) for an arbitrary X̃ =

{x̃1, . . . , x̃k} ∈ Nk. For any permutations {τX}X∈Aj and
vector x̃1:k ∈ (Rd)k, the sum

∑
X∈Aj

∑k
i=1

∥∥x(X)
τX(i) − x̃i

∥∥2

is a sum of squared-error distortions of kd-dimensional
vectors. The minimum of that sum with respect to x̃1:k

is easily seen to be achieved by the arithmetic mean of{(
x

(X)
τX(1), . . . ,x

(X)
τX(k)

)}
X∈Aj

, i.e., by x̄1:k (see (106)). Thus,
we obtain for any x̃1:k ∈ (Rd)k

∑
X∈Aj

k∑
i=1

∥∥x(X)
τX(i)−x̄i

∥∥2 ≤
∑
X∈Aj

k∑
i=1

∥∥x(X)
τX(i)−x̃i

∥∥2
. (111)

Using (111) in (110), we have for any x̃1:k ∈ (Rd)k

∑
X∈Aj

ρ2(X,X∗j ) ≤ min
{τX}X∈Aj

∑
X∈Aj

k∑
i=1

∥∥x(X)
τX(i) − x̃i

∥∥2
.

(112)
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Because each summand
∑k
i=1

∥∥x(X)
τX(i) − x̃i

∥∥2
on the right-

hand side of (112) depends only on one permutation τX , we
can exchange the outer sum and the minimization and obtain

∑
X∈Aj

ρ2(X,X∗j ) ≤
∑
X∈Aj

min
τX

k∑
i=1

∥∥x(X)
τX(i) − x̃i

∥∥2
. (113)

According to (42), the right-hand side of (113) is equal to∑
X∈Aj ρ2(X, X̃) for X̃ = {x̃1, . . . , x̃k}. Thus, we have∑
X∈Aj ρ2(X,X∗j ) ≤

∑
X∈Aj ρ2(X, X̃) for any set X̃ ∈ Nk.

This proves that X∗j = arg minX̃∈Nk
∑
X∈Aj ρ2(X, X̃).

APPENDIX E
BOUND ON H

(
t
(k)
y

∣∣φk(y(k)), x(k)
)

IN (65)

We recall from Section VI-D that x(k) = y(k) +w(k), where
w(k) has i.i.d. zero-mean Gaussian entries with variance σ2 <
1, y(k) has i.i.d. zero-mean Gaussian entries with variance
1− σ2, and y(k) and w(k) are independent. We now have

H
(
t(k)
y

∣∣φk(y(k)), x(k)
)

= Eφk(y(k)),x(k)

[
−
∑
τ

p
t
(k)
y |φk(y(k)),x(k)

(
τ
∣∣φk(y(k)), x(k)

)
× log p

t
(k)
y |φk(y(k)),x(k)

(
τ
∣∣φk(y(k)), x(k)

)]
=

∫
(Rd)k

fy(k)(y1:k)

∫
(Rd)k

fx(k)|φk(y(k))(x1:k |φk(y1:k))

×
(
−
∑
τ

p
t
(k)
y |φk(y(k)),x(k)

(
τ
∣∣φk(y1:k),x1:k

)
× log p

t
(k)
y |φk(y(k)),x(k)

(
τ
∣∣φk(y1:k),x1:k

))
dx1:k dy1:k .

(114)

Using Bayes’ rule and the law of total probability, we obtain

p
t
(k)
y |φk(y(k)),x(k)

(τ |Y,x1:k)

=
p
t
(k)
y |φk(y(k))

(τ |Y )f
x(k)|t(k)y ,φk(y(k))

(x1:k | τ, Y )

fx(k)|φk(y(k))(x1:k |Y )

(a)
=

p
t
(k)
y

(τ)f
x(k)|t(k)y ,φk(y(k))

(x1:k | τ, Y )∑
τ ′ pt(k)y

(τ ′)f
x(k)|t(k)y ,φk(y(k))

(x1:k | τ ′, Y )

(b)
=

f
x(k)|t(k)y ,φk(y(k))

(x1:k | τ, Y )∑
τ ′ fx(k)|t(k)y ,φk(y(k))

(x1:k | τ ′, Y )
(115)

where (a) holds because, as discussed in Section VI-D, t(k)
y is

independent of φk(y(k)) and (b) holds because p
t
(k)
y

(τ) = 1/k!

for all τ . Recalling that y(k) can be equivalently represented
by t

(k)
y and φk(y(k)), we have

f
x(k)|t(k)y ,φk(y(k))

(x1:k | τ, Y ) = fx(k)|y(k)(x1:k | τ(Y ))

= fw(k)(x1:k − τ(Y )) . (116)

Inserting (116) into (115), we obtain

p
t
(k)
y |φk(y(k)),x(k)

(τ |Y,x1:k) =
fw(k)(x1:k − τ(Y ))∑
τ ′ fw(k)(x1:k − τ ′(Y ))

.

