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programs. We study the metatheory of the systems, show that several nontrivial examples can be verified in

them, and prove that existing frameworks for cost analysis (RelCost and RAML) can be embedded in them.
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1 INTRODUCTION

Cost analysis aims to statically establish upper and lower bounds on the cost of evaluating a
program. It is useful for resource allocation and scheduling problems, especially in embedded and
real-time systems, and for the analysis of algorithmic complexity. Relational cost analysis aims to
statically establish the difference between the costs of two evaluations of one program on different
inputs, or the evaluation of two different programs. It is useful for comparing the efficiency of two
programs, for reasoning about side-channel security of programs, for the analysis of the complexity
of incremental programs and for stability analysis in algorithmic complexity. Both unary and
relational cost analyses are supported by a broad range of techniques, including static analyses
and type-and-(co)effect systems. Avanzini and Dal Lago [2017]; Bonfante et al. [2011]; Dal Lago
and Gaboardi [2011]; Dal Lago and Petit [2013]; Danielsson [2008]; Grobauer [2001]; Gulwani et al.
[2009]; Hermenegildo et al. [2005]; Hoffmann et al. [2012] are prominent examples of systems for
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unary cost analysis, whereas type systems for relational cost analysis are presented by Çiçek et al.
[2017] and Ngo et al. [2017].
Precise cost analysis is often value-sensitive and often requires functional verification as a pre-

requisite. For example, the cost of inserting an element into a sorted list depends on the value of
the element to be inserted and the values of the list’s elements. In the relational setting, precisely
establishing the relative cost of two runs of insertion sort (to establish the sensitivity of the
algorithm’s cost to input changes) requires proving the functional correctness of the algorithm
first. Similarly, proving (via amortized analysis) that incrementing an n-bit counter k times causes
only O (k ) bit flips requires treating bits with values 0 and 1 differently.
However, formal frameworks for cost analysis usually do not support value-sensitivity and

functional verification. We are not aware of any such support in the relational setting and, even in
the unary setting, this support is rather limited [Atkey 2011; Danielsson 2008]. Hence, our goal in
this paper is to build a formal framework for analyzing cost and, in particular, relative cost that may
be value-sensitive or may depend on complex functional properties. Our approach is simple: We
start from a sufficiently expressive logic for reasoning about pure programs, extend it with a monad
for encapsulating cost-relevant computations and add refinements to the monad to capture precise
(unary and relational) costs. This approach has significant merits. First, it is highly expressive. We
are able to verify several new examples, both unary and relational, that prior work on cost analysis
cannot handle. Second, the resulting system can be used as a meta framework for embedding other
cost analyses. As instances, we show how to embed RelCost, a type-and-effect system for relational
analysis [Çiçek et al. 2017] and the unary amortized analysis of RAML [Hoffmann et al. 2012].
Third, the use of a monad not only separates the cost-relevant computations from the existing pure
framework, but also syntactically separates reasoning about costs from reasoning about functional
properties, thus improving clarity in proofs.
In principle, this general approach can be instantiated for any sufficiently expressive (rela-

tional) logic. Here, we choose to build on a recent, theoretically lightweight but expressive logic,
RHOL [Aguirre et al. 2017b]. RHOL is a syntax-directed relational program/refinement logic for
a simply typed variant of PCF. It manipulates judgments of the form Γ;Ψ ⊢ e1 : τ1 ∼ e2 : τ2 | ϕ,
where Γ is a simply typed context, τ1 and τ2 are the simple types of e1 and e2, Ψ is a set of assumed
assertions about free variables and ϕ is a HOL assertion about e1, e2.

1 ϕ can be read either as a
postcondition for e1, e2 or as a relational refinement for the types τ1,τ2. This form of judgment,
and the associated typing rules, retain the flavor of refinement typesÐfor example, the rules are
syntax-directedÐbut achieve far greater expressiveness.
To reason about costs, we add a new syntactic class of monadic expressionsm that explicitly

carry cost annotations2, and a new judgment form

Γ;Ψ ⊢m1 ÷ τ1 ∼m2 ÷ τ2 | n | ϕ

Informally, the judgment states that, ifm1,m2, when forced, evaluate with costsn1,n2, thenn1−n2 ≤
n and ϕ holds of the two results. Hence, n is an upper bound on the difference of the costs ofm1

andm2. We call this proof system RC. We also develop a corresponding unary system, UC, that
establishes upper and lower bounds on the cost of a single program.
By its very design, RC’s new judgment syntactically distinguishes reasoning about functional

correctness (ϕ) from reasoning about costs (n). This improves clarity in proofs. The rules of RC are
syntax-directed. They exploit similarities in the two expressions (e1, e2 orm1,m2) by analyzing their

1HOL is a standard abbreviation for łhigher-order simple predicate logicž [Jacobs 1999, Chapter 5]. This is a logic over

higher-order programs. It includes quantification at arbitrary types, but excludes impredicative quantification over types

and predicates.
2The idea of using a separate syntactic class for monadic expressions is due to Pfenning and Davies [2001].
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common constructs simultaneously. When the two expressions are dissimilar, additional rules allow
analyzing either expression in isolation, or falling back to unary reasoning in UC, or even falling
back to equational reasoning in HOL. This provides RC great expressivenessÐin fact, we show that
its expressiveness equals that of HOL. Finally, RC allows relating the costs of two programs even
when their types are different, a feature that no prior framework for cost analysis offers.

