

Using Smart Breakers for Demand Side Management in Smart Grids

Stefan Kollmann, Marcus Meisel, Stefan Wilker, Thilo Sauter

<section-header><section-header><text><text><text><text><text><text><text><text><text><text><text><text><text>

Marcus Meisel marcus.meisel@tuwien.ac.at

TU Wien Institute of Computer Technology Head of Energy & IT Group

iniGrid – Integration of Innovative Distributed Sensors and Actuators in Smart Grids

ZELISKO

(infineon

sprecher

ISIE2018 June 13-15 Cairns, Australia

Flagship project

- RTI initiative, bmvit, FFG, Klima+Energie Fonds
- e!MISSION.at 4th call for proposals

Funding & Duration

- 4.1 Mio € costs (2.3 Mio funded)
- 2014-2018, 42 months

Diverse consortium

- Institute of Computertechnology, TU Wien
- Austrian Institute of Technology GmbH
- Eaton Industries (Austria) GmbH
- Infineon Technologies Austria AG
- Zelisko GmbH

nstitute of

- Sprecher Automation GmbH
- Fachhochschule Oberösterreich
- Linz Strom Netz GmbH
- MOOSMOAR Energies OG

Computer Technology

iniGrid - Goals

- A) Energy Management on Prosumer Level (focus of this work)
- B) Low Voltage Network Optimisation
- C) Medium Voltage Network Optimisation on Substation Level
- D) Medium Voltage Network Optimisation on Management System Level
- E) Distribution Optimisation across Voltage Levels

Hybrid Switching Smart Breakers

Active components and sensors with existing devices

/19

Functionality Requirement – Customer Energy Management System (CEMS)

- main customer benefit on different levels
 - installations in residential/commercial/industrial segment
 - installations of 10-100s Smart Breaker switchable loads
- four smart grid functionalities for Smart Breakers (SB)
 - fail safe: providing limits to SB ahead of communication loss
 - priority list: configuring importance of switched devices for soft start after shutdown or blackout
 - self consumption: algorithms optimizing reliable self consumption using local switchable battery storages and generation
 - switch patterns: SB-network operator (eg. SCADA) learn / build knowledgebase of successful patterns of switch-states & communicate them as emergency plans (in different granularization hour/day/week)

Institute of Computer Technology

SCADA: Supervisory Control and Data Acquisition

6 / 19

Experimental PoC: Customer Energy Management System (CEMS) STT800 Controlle

- deployable on affordable off-theshelf hardware (Raspberry Pi 3)
 - switches+meters, display, input, CEMS, GUI
 - open communication framework OpenMUC for accessing the hardware, testbed board
 - secure communication by VHPready, SSH tunnels, IEC 62351 and IEC 61850
- communication failure testbed
 - hardware setup •
 - Charles proxy
- emulation of low voltage grid
 - tapchanger transformer
 - continuous testing of communication mocks
 - STT800 controller, IEC 61850 & Modbus drivers
 - Wireshark communication records for security analysis

EATON (Infineon

STROM & MOOSMOAR

ISIE2018 June 13-15 Cairns, Australia

sprecher

PoC – RaspberryPi

the right tool for the job

- Raspberry Pi
- fail safe functionality

priority list functionality

configuring importance of switched loads for soft start after shutdown or pre-blackout critical emergency states

sprecher

self consumption functionality (FHOE partner cooperation) optimizing usage of local renewable generation and battery storage systems (3rd party algorithms)

ZELISKO

Cinfineon

Institute of **Computer Technology** PoC: Proof of Concept OT: Operational Technology IT: Information Technology

ENERGIES OG

ISIE2018 June 13-15 Cairns. Australia

PoC - SCADA

the right tool for the job

iniGrid SCADA		6	
Command Center 🔅 Green 🄅 Yellow 🄅 Red 🄅 Emergency Plan			
	1	Automatic State Esti	imation
Manual SCADA Operat	or Mode Measured	Yellow	Red
iniGrid SCADA			
Command Center Green 🔅 Yellow 🔅 Red 🄅 Emergency Plan			
Q(U) Green status			
125		x1 97 y1	-100
<u><u> </u></u>	<u> </u>	x2 100 v2	0
iniGrid SCADA			
Command Center 🔅 Green 🄅 Yellow 🄅 Red 🄅 Emergency Plan			
Shed loads: Mode Consuming			
No managed loads	Power on delay: 300 Redistribution in 3600	seconds rand	domized
10% of managed loads	Repeat signal for new load m	anagers after: 300	Seconds
25% of manages loads	Limit sheding to area codes		
50% of manages loads	Use commas to seper	rate	J
All managed loads			

switch patterns functionality

allows distribution optimization across voltage levels, increases predictability, and allows configurable emergency behaviors