(117)

Furthermore, we have

fx(k)|φk(y(k))(x1:k |Y ) =
1

k!

∑
τ̃

f
x(k)|t(k)y ,φk(y(k))

(x1:k | τ̃ , Y )

=
1

k!

∑
τ̃

fw(k)(x1:k − τ̃(Y )) . (118)

Inserting (117) and (118) into (114), we obtain

H
(
t(k)
y

∣∣φk(y(k)), x(k)
)

=

∫
(Rd)k

fy(k)(y1:k)

×
∫

(Rd)k

1

k!

(∑
τ̃

fw(k)(x1:k − τ̃(φk(y1:k)))

)
×
(
−
∑
τ

fw(k)(x1:k − τ(φk(y1:k)))∑
τ ′ fw(k)(x1:k − τ ′(φk(y1:k)))

× log

(
fw(k)(x1:k − τ(φk(y1:k)))∑
τ ′ fw(k)(x1:k − τ ′(φk(y1:k)))

))
dx1:k dy1:k

(a)
=
∑
τ̃

1

k!

∫
(Rd)k

fy(k)(y1:k)

∫
(Rd)k

fw(k)(x1:k − τ̃(y1:k))

×
(
−
∑
τ

fw(k)(x1:k − τ(y1:k))∑
τ ′ fw(k)(x1:k − τ ′(y1:k))

× log

(
fw(k)(x1:k − τ(y1:k))∑
τ ′ fw(k)(x1:k − τ ′(y1:k))

))
dx1:k dy1:k

(b)
=
∑
τ̃

1

k!

∫
(Rd)k

fy(k)(y1:k)

∫
(Rd)k

fw(k)(w1:k)

×
(
−
∑
τ

fw(k)(w1:k + τ̃(y1:k)− τ(y1:k))∑
τ ′ fw(k)(w1:k + τ̃(y1:k)− τ ′(y1:k))

× log

(
fw(k)(w1:k + τ̃(y1:k)− τ(y1:k))∑
τ ′ fw(k)(w1:k + τ̃(y1:k)− τ ′(y1:k))

))
× dw1:k dy1:k

(c)
=

∫
(Rd)k

fy(k)(ỹ1:k)

∫
(Rd)k

fw(k)(w1:k)

×
(
−
∑
τ

fw(k)(w1:k + ỹ1:k − τ(ỹ1:k))∑
τ ′ fw(k)(w1:k + ỹ1:k − τ ′(ỹ1:k))

× log

(
fw(k)(w1:k + ỹ1:k − τ(ỹ1:k))∑
τ ′ fw(k)(w1:k + ỹ1:k − τ ′(ỹ1:k))

))
dw1:k dỹ1:k

(119)

where in (a) we used that summation over all orderings of
the elements of the set φk(y1:k) is the same as summation
over all permutations of the subvectors of the vector y1:k,
in (b) we used the substitution w1:k = x1:k − τ̃(y1:k), and
(c) holds by substituting ỹ1:k = τ̃(y1:k) and noting that
fy(k)(τ̃

−1(ỹ1:k)) = fy(k)(ỹ1:k) and that due to the summation
over all permutations τ we can omit the additional permutation
τ̃−1. The right-hand side in (119) is a Gaussian expectation
over the entropy of a discrete random variable t—depending
on w1:k and ỹ1:k—with k! possible realizations and probabil-
ity mass function

pt(τ ;w1:k, ỹ1:k) =
fw(k)(w1:k + ỹ1:k − τ(ỹ1:k))∑
τ ′ fw(k)(w1:k + ỹ1:k − τ ′(ỹ1:k))

.

(120)
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Thus, (119) can be rewritten as

H
(
t(k)
y

∣∣φk(y(k)), x(k)
)

=

∫
(Rd)k

fy(k)(ỹ1:k)

∫
(Rd)k

fw(k)(w1:k)H(pt( · ;w1:k, ỹ1:k))

× dw1:k dỹ1:k . (121)

We next split the domains of integration in (121): for w1:k into
Wε , {w1:k ∈ (Rd)k : ‖w1:k‖ < ε} and Wc

ε with ε > 0, and
for ỹ1:k into Yδ , {ỹ1:k ∈ (Rd)k : ‖ỹi − ỹj‖ > δ for all i 6=
j} and Ycδ with δ > 0. Using H(pt( · ;w1:k, ỹ1:k)) ≤ log k!
and (Rd)k× (Rd)k =