Despite the expressiveness of the rules, the metatheory of RC/UC is simple; we prove the frame-
work sound in a set-theoretic model through a cost-passing interpretation of the monadic expres-
sions. We illustrate RC/UC’s working on several examples that were out of reach of previous systems.
Moreover, we demonstrate that RC/UC can be used for embedding other existing cost analyses.
To summarize, the contributions of this work are:

• We present the logic/refinement frameworks RC and UC for verifying relational and unary
costs of higher-order programs, even when the costs depend on program values or complex
functional properties.
• We study the metatheory of both frameworks and prove them sound in a set-theoretic model.
• We show that several nontrivial examples, outside the purview of existing work on cost
analysis, can be verified in RC and UC.
• We demonstrate that RC and UC can be used as meta frameworks for cost analysis by trans-
lating two existing systemsÐRelCost (for relational cost analysis) and RAML (for amortized
unary cost analysis)Ðinto them.

A supplementary appendix available from the authors’ homepages provides proofs of theorems,
omitted rules, details of some examples and additional examples.

Scope and limitations. Our focus is on understanding the fundamentals of cost analysis when
costs depend on functional values and cost verification depends on functional invariants. An
implemention of RC and UC is out of the scope of this paper. Nonetheless, since RC and UC separate
refinements from typing syntactically, an implementation of interactive proofs based on constraint
solving seems feasible.

The programming language underlying RC and UC currently lacks nonterminating computations
and mutable state. These limitations are inherited from RHOL, on which we build. Further, the cost
monad presented here supports only what are called additive costs. Although these limitations do
not seem to be fundamental, extending RC and UC to address them remains an open problem that
we plan to address in future work. Section 9 describes our initial ideas in this direction.

2 A LANGUAGEWITH A MONAD FOR COSTS

In this section we present the language of programs we consider in the rest of the paper. The
language is a simply typed λ-calculus that syntactically separates pure, cost-free expressions, e ,
from monadic expressions,m, that have cost. The syntax is shown below.

Types τ ::= b | θ | τ × τ | τ + τ | τ → τ | C(τ )

(Pure) expr. e,n,k, ℓ ::= x | ⟨e, e⟩ | πi e | inji e | case e of e; e | e e | λx .e | c | K (e )

| match e with Ki 7→ ei | rec f (x ).e | {m}
Monadic expr. m ::= cret(e ) | cbind(e1, {x }.m2) | cstepn (m)

Base types are generically denoted b. We assume at least one base type, R∞, containing real
numbers and {−∞,∞}. Costs are pure expressions of this type. We often use n, k and ℓ in place of e
to distinguish costs from other expressions. C(τ ) is the type of monadic computations that return a
result of type τ when forced. θ denotes a defined first-order inductive data type (described later).
Pure expressions are mostly standard. c denotes a constant of a base type. case e of e1; e2

is case analysis over sum types: If e = inji e
′, then (case e of e1; e2) reduces to (ei e

′). K (e )
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constructs an expression of a data type by applying the constructor K to the terms e . The ex-

pression (match e with Ki 7→ ei ) is the corresponding case analysis. If e = Kj (e
′
1, . . . , e

′
k
), then

(match e with Ki 7→ ei ) reduces to (ej e
′
1 . . . e

′
k
). rec f (x ).e defines the recursive function f over

a variable x , which must be of a data type. The body e can apply f only to arguments smaller
than x . In contrast, the type of the argument in a non-recursive function λx .e can be arbitrary. The
construct {m} is an injection from monadic to pure expressions.

The interesting part of the language are themonadic expressions. The cost of monadic expressions
is best understood through a forcing evaluation, m ⇓n e , which means that the closed monadic
expressionm eventually returns the pure expression e and incurs cost n.

cret(e ) ⇓0 e

e1 →
∗ {m1} m1 ⇓

n e ′1 m2[e
′
1/x] ⇓

n2 e2

cbind(e1, {x }.m2) ⇓
n+n2 e2

m ⇓n
′

e

cstepn (m) ⇓n+n
′

e

cret(e ), when forced, returns e immediately with 0 cost. This is the usual łreturnž or łunitž of
the monad. Forcing cbind(e1, {x }.m2) first evaluates e1 purely to some {m1} (→ is the effect-free,
small-step reduction described later), then forcesm1 to some e ′1 with some cost n and then forces
m2[e

′
1/x]. The total cost is n plus the cost of forcingm2[e

′
1/x]. cbind is the usual łbindž of the monad.

cstepn (m) is the only non-standard construct. When forced, it forcesm, but adds an additional cost
n. This is the only way to represent non-zero cost in the language. Note that forcing defines the
cost semantics, not the equational theory of monadic expressions, which is defined later.

This style of presenting themonad by separating pure andmonadic expressions syntactically owes
lineage to the work of Pfenning and Davies [2001, Section 8]. It is crucial to our later development.

Data types and simple typing. A data type is defined by an equation of the form θ = K1 (σ1,1 ×

· · · × σ1,a1 ) + . . . + Kn (σn,1 × · · · × σn,an ). This defines a data type θ with n distinct constructors
K1, . . . ,Kn . The types of the arguments of the constructors, denoted σ , must be either base types b
or the same or other data types. This supports inductive and mutually inductive definitions.3 For
example, the type of lists of integers can be defined as list = nil() + cons(Z × list). All data type
definitions are assumed to be collected in a context Θ, which we leave implicit in judgments.
A typing environment Γ assigns types to variables, as usual. We define two typing judgments,

Γ ⊢ e : τ and Γ ⊢ m ÷ τ , for pure and monadic expressions, respectively. In the second typing
judgment, τ is the type of the expression eventually returned by the monadic expressionm (the
cost always has type R∞). Selected typing rules for the monadic constructs and data types are
shown in Figure 1. The remaining rules (for pure expressions) are standard, except for the rule for
typing rec f (x ).e . This rule requires that the body of the recursive definition satisfy a predicate
Def ( f ,x , e ), which ensures that all recursive calls are performed on smaller arguments. The
language has standard metatheoretic properties like subject reduction.