CInfineon

- emergency shedding for crisis simulation
- adjustable shedding percentage (switch patterns)

STRDM MOOSMOAR

• uni-directional communication (SCADA \rightarrow CEMS)

ISIE2018 June 13-15 Cairns, Australia

PoC: Proof of Concept

Function proof with PoC at AIT SmartEST Laboratory

Field Test Location

- deployment at active museum in Lower Austria
- approx. 30000 visitors / year
- approx. 45000 48000 kWh yearly total consumption (we only control a small part of that)

FAT-N

- Iocal PV system with 82 kWp
- centralized ventilation system
- flexible exhibition setup

Cinfineon

Field Test Use Cases

- use case 1: multimedia (MM)
 - control various MM equipment with varying bootup times
 - based on movement sensors in adjacent rooms
- use case 2: ventilation
 - multicriteria decision: air quality, regular intervals, manual triggers
 - marked as "optional equipment" for use case 4
- use case 3: lights
 - triggered by movement sensors
 - multiple entries and exits
- use case 4: demand response communication

Cinfineon

ISIE2018 June 13-15 Cairns, Australia

- simulated grid stress
- attempt remote active grid stabilization

Field Test Setup

- Iocal deployment
 - two stage deployment using laptop and Pi
 - CEMS measurements
- Iocal optimization
- remote interaction via secure tunnel
- total deployed hardware
 - 1x Rasperry Pi 3 incl. touch LCD
 - 1x ethernet switch
 - 1x ethernet communication interface
 - 4x smart breakers
 - 2x switch cabinets

Institute of

- 4x binary input, xComfort
- 1x analog input, xComfort

Computer Technology

- 1x air quality sensor, xComfort
- 4x movement sensors, xComfort

TACON (Infineon

ZELIS

Le MOOSMOAR

ISIE2018 June 13-15 Cairns, Australia

STROM

sprecher

Field Test Data Results

validated concepts

- commanding limits of power/voltage successfully
- emergency shedding possible
- according to security standard VHPready
- centralized installation and by-powerline control feasable

consumption impact

- 1 month baseline, 8 operational
- significant improvements for ventilation and multimedia equipment

FAT-N

Cinfineon

 meeting commercial baseline for lighting

ISIE2018 June 13-15 Cairns, Australia

14/19

Results – Multimedia Details (UC2 example)

Results Ventilation Details (UC1 example)

massive changes (challenges):

increased volatility on device level

- frequent switching events
- changing operation levles
- not deterministic

ISIE2018 June 13-15 Cairns, Australia

Distributed Control Test Results (UC 4 example)

sprecher

ISIE2018 June 13-15 Cairns, Australia

ZELISKO

Computer Technology

FATON (infineon

- on-Site at Linz Strom Netz
- secure communication in accordance to
 VHPready IEC 62351, IEC 61850
- succesfull state communication

S

TROM

succesfull load shedding

Se MOOSMOAR

Field Test Summary

- using smart breaers for DSM validated -> new challenges
 traditional building automation & hybrid breakers (goal A)
 - local centralized setup w/ less switches & central access
 - modular framework for control algorithms
 - -closed loop eg.: for movement and air-quality
 - -open loop eg.: for regular venting and exhibition hours
 - -allows integration of sophisticated 3rd party algorithms

validating dynamic reaction to grid (goal E)

(Infineon

disabling non-essential components on demand (ventilation)

sprecher

ISIE2018 June 13-15 Cairns, Australia

- encrypted communication in secure tunnel (security)
- uni-directional communication (privacy ... and security)

DSM: Demand Side Management

Thank you!

www:inigrid.at

DI Marcus Meisel Bakk.techn. Institute of Computer Technology Gußhausstrasse 27-29/E384 Vienna, Austria <u>marcus.meisel@tuwien.ac.at</u>