(
Ycδ × (Rd)k

)
∪
(
(Rd)k×Wc

ε

)
∪
(
Yδ ×

Wε

)
, this leads to the following bound:

H
(
t(k)
y

∣∣φk(y(k)), x(k)
)

≤
∫
Ycδ
fy(k)(ỹ1:k)

∫
(Rd)k

fw(k)(w1:k) log k! dw1:k dỹ1:k

+

∫
(Rd)k

fy(k)(ỹ1:k)

∫
Wc
ε

fw(k)(w1:k) log k! dw1:k dỹ1:k

+

∫
Yδ
fy(k)(ỹ1:k)

∫
Wε

fw(k)(w1:k)H(pt( · ;w1:k, ỹ1:k))

× dw1:k dỹ1:k

≤
(∫
Ycδ
fy(k)(ỹ1:k) dỹ1:k +

∫
Wc
ε

fw(k)(w1:k) dw1:k

)
log k!

+ sup
w1:k∈Wε, ỹ1:k∈Yδ

H(pt( · ;w1:k, ỹ1:k)) . (122)

Now we bound successively the terms on the right-hand
side of (122). For the first term, we have∫

Ycδ
fy(k)(ỹ1:k) dỹ1:k

= Pr[y(k) ∈ Ycδ ]

= Pr
[

min
i 6=j

∥∥y(k)
i − y

(k)
j

∥∥ ≤ δ]
(a)

≤ k(k − 1)

2
Pr
[∥∥y(k)

1 − y
(k)
2

∥∥ ≤ δ]
=
k(k − 1)

2
Pr

[
‖y(k)

1 − y
(k)
2 ‖2

2(1− σ2)
≤ δ2

2(1− σ2)

]
(b)
=
k(k − 1)

2
Fχ2

(
δ2

2(1− σ2)
; d

)
(123)

where (a) holds by the union bound for the k(k−1)
2 events{∥∥y(k)

i − y
(k)
j

∥∥ ≤ δ
}

, i < j and (b) holds because y
(k)
i is

Gaussian with zero mean and variance 1−σ2 and thus
∥∥y(k)

1 −
y

(k)
2

∥∥2
/(2(1−σ2)) is χ2 distributed with d degrees of freedom.

Similarly, for the second term, we have∫
Wc
ε

fw(k)(w1:k) dw1:k = Pr[‖w(k)‖ ≥ ε]

= Pr

[
‖w(k)‖2

σ2
≥ ε2

σ2

]
= 1− Fχ2

(
ε2

σ2
; kd

)
(124)

where we used the fact that ‖w(k)‖2/σ2 is χ2 distributed with
kd degrees of freedom.

To bound the third term, i.e., H(pt( · ;w1:k, ỹ1:k)) for
w1:k ∈ Wε and ỹ1:k ∈ Yδ , we first bound the probability
pt(τ ;w1:k, ỹ1:k) in (120) for τ equal to the identity permuta-
tion, denoted ι, i.e.,

pt(ι;w1:k, ỹ1:k)

=
fw(k)(w1:k)

fw(k)(w1:k) +
∑
τ ′ 6=ι fw(k)(w1:k + ỹ1:k − τ ′(ỹ1:k))

.

(125)
For w1:k ∈ Wε, we have

fw(k)(w1:k) =
1

(2πσ2)kd/2
exp

(
−‖w1:k‖2

2σ2

)
>

1

(2πσ2)kd/2
exp

(
− ε2

2σ2

)
(126)

and, if additionally ỹ1:k ∈ Yδ with δ > ε, we have for τ ′ 6= ι

fw(k)(w1:k + ỹ1:k − τ ′(ỹ1:k))

=
1

(2πσ2)kd/2
exp

(
−‖w1:k + ỹ1:k − τ ′(ỹ1:k)‖2

2σ2

)
(a)

≤ 1

(2πσ2)kd/2
exp

(
− (‖w1:k‖ − ‖ỹ1:k − τ ′(ỹ1:k)‖)2

2σ2

)
(b)

≤ 1

(2πσ2)kd/2
exp

(
− (δ − ε)2

2σ2

)
(127)

where (a) holds by the reverse triangle inequality and (b) holds
because the difference between ‖ỹ1:k − τ ′(ỹ1:k)‖ and ‖w1:k‖
is larger than δ−ε due to ‖w1:k‖ < ε and ‖ỹ1:k−τ ′(ỹ1:k)‖ ≥
‖ỹi − ỹj‖ > δ > ε for some i, j with i 6= j. We specifically
choose δ = 3ε, for which (127) yields fw(k)(w1:k + ỹ1:k −
τ ′(ỹ1:k)) ≤ 1