β-reduction and equational theory. The equality relation � defines when two pure or monadic
expressions are equal to each other. As usual, we define � as the congruence closure of small-
step β-reduction→. On pure expressions, the rules for→ are the expected ones. As an example,
(rec f (x ).e ) e ′ → e[(rec f (x ).e )/f ][e ′/x]. We allow reduction on open expressions and in all
contexts (even under binders) since reduction is pure (effect-free).
Following Pfenning and Davies [2001], we also define reduction on monadic expressions. This

reduction represents the so-called commuting conversions for the monad. Typically, commuting
conversions arrange nested bind operators into a spine; here, we also have additional conversions

3Our appendix generalizes data types to allow monadic types C( ·) in definitions, thus permitting reasoning with lazy data

structures. The appendix also includes examples of such reasoning.
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K (σ1 × · · · × σn ) ∈ Θ(θ ) Γ ⊢ ei : σi for all 1 ≤ i ≤ n

Γ ⊢ K (e1, . . . , en ) : θ

Γ ⊢ e : θ θ = K1 (σ1,1 × · · · × σ1,a1 ) + · · · + Kn (σn,1 × · · · × σn,an ) ∈ Θ

Γ ⊢ ei : σi,1 → · · · → σi,ai → τ for all 1 ≤ i ≤ n

Γ ⊢ match e with K1 7→ e1; · · · ;Kn 7→ en : τ

Γ, f : θ → τ ,x : θ ⊢ e : τ Def ( f ,x , e )

Γ ⊢ rec f (x ).e : θ → τ

Γ ⊢m ÷ τ

Γ ⊢ {m} : C(τ )

Γ ⊢ e : τ

Γ ⊢ cret(e ) ÷ τ

Γ ⊢ n : R∞ Γ ⊢m ÷ τ

Γ ⊢ cstepn (m) ÷ τ

Γ ⊢ e : C(τ ′) Γ,x : τ ′ ⊢m ÷ τ

Γ ⊢ cbind(e, {x }.m) ÷ τ

Fig. 1. Simple typing rules (selected)

for the cstep construct. The main rules are listed below.

cstep0 (m) → m cstepn1
(cstepn2

(m)) → cstepn1+n2
(m) cbind({m1}, {x }.m2) → {|m1/x |}m2

The new substitution {|m1/x |}m2 is defined by induction onm1 (notm2):

{|cret(e )/x |}m2 ≜m2[e/x] {|cbind(e, {y}.m)/x |}m2 ≜ cbind(e, {y}.{|m/x |}m2)

{|cstepn (m)/x |}m2 ≜ cstepn ({|m/x |}m2)

Together, these rules have the effect of rearranging all cstep constructs by pushing them outwards
and then coalescing them at the top-level. For example, we have: cbind({cstepn1

(cret(e1))}, {x }.
cstepn2

(cret(e2))) → cstepn1
(cstepn2

(cret(e2[e1/x]))) → cstepn1+n2
(cret(e2[e1/x])). This suggests

that every closed, well-typed monadic expression has a łnormal formž of the shape cstepn (cret(e ))
where e is the pure expression returned by the monadic expression and n is the cost. This is, in fact,
true, as established by the following lemma.

Lemma 2.1. Ifm is closed andm ⇓n e , thenm � cstepn (cret(e )).

Set-theoretic model. We give types and expressions a simple interpretation in set theory. Types

are interpreted as sets: Base types map to corresponding sets, e.g., JR∞K ≜ R ∪ {−∞,∞}; products,
sums and arrows map homomorphically to their set-theoretic analogues, e.g., Jτ1 → τ2K ≜ Jτ1K→
Jτ2K; data types θ map to initial (tree) algebras. The interpretation of C(τ ) is more interesting:

JC(τ )K ≜ Jτ K × R∞, representing both the returned pure expression and the cost. (Technically, this
makes C(τ ) a specific writer monad.)

The interpretation L·Mρ of expressions is indexed by a valuation ρ for free variables. Pure expres-

sions have the expected interpretations, e.g., L⟨e1, e2⟩Mρ ≜ ⟨Le1Mρ , Le2Mρ ⟩. The recursive function
definition is interpreted via a fixpoint: Lrec f (x ).eMρ ≜ fix(λF . λx . LeMρ,f 7→F ). The fixpoint is unique
for well-typed functions because e can recursively apply f only to arguments smaller than x .

The interesting interpretation is that of monadic expressions and the construct {m}. A monadic
expressionm ÷ τ is interpreted as an element of Jτ K × R∞, representing the returned expression
and the cost. The cost is accumulated over binds using the addition operator + on R ∪ {−∞,∞}.
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General rules for equality. Here, u ::= e | m.

u1 → u2

Γ;Ψ ⊢LC u1 � u2
BETA

Γ;Ψ ⊢LC u � u
REFL

Γ;Ψ ⊢LC u1 � u2 Γ;Ψ ⊢LC ϕ[u1/x]

Γ;Ψ ⊢LC ϕ[u2/x]
SUBST

Rules for symmetry (SYM) and transitivity (TRANS) of � can be derived

Axioms specific to monadic expression equality

Γ;Ψ ⊢LC ϕ if ϕ is one of:

∀x ,y ÷ τ . {x } � {y} ⇒ x � y ∀x : C(τ ). ∃y ÷ τ . x � {y}

∀x ÷ τ . ∃y : R∞, z : τ . x � cstepy (cret(z))

∀x1,x2 : R
∞, y1,y2 : τ . cstepx1 (cret(y1)) � cstepx2 (cret(y2)) ⇒ x1 � x2 ∧ y1 � y2

Rules for data types

θ = K1 (σ1,1 × · · · × σ1,a1 ) + · · · + Kn (σn,1 × · · · × σn,an ) ∈ Θ

Γ ⊢ e : θ Γ,x1 : σi,1, . . . ,xai : σi,ai ;Ψ, e � Ki (x1, . . . ,xai ) ⊢LC ϕ

for all 1 ≤ i ≤ n where x1, . . . ,xai < ϕ

Γ;Ψ ⊢LC ϕ
ELIM

θ ∈ Θ Γ,x : θ ;Ψ,∀y : θ . |y | < |x | ⇒ ϕ[y/x] ⊢LC ϕ

Γ;Ψ ⊢LC ∀x : θ . ϕ
IND

Fig. 2. LC rules (selected)

This interpretation is reminiscent of Danner et al. [2015] and Grobauer [2001].