(2πσ2)kd/2
exp

(
− (2ε)2

2σ2

)
. Inserting this bound and

the bound (126) into (125), we obtain

pt(ι;w1:k, ỹ1:k)
(a)

≥
exp

(
− ε2

2σ2

)
exp

(
− ε2

2σ2

)
+ (k!− 1) exp

(
− (2ε)2

2σ2

)
=

1

1 + (k!− 1) exp
(
− 3ε2

2σ2

)
=: p0(ε)

where in (a) we used that a/(a + b) ≥ a/(a + b) for a ≥ a
and b ≤ b. Thus, we bounded the probability that t = ι
(namely, pt(ι;w1:k, ỹ1:k)) from below. By the variation of
Fano’s inequality presented in [12, eq. (2.143)], this implies
the following bound on the entropy:

H(pt( · ;w1:k, ỹ1:k)) ≤ H2(p0(ε)) + (1− p0(ε)) log(k!− 1) .
(128)

Finally, inserting (123), (124), and (128) into (122), we
obtain (65).

APPENDIX F
PROOF OF LEMMA 17

Case k ≥ `: According to (71), we have

ρ
(c)
2 (X,Y ) = (k − `) c2 +

∑̀
i=1

min
{∥∥xτX,Y (i) − yi

∥∥2
, c2
}

(129)
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for some permutation τX,Y . Representing the product (k−`) c2
as a sum, we can rewrite (129) as

ρ
(c)
2 (X,Y ) =

∑̀
i=1

min
{∥∥xτX,Y (i) − yi

∥∥2
, c2
}

+

k∑
i=`+1

c2 .

(130)
We proceed by bounding each summand in (130) for i ∈
{1, . . . , k}. For i ∈ {1, . . . , `}, we have

min
{∥∥xτX,Y (i) − yi

∥∥2
, c2
}

≥
`

min
j=1

min
{∥∥xτX,Y (i) − yj

∥∥2
, c2
}
. (131)

For the remaining i ∈ {`+ 1, . . . , k}, we have trivially

c2 ≥
`

min
j=1

min
{∥∥xτX,Y (i) − yj

∥∥2
, c2
}
. (132)

Inserting (131) and (132) into (130), we obtain

ρ
(c)
2 (X,Y ) ≥

∑̀
i=1

`
min
j=1

min
{∥∥xτX,Y (i) − yj

∥∥2
, c2
}

+

k∑
i=`+1

`
min
j=1

min
{∥∥xτX,Y (i) − yj

∥∥2
, c2
}

=

k∑
i=1

`
min
j=1

min
{∥∥xτX,Y (i) − yj

∥∥2
, c2
}

which, due to the bijectivity of τX,Y , is equivalent to (72).
Case k ≤ `: Inserting ‖xi − yτ(i)‖2 ≥ min`j=1‖xi − yj‖2

into (71) yields

ρ
(c)
2 (X,Y ) ≥ (`− k) c2 +

k∑
i=1

min
{ `

min
j=1
‖xi − yj‖2, c2

}
which is equivalent to (73).

APPENDIX G
PROOF OF THEOREM 18

According to (70) and the discussion preceding it, the prob-
ability measures P (k)

X are absolutely continuous with respect
to (L d)k with probability density function f

(k)
X (x1:k) =∏k

i=1 gX(xi). Furthermore, by the assumption gX(x) = 0 for
L d-almost all x ∈ Ac, we obtain f (k)

X (x1:k) = 0 for (L d)k-
almost all x1:k ∈ (Ak)c. Hence, the conditions in Theorem 11
are satisfied, and we can rewrite the bound (31) as

R(D)
(a)

≥
∑
k∈N

e−ννk

k!
h

( k∏
i=1

gX(xi)

)
+ max

s≥0

(
−
∑
k∈N0

e−ννk

k!
log γk(s)− sD

)
=
∑
k∈N

e−ννk

k!
k h(gX)

+ max
s≥0

(
−
∑
k∈N0

e−ννk

k!
log γk(s)− sD

)
= ν h(gX) + max

s≥0

(
−
∑
k∈N0

e−ννk

k!
log γk(s)− sD

)
(133)

where (a) holds due to (68). The functions γk(s) in (133)
have to satisfy8 (see (32))

γk(s) ≥

{
1 if k = 0∫
Ak
e−sρ

(c)
2 (φk(x1:k),Y ) dx1:k if k ∈ N

(134)

for all Y ∈ N . The constant functions γk(s) = (L d(A))k

satisfy (134) because

(L d(A))k = (L d)k(Ak) =

∫
Ak

1 dx1:k

≥
∫
Ak
e−sρ

(c)
2 (φk(x1:k),Y ) dx1:k (135)

for k ∈ N and γ0(s) = 1 for k = 0. The following lemma,
proved further below, states that also the functions γ̃k defined
in (75) satisfy (134).