L{m}Mρ ≜ LmMρ Lcret(e )Mρ ≜ (LeMρ , 0) Lcstepn (m)Mρ ≜ (π1LmMρ , LnMρ + π2LmMρ )

Lcbind(e, {x }.m)Mρ ≜ let y ← LeMρ in let x ← π1y in let z ← LmMρ in (π1z,π2y + π2z)

Theorem 2.2 (Soundness). Let ρ ⊨ Γ mean that for each x ∈ dom(Γ), ρ (x ) ∈ JΓ(x )K. Then: (1) If
Γ ⊢ e : τ and ρ ⊨ Γ, then LeMρ ∈ Jτ K. (2) If Γ ⊢m ÷ τ and ρ ⊨ Γ, then LmMρ ∈ Jτ K × R∞.

Remark. In our language costs must be explicitly specified using the construct cstepn . Con-
sequently, a program’s cost analysis is correct only to the extent that it carries correct cstepn
annotations. Danielsson [2008] calls this style of analysis łsemi-formalž. We argue that this style
aids expressiveness since cstepn can model different kinds of costs (see Section 6 for examples).
Further, our embeddings of RelCost (Section 7) and RAML (Section 8) show how programs written
in languages with in-built cost-semantics can be translated to our language automatically.

3 LC: THE ASSERTION LOGIC

LC is a logic of assertions over pure and monadic expressions. It extends HOL [Jacobs 1999, Chapter
5] with quantification and equality over monadic expressions. Formulae are denoted ϕ. The letter u
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denotes either a pure or a monadic expression (u ::= e | m).

ϕ ::= P (u1, . . . ,un ) | ⊤ | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ ⇒ ϕ | ∀x : τ .ϕ | ∃x : τ .ϕ | ∀x ÷ τ .ϕ | ∃x ÷ τ .ϕ

P denotes an atomic predicate. Predicates are defined through axioms. We pre-define expression
equality,u1 � u2, and add more predicates for typing examples as needed. The remaining constructs
are standard. Variables x : τ and x÷τ represent pure and monadic expressions of type τ , respectively.
The logic establishes judgments of the form Γ;Ψ ⊢LC ϕ where Γ is a typing context with as-

sumptions of the forms x : τ and x ÷ τ , and Ψ is a context of assumed formulae. The rules
for all logical connectives are standard. We show in Figure 2 some selected rules pertaining to
equality and data types. Importantly, the rule BETA subsumes reduction→ into the logic’s equal-
ity �. The axioms in the middle of the figure specify important properties of � on monadic
expressions. The third axiom formalizes the normal form of monadic expressions described
at the end of Section 2. Other interesting properties of equality can be derived. For instance,
cstepn (m) � cstepn′ (cret(e )) ⇒ ∃n

′′. n′ � n + n′′ ∧m � cstepn′′ (cret(e )).
The rules ELIM and IND allow case analysis and induction on data types. In the rule IND, the

notation |e | stands for the depth of e (which must be of some data type θ ). Informally, the depth is
the maximum number of constructor applications on any path in the normal form of e viewed as a
tree. (The appendix defines this formally.)

Model. LC has a straightforward model in set theory. Connectives are interpreted as expected,
e.g.,⇒ is interpreted as implication in set theory. The logic’s equality � maps to equality in set
theory. We write this interpretation as LϕMρ . All rules (and axioms) of LC are sound in this model.

Theorem 3.1 (Soundness). If Γ;Ψ ⊢LC ϕ, ρ ⊨ Γ and
∧

ϕ′∈ΨLϕ ′Mρ , then LϕMρ .

4 UC: UNARY COST ANALYSIS

Next, we present UC, a syntax-directed proof system for unary cost analysis. Since cost analysis often
depends on functional properties, UC builds-in an expressive program logic using the assertions of
LC. In this aspect, UC is inspired by UHOL, a program logic/refinement type system for proving
functional properties of pure expressions [Aguirre et al. 2017b]. UC uses two judgments:

Γ;Ψ ⊢ e : τ | ϕ Γ;Ψ ⊢m ÷ τ | k | ℓ | ϕ

The first judgment, also called the pure judgment, means that under assumptions Ψ, e (of simple
type τ ) satisfies ϕ[e/r], where r is a distinguished variable in ϕ representing the result of e . ϕ can
be viewed as either a postcondition for e or a refinement for the type τ . The second judgment, also
called the monadic judgment, is central to cost analysis. It means thatm, when forced, returns
a pure expression e which satisfies ϕ[e/r] and k and ℓ are expressions that denote, respectively,
lower and upper bounds on the cost ofm. In verifying programs, we use ϕ to represent functional
properties of the output, and use k and ℓ to bound the costs.4

Figure 3 shows the rules for establishing the two judgments. The rules are mostly syntax-directed,
which simplifies verification of examples. For pure expressions, we show rules for only a few
constructs. (Rules for the remaining constructs are the same as those in UHOL.) We can establish
any refinement ϕ for a variable x if we can show ϕ[x/r] from the assumptions Ψ in the assertion
logic (rule U-VAR). For function types τ → τ ′, the refinement has the shape ∀x .ϕ ⇒ ϕ ′, where ϕ is a
refinement on the argument x and ϕ ′ is a refinement on the result. In the rule U-LETREC for rec f (x ).e ,
we make the assumption that the refinement holds for the function f for all arguments y with