Lemma 25: Let A ⊆ Rd be a Borel set and s ≥ 1/c2. Then
(134) holds for

γk(s) = γ̃k(s)

=

(
e−sc

2

L d(A) + k

(
−e−sc

2

L d(Uc) +

∫
Uc

e−s‖x‖
2

dx

))k
.

(136)

By Lemma 25 and (135), we have that (133) holds with
γk(s) = min{(L d(A))k, γ̃k(s)} if we additionally restrict
the maximization to s ≥ 1/c2. With these modifications,
(133) is equal to (74) up to the summand for k = 0,
namely e−ν log(min{(L d(A))0, γ̃0(s)}), which is zero be-
cause min{(L d(A))0, γ̃0(s)} = 1. Thus, (74) has been
proved.

It remains to prove Lemma 25. To this end, we will need
the following technical result.

Lemma 26: Let A ⊆ Rd be a Borel set, s > 0, and c > 0.
Then∫
A

exp
(
−s

`
min
j=1

min{‖x− yj‖2, c2}
)

dx

≤ e−sc
2

L d(A) + `

(
−e−sc

2

L d(Uc) +

∫
Uc

e−s‖x‖
2

dx

)
(137)

for any point pattern Y = {y1, . . . ,y`}.
Proof: For x ∈ A,

`
min
j=1

min{‖x− yj‖2, c2}=

{
‖x− yi‖2 if x ∈ Bi
c2 if x ∈ A \

⋃`
i=1Bi
(138)

where Bi ⊆ A, i ∈ {1, . . . , `} is given by Bi ,
{
x ∈ A :(

‖x − yi‖ ≤ c
)
∧
(
‖x − yi‖ ≤ ‖x − yj‖ ∀j ∈ {1, . . . , `} \

{i}
)}

. The sets Bi, i ∈ {1, . . . , `} and A\
⋃`
i=1Bi are (up to

intersections of measure zero) a partition of the set A. Thus,

8For k = 0, (32) gives γ0(s) ≥ e−sρ
(c)
2 (∅,Y ). If Y = ∅, this simplifies to

γ0(s) ≥ 1 because ρ(c)2 (∅, ∅) = 0. For all other Y ∈ N , we trivially have

e−sρ
(c)
2 (∅,Y ) ≤ 1. Hence, γ0(s) ≥ 1 is equivalent to γ0(s) ≥ e−sρ

(c)
2 (∅,Y )

for all Y ∈ N .
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we can rewrite the integral on the left-hand side of (137) as
the following sum of integrals:∫

A

exp
(
−s

`
min
j=1

min{‖x− yj‖2, c2}
)

dx

=

∫
A\

⋃`
i=1 Bi

exp
(
−s

`
min
j=1

min{‖x− yj‖2, c2}
)

dx

+
∑̀
i=1

∫
Bi

exp
(
−s

`
min
j=1

min{‖x− yj‖2, c2}
)

dx

(138)
=

∫
A\

⋃`
i=1 Bi

e−sc
2

dx +
∑̀
i=1

∫
Bi

e−s‖x−yi‖
2

dx

= e−sc
2

L d

(
A \

⋃̀
i=1

Bi

)
+
∑̀
i=1

∫
Bi−yi

e−s‖x‖
2

dx . (139)

We have Bi ⊆
{
x ∈ A : ‖x−yi‖ ≤ c

}
and hence Bi−yi ⊆{

x ∈ (A − yi) : ‖x‖ ≤ c} ⊆ {x ∈ Rd : ‖x‖ ≤ c} = Uc;
furthermore, e−s‖x‖

2 ≥ e−sc2 for all x ∈ Uc. Thus,∫
Bi−yi

e−s‖x‖
2

dx

(a)
=

∫
Bi−yi

e−s‖x‖
2

dx +

∫
Uc\(Bi−yi)

e−sc
2

dx

− e−sc
2

L d
(
Uc \ (Bi − yi)

)
≤
∫
Bi−yi

e−s‖x‖
2

dx +

∫
Uc\(Bi−yi)

e−s‖x‖
2

dx

− e−sc
2

L d
(
Uc \ (Bi − yi)

)
=

∫
Uc

e−s‖x‖
2

dx− e−sc
2

L d
(
Uc \ (Bi − yi)

)
(140)

where in (a) we added and subtracted e−sc
2

L d
(
Uc \ (Bi −

yi)
)
. Inserting (140) into (139), we obtain∫
A

exp
(
− s

`
min
j=1

min{‖x− yj‖2, c2}
)

dx

≤ e−sc
2

(
L d

(
A \

⋃̀
i=1

Bi

)
−
∑̀
i=1

L d
(
Uc \ (Bi − yi)

))
+ `

∫
Uc

e−s‖x‖
2

dx

(a)
= e−sc

2

(
L d(A)−

∑̀
i=1

L d(Bi)

−
∑̀
i=1

(
L d(Uc)−L d(Bi)

))
+ `

∫
Uc

e−s‖x‖
2

dx

= e−sc
2

L d(A) + `

(
−e−sc

2

L d(Uc) +

∫
Uc

e−s‖x‖
2

dx

)
where in (a) we used L d

(
A \

⋃`
i=1Bi

)
= L d(A) −∑`

i=1 L d(Bi) and L d(Uc\(Bi−yi)) = L d(Uc)−L d(Bi−
yi) = L d(Uc)−L d(Bi).

Proof of Lemma 25: We first note that γ̃0(s) = 1 and
thus in the case k = 0, (134) is trivially satisfied. It remains
to show that for k ∈ N and for all Y ∈ N ,

γ̃k(s) ≥
∫
Ak
e−sρ

(c)
2 (φk(x1:k),Y )dx1:k . (141)

To this end, we set Y = {y1, . . . ,y`} and consider the cases
` ≤ k and ` > k separately.

Case ` ≤ k: Because φk(x1:k) = {x1, . . . ,xk}, we have

e−sρ
(c)
2 (φk(x1:k),Y )

(72)
≤ exp

(
−s

k∑
i=1

`
min
j=1

min{‖xi − yj‖2, c2}
)

=

k∏
i=1

exp
(
−s

`
min
j=1

min{‖xi − yj‖2, c2}
)
.

(142)

Using (142), we can bound the integral on the right-hand side
of (141) as follows:∫
Ak
e−sρ

(c)
2 (φk(x1:k),Y ) dx1:k

≤
∫
Ak

k∏
i=1

exp
(
−s

`
min
j=1

min{‖xi − yj‖2, c2}
)

dx1:k

=

(∫
A

exp
(
−s

`
min
j=1

min{‖x− yj‖2, c2}
)

dx

)k
(137)
≤
(
e−sc

2

L d(A) + `

(
−e−sc

2

L d(Uc) +

∫
Uc

e−s‖x‖
2

dx

))k
.

(143)

Because ‖x‖ ≤ c for x ∈ Uc, we have e−sc
2

L d(Uc) ≤∫
Uc
e−s‖x‖

2

dx and hence the right-hand side in (143) is
monotonically increasing in `. Thus, due to ` ≤ k, we can
further upper-bound (143) by∫
Ak
e−sρ

(c)
2 (φk(x1:k),Y ) dx1:k

≤
(
e−sc

2

L d(A) + k

(
−e−sc

2

L d(Uc) +

∫
Uc

e−s‖x‖
2

dx

))k
(136)
= γ̃k(s)

which is (141).
Case ` > k: We have

e−sρ
(c)
2 (φk(x1:k),Y )

(73)
≤ e−sc

2(`−k) exp

(
−s

k∑
i=1

`
min
j=1

min{‖xi − yj‖2, c2}
)

= e−sc
2(`−k)

k∏
i=1

exp
(
−s

`
min
j=1

min{‖xi − yj‖2, c2}
)
.

Thus, we obtain∫
Ak
e−sρ

(c)
2 (φk(x1:k),Y )dx1:k

≤ e−sc
2(`−k)

×
∫
Ak

k∏
i=1

exp
(
−s

`
min
j=1

min{‖xi − yj‖2, c2}
)

dx1:k

= e−sc
2(`−k)

(∫
A

exp
(
−s

`
min
j=1

min{‖x− yj‖2, c2}
)

dx

)k
(137)
≤ e−sc

2(`−k)

(
e−sc

2

L d(A)

+ `

(
−e−sc

2

L d(Uc) +

∫
Uc

e−s‖x‖
2

dx

))k
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=

(
e−sc

2`/kL d(A) + e−sc
2(`−k)/k `

×
(
−e−sc

2

L d(Uc) +

∫
Uc

e−s‖x‖
2

dx

))k
. (144)

For sc2 ≥ 1, the functions e−sc
2`/k and e−sc

2(`−k)/k`
are monotonically decreasing in `. Thus, recalling that
e−sc

2

L d(Uc) ≤
∫
Uc
e−s‖x‖

2

dx, the entire right-hand side in
(144) is monotonically decreasing in `. Hence, because ` > k,
we can further upper-bound (144) as∫
Ak
e−sρ

(c)
2 (φk(x1:k),Y )dx1:k

≤
(
e−sc

2

L d(A) + k

(
−e−sc

2

L d(Uc) +

∫
Uc

e−s‖x‖
2

dx

))k
which is (141).