4The cost bounds k and ℓ are drawn from R∞ and can be −∞ and∞. Since our language is terminating, no program actually

has unbounded costs, but we find these extreme bounds handy in verification when we do not care about a more precise

bound on one side. Section 6.3 of our appendix presents an example of such a situation.
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Rules for the pure judgment Γ;Ψ ⊢ e : τ | ϕ (selected)

Γ ⊢ x : τ Γ;Ψ ⊢LC ϕ[x/r]

Γ;Ψ ⊢ x : τ | ϕ
U-VAR

Def ( f ,x , e )

Γ,x : θ , f : θ → τ ;Ψ,ϕ,∀y. |y | < |x | ⇒ ϕ[y/x]⇒ ϕ ′[y/x][f y/r] ⊢ e : τ | ϕ ′

Γ;Ψ ⊢ rec f (x ).e : θ → τ | ∀x . ϕ ⇒ ϕ ′[r x/r]
U-LETREC

Γ;Ψ ⊢ e1 : τ → τ ′ | ∀x .ϕ ⇒ ϕ ′[r x/r] Γ;Ψ ⊢ e2 : τ | ϕ[r/x]

Γ;Ψ ⊢ e1 e2 : τ
′ | ϕ ′

U-APP

K (σ1 × · · · × σn ) ∈ Θ(θ ) Γ;Ψ ⊢ ei : σi | ϕi for all 1 ≤ i ≤ n

Γ;Ψ ⊢LC ∀x1 : σ1, . . . ,xn : σn . ϕ1[x1/r]⇒ · · · ⇒ ϕn[xn/r]⇒ ϕ[K (x1, . . . ,xn )/r]

Γ;Ψ ⊢ K (e1, . . . , en ) : θ | ϕ
U-CONS

θ = K1 (σ1,1 × · · · × σ1,a1 ) + · · · + Kn (σn,1 × · · · × σn,an ) ∈ Θ

Γ;Ψ ⊢ e : θ | ϕ ′ For all 1 ≤ i ≤ n : Γ;Ψ ⊢ ei : σi,1 → · · ·σi,ai → τ | ϕ ′i where

ϕ ′i ≡ ∀x1 : σi,1, . . . ,xai : σi,ai . ϕ
′[Ki (x1, . . . ,xai )/r]⇒ ϕ[(r x1 · · · xai )/r]

Γ;Ψ ⊢ match e with K1 7→ e1; . . . ;Kn 7→ en : τ | ϕ
U-MATCH

Γ;Ψ ⊢m ÷ τ | k | ℓ | ϕ[r/x]

Γ;Ψ ⊢ {m} : C(τ ) | Cu (r,k, ℓ,x .ϕ)
U-MONAD

Rules for the monadic judgment Γ;Ψ ⊢m ÷ τ | k | ℓ | ϕ

Γ;Ψ ⊢ e : τ | ϕ

Γ;Ψ ⊢ cret(e ) ÷ τ | 0 | 0 | ϕ
U-RET

Γ ⊢ n : R∞ Γ;Ψ ⊢m ÷ τ | k | ℓ | ϕ

Γ;Ψ ⊢ cstepn (m) ÷ τ | k + n | ℓ + n | ϕ
U-STEP

Γ;Ψ ⊢ e1 : C(τ1) | Cu (r,k
′, ℓ′,x .ϕ1) Γ,x : τ1;Ψ,ϕ1 ⊢m2 ÷ τ2 | k | ℓ | ϕ2 x < k, ℓ,ϕ2

Γ;Ψ ⊢ cbind(e1, {x }.m2) ÷ τ2 | k
′
+ k | ℓ′ + ℓ | ϕ2

U-BIND

Structural rules (selected)

Γ;Ψ ⊢ e : τ | ϕ ′

Γ;Ψ ⊢LC ϕ ′[e/r]⇒ ϕ[e/r]

Γ;Ψ ⊢ e : τ | ϕ
U-SUB

Γ;Ψ ⊢m ÷ τ | k ′ | ℓ′ | ϕ

Γ;Ψ ⊢LC k ≤ k ′ Γ;Ψ ⊢LC ℓ
′ ≤ ℓ

Γ;Ψ ⊢m ÷ τ | k | ℓ | ϕ
U-SUBC

Admissible rules (selected)

Γ;Ψ ⊢m ÷ τ | k ′ | ℓ′ | ϕ ′

Γ;Ψ ⊢LC m � cstepn (cret(e ))
Γ;Ψ ⊢LC k ≤ n ≤ ℓ

Γ;Ψ ⊢LC ϕ ′[e/r]⇒ ϕ[e/r]

Γ;Ψ ⊢m ÷ τ | k | ℓ | ϕ
U-SUBM1

Γ;Ψ ⊢m ÷ τ | k ′ | ℓ′ | ϕ ′

Γ;Ψ ⊢LC k ≤ k ′

Γ;Ψ ⊢LC ℓ
′ ≤ ℓ

Γ;Ψ ⊢LC ∀r. ϕ
′ ⇒ ϕ

Γ;Ψ ⊢m ÷ τ | k | ℓ | ϕ
U-SUBM2

Γ;Ψ ⊢ e : τ | ϕ

Γ;Ψ ⊢LC e � e ′ Γ ⊢ e ′ : τ

Γ;Ψ ⊢ e ′ : τ | ϕ
U-EQ-PURE

Γ;Ψ ⊢m ÷ τ | k | ℓ | ϕ

Γ;Ψ ⊢LC m � m′ Γ ⊢m′ ÷ τ

Γ;Ψ ⊢m′ ÷ τ | k | ℓ | ϕ
U-EQ-MONADIC

Fig. 3. UC rules
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|y | < |x |, and show that e has the postcondition ϕ ′. Rule U-APP allows applying a function if the
argument satisfies the pre-condition.
Rule U-CONS says that a data type constructor K (e1, . . . , en ) can be typed with refinement ϕ if

the constructor transforms arguments with refinements {ϕi }
n
i=1 to ϕ and the arguments actually

have these refinements. Dually, U-MATCH allows establishing refinement ϕ for (match e with K1 7→

e1; . . . ;Kn 7→ en ) when e has some refinement ϕ ′ and each function ei maps arguments x1, . . . ,xai
satisfying ϕ ′[Ki (x1, . . . ,xai )/r] to a result satisfying ϕ.
Next, we define a refinement Cu (e,k, ℓ,x .ϕ) for the monadic type C(τ ).