APPENDIX H
PROOF OF THEOREM 20

We will use Corollary 12 with random vectors (x(k), y(k))
that are given by the probability measure

Px(k),y(k)(A1 ×A2)

,
∫
A1

∫
A2

gx(k)|y(k)(x1:k |y1:k) dλkY(y1:k) dx1:k

for A1, A2 ⊆ (Rd)k. The marginal x(k) is distributed accord-
ing to the probability measure

Px(k)(A1) = Px(k),y(k)(A1 × (Rd)k)

=

∫
A1

∫
(Rd)k

gx(k)|y(k)(x1:k |y1:k) dλkY(y1:k) dx1:k

(78)
=

∫
A1

(
k∏
i=1

gX(xi)

)
dx1:k

(70)
= P

(k)
X (A1) .

Thus, x(k) has the same distribution as x
(k)
X and, hence,

φk(x(k)) has the same distribution as φk(x
(k)
X ). The assump-

tion (79) is a specialization of (36) for the case of a Poisson PP,
USOSPA distortion, and the vectors (x(k), y(k)) constructed
above. Therefore, all assumptions in Corollary 12 are satisfied
and we obtain (see (37))

R(D) ≤ H(|X|) +
∑
k∈N

p|X|(k)
(
I
(
x(k); y(k)

)
− I
(
t(k)
x ;Y(k)

∣∣X(k)
)
− I
(
x(k); t(k)

y

∣∣Y(k)
))

≤ H(|X|) +
∑
k∈N

p|X|(k) I
(
x(k); y(k)

)
. (145)

Here, omitting the conditional mutual informations does not
loosen the bound if the function gx(k)|y(k) is symmetric
with respect to permutations, i.e., gx(k)|y(k)(x1:k |y1:k) =
gx(k)|y(k)(τx(x1:k) | τy(y1:k)) for any permutations τx and τy .
(Indeed, it is easy to see that in this case the ordering of either
x(k) or y(k) does not provide any information about the order-
ing of the respective other random variable.) Because |X| is

given by a Poisson distribution, we have p|X|(k) = e−ννk/k!
and

H(|X|)
= −

∑
k∈N0

e−ννk

k!
log

(
e−ννk

k!

)
=
∑
k∈N0

e−ννk

k!

(
− log e−ν − log νk + log k!

)
= ν

∑
k∈N0

e−ννk

k!
−
∑
k∈N

e−ννkk

k!
log ν +

∑
k∈N

e−ννk

k!
log k!

= ν − ν log ν +
∑
k∈N

e−ννk

k!
log k! . (146)

To derive the mutual informations I
(
x(k); y(k)

)
, we first note

that x(k) is a continuous random vector and the same holds
for x(k) conditioned on y(k) = y1:k. Thus, according to [12,
eq. (8.48)], we can calculate the mutual information as

I
(
x(k); y(k)

)
= h(x(k))−

∫
(Rd)k

h
(
x(k) | y(k) = y1:k

)
dλkY(y1:k)

= k h(gX) +

∫
(Rd)k

∫
(Rd)k

gx(k)|y(k)(x1:k |y1:k)

× log gx(k)|y(k)(x1:k |y1:k) dx1:k dλkY(y1:k) . (147)

Here, we used h(x(k)) = h(x
(k)
X ) = k h(gX), which holds

because of (70) and because x(k) has the same distribution
as x

(k)
X . Inserting (146), p|X|(k) = e−ννk/k!, and (147) into

(145) gives

R(D)

≤ ν − ν log ν +
∑
k∈N

e−ννk

k!
log k!

+
∑
k∈N

e−ννk

k!

(
k h(gX) +

∫
(Rd)k

∫
(Rd)k

gx(k)|y(k)(x1:k |y1:k)

× log gx(k)|y(k)(x1:k |y1:k) dx1:k dλkY(y1:k)

)
= ν − ν log ν + ν h(gX)

+
∑
k∈N

e−ννk

k!

(
log k! +

∫
(Rd)k

∫
(Rd)k

gx(k)|y(k)(x1:k |y1:k)

× log gx(k)|y(k)(x1:k |y1:k) dx1:k dλkY(y1:k)

)
which is (80)–(82).

APPENDIX I
LEMMATA FOR EXAMPLE 21

We consider the setting of Example 21, i.e., X is a Pois-
son PP on R2 with intensity measure λ = νL 2|[0,1)2 .
Furthermore, N ≥ 1/(

√
2c), λY is defined by (84), and

gx(k)|y(k)(x1:k |y1:k) by (85).
Lemma 27: Equation (83) is satisfied, i.e.,∫

(R2)k
gx(k)|y(k)(x1:k |y1:k) dλkY(y1:k) =

k∏
i=1

1[0,1)2(xi) .

(148)
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Proof: Inserting (84) and (85) into the left-hand side of
(148), we obtain∫

(R2)k
gx(k)|y(k)(x1:k |y1:k) dλkY(y1:k)

=

∫
R2

· · ·
∫
R2

gx(k)|y(k)(x1:k |y1:k) dλY(yk) · · · dλY(y1)

=

(
1

N2

)k N∑
j
(1)
1 =1

N∑
j
(1)
2 =1

· · ·
N∑

j
(k)
1 =1

N∑
j
(k)
2 =1

1

k!

×
∑
τ

k∏
i=1

N2
1Q

j
(τ(i))
1 ,j

(τ(i))
2

(xi)

=
1

k!

∑
τ

k∏
i=1

(
N∑
j1=1

N∑
j2=1

1Qj1,j2
(xi)

)

=

k∏
i=1

(
N∑
j1=1

N∑
j2=1

1Qj1,j2
(xi)

)
(a)
=

k∏
i=1

1[0,1)2(xi)

where we used in (a) that {Qj1,j2}j1,j2=1,...,N is a partition
of [0, 1)2.

Lemma 28: Equation (87) holds, i.e.,∑
k∈N

e−ννk

k!
E
[
ρ

(c)
2

(
φk(x(k)), φk(y(k))

)]
=

ν

6N2
.

Proof: Using (84) and (86), we obtain

E
[
ρ

(c)
2

(
φk(x(k)), φk(y(k))

)]
=

∫
(R2)k

(
1

N2

)k N∑
j
(1)
1 =1

N∑
j
(1)
2 =1

· · ·
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Using the short-hand notation Q
(τ)
j1,j2

,
∏k
i=1Qj(τ(i))1 ,j

(τ(i))
2

,
the integrals in this expression can be rewritten as∫
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where (a) is due to (71) (with k = `); (b) holds because for
xi′ ∈ Qj(τ(i′))1 ,j

(τ(i′))
2

, the closest qj1,j2 for j1, j2 ∈ {1, . . . , k}
is q

j
(τ(i′))
1 ,j

(τ(i′))
2

, and thus τ ′ = τ is the minimizing permu-
tation; and (c) holds because ‖xi′‖2 ≤ 1/(2N2) ≤ c2 for
xi′ ∈

[
− 1

2N ,
1

2N

)2
(recall our assumption N ≥ 1/(

√
2c)).

Inserting (150) into (149), we obtain
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and inserting (151) into the left-hand side of (87) yields

∑
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Lemma 29: Equation (88) holds, i.e., h
(
x(k)

∣∣ y(k)
)
≥(
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k

)
k!
N2k log k!− k logN2.
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Proof: We obtain from (81) and (84)
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where, by (82) and (86),

h
(
x(k)

∣∣ y(k) =
(
q
j
(1)
1 ,j

(1)
2
, . . . , q

j
(k)
1 ,j

(k)
2

))
= −

∫
(R2)k

(
N2k

k!

∑
τ

1∏k
i=1Qj(τ(i))1 ,j

(τ(i))
2

(x1:k)

)
× log

(
N2k

k!

∑
τ

1∏k
i=1Qj(τ(i))1 ,j

(τ(i))
2

(x1:k)

)
dx1:k .

(153)

We distinguish two cases: If
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)
for all
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are all disjoint. This implies

that the Cartesian products
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are disjoint
for different permutations τ and hence the probability density
function in the differential entropy in (153) simplifies to
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i.e., the probability density function of a uniform distribution
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. Because a uniform distribution on
a Borel set A ⊆ Rd has differential entropy log(L d(A)) (see
[12, eq. (8.2)]), the differential entropy in (153) is given by
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On the other hand, if there exist indices
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)
for some i 6= i′, we can still bound the differential

entropy in (153). In fact, we can trivially upper-bound the
corresponding probability density function in (86) by N2k
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in the argument of the logarithm in (153), we obtain
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Inserting for all
(
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, i ∈ {1, . . . , k} either (154) or

(155) into (152) (depending on whether the
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pairwise distinct or not), we obtain
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Lemma 30: For Ñ ∈ N with Ñ ≤ N , we have
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Proof: We have
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where (a) holds because
∑
k∈N

e−ννk

k! k = ν. The infinite sum
on the right-hand side of (157) can be bounded by
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k=Ñ2+1

e−ννk

k!
log k!

(a)

≤
∞∑

k=Ñ2+1

e−ννk

(k − 1)!
log k

(b)

≤
∞∑

k=Ñ2+1
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=
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where (a) holds because log k! ≤ k log k and (b) holds
because log k ≤ k − 1. Inserting (158) into (157), we obtain
(156).
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