Cu (e,k, ℓ,x .ϕ) ≜ ∃n,y. (e � {cstepn (cret(y))}) ∧ (k ≤ n ≤ ℓ) ∧ ϕ[y/x]

Note that x is locally bound inϕ. In words, the refinement means that e is (up to �) {cstepn (cret(y))},
i.e., a suspended computation which eventually returns y with cost n, that the cost n is lower- and
upper-bounded by k and ℓ, respectively, and that y satisfies ϕ. Due to Lemma 2.1, a consequence is
that if e →∗ {m}, thenm, when forced, returns a pure expression (named y) that satisfies ϕ and the
cost of this forcing is lower- and upper-bounded by k and ℓ, respectively.

Rule U-MONAD says that to verify the expression {m}, we should verify the monadic expressionm
using the monadic judgment, showing thatm has some cost lower and upper bounds k and ℓ and
some postcondition ϕ. Then, the postcondition of {m} is Cu (r,k, ℓ,x .ϕ[x/r]).

Monadic expressions. The crux of UC are the rules for typing monadic expressions. Rule U-RET says
that cret(e ) has postcondition ϕ if e has postcondition ϕ, and that the cost of cret(e ) is both lower-
and upper-bounded by 0. This represents the fact that cret(e ) forces to e with 0 cost. Rule U-STEP

says that cstepn (m) has cost bounds k + n and ℓ + n, and postcondition ϕ ifm has cost bounds k
and ℓ and the same postcondition ϕ. This represents the fact that cstepn (m) forces likem, but with
additional cost n. Finally, to type cbind(e1, {x }.m2), we first verify e1 (which has a monadic type)
purely with a refinement Cu (r,k

′, ℓ′,x .ϕ1), then verifym2 assuming that x satisfies ϕ1. The bounds
on the cost of cbind(e1, {x }.m2) are obtained by adding k ′ and ℓ′ to the bounds of m2, and the
postcondition is the same as that ofm2. Again, this directly reflects how cbind(e1, {x }.m2) forces.

Note that our monadic judgment separates reasoning about functional properties from reasoning
about costs syntactically. This elegance is a consequence of setting up the monad in the judgmental
style of Pfenning and Davies [2001], which isolates all reasoning about the effect (cost in this case)
in a separate monadic judgment.

Structural and admissible rules. The rule U-SUB weakens the postcondition of a pure expression.
The rule U-SUBC weakens the cost bounds of an monadic expression. This rule does not weaken the
postcondition. Rules to weaken the postcondition of monadic expressions are, in fact, admissible
in the system (U-SUBM1 and U-SUBM2). The admissible rules U-EQ-PURE and U-EQ-MONADIC show that UC’s
judgments are closed under �.

Metatheory. Our main metatheoretic result about UC is that it has a sound and complete inter-
pretation in LC.

Theorem 4.1 (Eqivalence of UC and LC). The following hold.

(1) Γ;Ψ ⊢ e : τ | ϕ if and only if Γ;Ψ ⊢LC ϕ[e/r] (and Γ ⊢ e : τ ).

(2) Γ;Ψ ⊢m ÷ τ | k | ℓ | ϕ if and only if Γ;Ψ ⊢LC ∃y,n. (m � cstepn (cret(y))) ∧ (k ≤ n ≤ ℓ) ∧

ϕ[y/r] (and Γ ⊢m ÷ τ ).

Proof. The⇒ direction of (1) and (2) follows by induction on the given derivations. The⇐
direction is established by showing that every well-typed pure or monadic expression can be given
a trivial refinement ⊤, and then using rule U-SUB for pure expressions and another small induction
on typing derivations for monadic expressions. □
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This theorem has several useful consequences. First, it explains the meaning of UC’s judgments.
Second, the⇒ direction implies that UC has sound set-theoretic semantics (since LC has them).
Third, the theorem is directly useful in verification: It allows switching to the assertion logic LC in a
proof. This is useful in many of our examples. Fourth, at a conceptual level, the theorem establishes
that the mostly syntax-directed style of UC does not reduce expressivenessÐit is as expressive as LC,
which already includes the entire equational theory of our language. Fifth, the theorem immediately
implies that the rules marked admissible in Figure 3 are indeed admissible. Finally, a corollary to
this theorem and Lemma 2.1 is the following subject reduction for the monadic judgment with
respect to the forcing semantics that also takes costs into account.

Theorem 4.2 (Forcing subject reduction). If ⊢m ÷ τ | k | ℓ | ϕ andm ⇓n e , then ⊢LC k ≤ n ≤ ℓ

and ⊢ e : τ | ϕ.

5 RC: RELATIONAL COST ANALYSIS

Finally, we present RC, a syntax-directed proof system for relational cost analysis. Like UC, RC is
based on two judgments, but these judgments relate pairs of pure and monadic expressions.

Γ;Ψ ⊢ e1 : τ1 ∼ e2 : τ2 | ϕ Γ;Ψ ⊢m1 ÷ τ1 ∼m2 ÷ τ2 | n | ϕ

The first judgment, also called the pure judgment, is based on RHOL [Aguirre et al. 2017b] andmeans
that under assumptions Ψ, e1 (of simple type τ1) and e2 (of simple type τ2) satisfy ϕ[e1/r1][e2/r2].
Here, r1 and r2 are distinguished variables in the relational assertion ϕ representing the results of
e1 and e2 respectively. The second judgment, also called the monadic judgment, is the foundation of
our relational cost analysis. It means thatm1 andm2, when forced, evaluate respectively with some
costs n1 and n2 to some pure expressions e1 and e2, ϕ[e1/r1][e2/r2] holds and n is an upper bound
on the relative cost n1 − n2 ofm1 with respect tom2. In verifying programs, we use ϕ to represent
relational properties of the outputs, and use n to bound the relative cost.5

Figures 4 and 5 show the syntax-directed rules for establishing the two judgments. The two-sided
rules (Figure 4) apply when both expressions have the same top-level construct; they analyze this
common construct. The one-sided rules of Figure 5 analyze either the left or the right expression,
thus allowing verification to proceed even when the expressions are dissimilar. (Figure 5 shows
only the left rules.) For pure expressions, we show rules for only a few constructs. Rules for the
remaining constructs are taken as-is from RHOL. The two sided rule R-VAR relates the variables
x1,x2 at ϕ when ϕ[x1/r1][x2/r2] holds. The one-sided rule R-VAR-L relates x1 to an arbitrary e2 when
ϕ[x1/r1] holds and r2 does not appear in ϕ (however, ϕ may contain e2). The two-sided rule R-LETREC

applies to two recursive function definitions rec f1 (x1).e1 and rec f2 (x2).e2. In the premise, we get to
assume the relational refinement for all arguments y1,y2 with ( |y1 |, |y2 |) < ( |x1 |, |x2 |), which holds
when both |y1 | ≤ |x1 | and |y2 | ≤ |x2 | and at least one of the inequalities is strict. The corresponding
one-sided rule R-LETREC-L allows unfolding a recursive function definition on the left side only. The
application rules R-APP and R-APP-L are dual. The rule R-MATCH relates two case-analyses on data
types. We show here only a simplified version of the rule where the analyzed data type θ is the
same on both sides. For a data type with n constructors, the rule has n2 cases in the premises. The
corresponding one-sided rule is elided here.
Next, we define a relational refinement Cr (e1, e2,n,x2.x2.ϕ) for the monadic type C(τ ):

∃y1,n1,y2,n2. e1 � {cstepn1
(cret(y1))} ∧ e2 � {cstepn2

(cret(y2))} ∧ ϕ[y1/x1][y2/x2] ∧ n1 − n2 ≤ n

5Our current development only supports establishing a specific kind of predicate on n1, n2, namely, an upper bound on

n1 − n2. We believe this can be generalized to arbitrary predicates on n1, n2 but we haven’t worked out the generalization

since none of our examples so far have required this.
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Two-sided rules for the pure judgment Γ;Ψ ⊢ e1 : τ1 ∼ e2 : τ2 | ϕ (selected)

Γ ⊢ x1 : τ1 Γ ⊢ x2 : τ2 Γ;Ψ ⊢LC ϕ[x1/r1][x2/r2]

Γ;Ψ ⊢ x1 : τ1 ∼ x2 : τ2 | ϕ
R-VAR

Def ( f1,x1, e1) Def ( f2,x2, e2)

Γ,x1 : θ1,x2 : θ2, f1 : θ1 → τ1, f2 : θ2 → τ2;

Ψ,ϕ,∀y1y2. ( |y1 |, |y2 |) < ( |x1 |, |x2 |) ⇒ ϕ[y1/x1][y2/x2]⇒ ϕ ′[y1/x1][y2/x2][f1 y1/r1][f2 y2/r2]

⊢ e1 : τ1 ∼ e2 : τ2 | ϕ
′

Γ;Ψ ⊢ rec f1 (x1).e1 : θ1 → τ1 ∼ rec f2 (x2).e2 : θ2 → τ2 | ∀x1x2. ϕ ⇒ ϕ ′[r1 x1/r1][r2 x2/r2]
R-LETREC

Γ;Ψ ⊢ e1 : τ1 → τ ′1 ∼ e2 : τ2 → τ ′2 | ∀x1x2.ϕ ⇒ ϕ ′[r1 x1/r1][r2 x2/r2]

Γ;Ψ ⊢ e ′1 : τ1 ∼ e ′2 : τ2 | ϕ[r1/x1][r2/x2]

Γ;Ψ ⊢ e1 e
′
1 : τ

′
1 ∼ e2 e

′
2 : τ

′
2 | ϕ

′
R-APP

θ = K1 (σ1,1 × · · · × σ1,a1 ) + · · · + Kn (σn,1 × · · · × σn,an ) ∈ Θ Γ;Ψ ⊢ e : θ ∼ e ′ : θ | ϕ ′

For all 1 ≤ i, j ≤ n : Γ;Ψ ⊢ ei : σi,1 → · · · → σi,ai → τ1 ∼ e ′j : σj,1 → · · · → σj,aj → τ2 | ϕ
′
i, j where

ϕ ′i, j ≡ ∀x1 : σi,1, . . . ,xai : σi,ai ,y1 : σj,1, . . . ,yaj : σj,aj . ϕ
′[Ki (x1, . . . ,xai )/r1][Kj (y1, . . . ,yaj )/r2]

⇒ ϕ[(r1 x1 · · · xai )/r1][(r2 y1 · · · yaj )/r2]

Γ;Ψ ⊢ match e with K1 7→ e1; . . . ;Kn 7→ en : τ1 ∼ match e ′ with K1 7→ e ′1; . . . ;Kn 7→ e ′n : τ2 | ϕ
R-MATCH

Γ;Ψ ⊢m1 ÷ τ1 ∼m2 ÷ τ2 | n | ϕ

Γ;Ψ ⊢ {m1} : C(τ1) ∼ {m2} : C(τ2) | Cr (r1, r2,n, r1.r2.ϕ)
R-MONAD

Two-sided rules for the monadic judgment Γ;Ψ ⊢m1 ÷ τ1 ∼m2 ÷ τ2 | n | ϕ

Γ;Ψ ⊢ e1 : τ1 ∼ e2 : τ2 | ϕ

Γ;Ψ ⊢ cret(e1) ÷ τ1 ∼ cret(e2) ÷ τ2 | 0 | ϕ
R-RET

Γ ⊢ n1 : R
∞ Γ ⊢ n2 : R

∞ Γ;Ψ ⊢m1 ÷ τ1 ∼m2 ÷ τ2 | n | ϕ

Γ;Ψ ⊢ cstepn1
(m1) ÷ τ1 ∼ cstepn2

(m2) ÷ τ2 | n + n1 − n2 | ϕ
R-STEP

Γ;Ψ ⊢ e1 : τ
′
1 ∼ e2 : τ

′
2 | Cr (r1, r2,n

′,x1.x2.ϕ
′)

Γ,x1 : τ
′
1,x2 : τ

′
2 ;Ψ,ϕ

′ ⊢m1 ÷ τ1 ∼m2 ÷ τ2 | n | ϕ x1,x2 < n,ϕ

Γ;Ψ ⊢ cbind(e1, {x1}.m1) ÷ τ1 ∼ cbind(e2, {x2}.m2) ÷ τ2 | n
′
+ n | ϕ

R-BIND

Fig. 4. RC two-sided rules

Here, x1,x2 are locally bound in ϕ. The relational refinement means that e1 and e2 are (up to
�) {cstepn1

(cret(y1))} and {cstepn2
(cret(y2))}, i.e., two suspended computation which eventually

return y1 and y2 with costs n1 and n2 respectively, that the relative cost n1 −n2 is upper-bounded by
n, and that y1 and y2 satisfy the relational assertion ϕ. Lemma 2.1 then implies that if e1 →

∗ {m1}

and e2 →
∗ {m2}, thenm1 andm2, when forced, return pure expressions (named y1 and y2) that

satisfy ϕ and the difference in the costs of forcing is upper-bounded by n.
Rule R-MONAD says that to verify that the expressions {m1} and {m2} are related at the assertion

Cr (r1, r2,n, r1.r2.ϕ), we should verify, using the monadic judgment, that the monadic expressions
m1 andm2 are related at the assertion ϕ and that their relative cost is at most n.
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One-sided rules for the pure judgment Γ;Ψ ⊢ e1 : τ1 ∼ e2 : τ2 | ϕ (selected)

Γ ⊢ x1 : τ1 Γ;Ψ ⊢LC ϕ[x1/r1] r2 < FV (ϕ) Γ ⊢ e2 : τ2

Γ;Ψ ⊢ x1 : τ1 ∼ e2 : τ2 | ϕ
R-VAR-L

Def ( f ,x , e )

Γ,x : θ , f : θ → τ1;Ψ,ϕ,∀y. |y | < |x | ⇒ ϕ[y/x]⇒ ϕ ′[y/x][f y/r1][e2/r2] ⊢ e : τ1 ∼ e2 : τ2 | ϕ
′

Γ;Ψ ⊢ rec f (x ).e : θ → τ1 ∼ e2 : τ2 | ∀x . ϕ ⇒ ϕ ′[r1 x1/r1]
R-LETREC-L

Γ;Ψ ⊢ e : τ → σ1 ∼ e2 : σ2 | ∀x .ϕ ⇒ ϕ ′[r x/r] Γ;Ψ ⊢ e ′ : τ | ϕ[r/x]

Γ;Ψ ⊢ e e ′ : σ1 ∼ e2 : σ2 | ϕ
′

R-APP-L

One-sided rules for the monadic judgment Γ;Ψ ⊢m1 ÷ τ1 ∼m2 ÷ τ2 | n | ϕ

Γ ⊢ e1 ÷ τ1 Γ;Ψ ⊢m2 ÷ τ2 | k | ℓ | ϕ[e1/r1][r/r2]

Γ;Ψ ⊢ cret(e1) ÷ τ1 ∼m2 ÷ τ2 | −k | ϕ
R-RET-L

Γ ⊢ n1 : R
∞ Γ;Ψ ⊢m1 ÷ τ1 ∼m2 ÷ τ2 | n | ϕ

Γ;Ψ ⊢ cstepn1
(m1) ÷ τ1 ∼m2 ÷ τ2 | n + n1 | ϕ

R-STEP-L

Γ;Ψ ⊢ e1 : C(τ
′
1 ) | Cu (r,k, ℓ,x .ϕ

′) Γ,x : τ ′1 ;Ψ,ϕ
′ ⊢m1 ÷ τ1 ∼m2 ÷ τ2 | n | ϕ

Γ;Ψ ⊢ cbind(e1, {x }.m1) ÷ τ1 ∼m2 ÷ τ2 | ℓ + n | ϕ
R-BIND-L

Fig. 5. RC one-sided rules

Structural rules

Γ;Ψ ⊢ e1 : τ1 ∼ e2 : τ2 | ϕ
′

Γ;Ψ ⊢LC ϕ ′[e1/r1][e2/r2]⇒ ϕ[e1/r1][e2/r2]

Γ;Ψ ⊢ e1 : τ1 ∼ e2 : τ2 | ϕ
R-SUB

Γ;Ψ ⊢m1 ÷ τ1 ∼m2 ÷ τ2 | n
′ | ϕ

Γ;Ψ ⊢LC n′ ≤ n

Γ;Ψ ⊢m1 ÷ τ1 ∼m2 ÷ τ2 | n | ϕ
R-SUBC

Admissible rules

Ψ; Γ ⊢m1 ÷ τ1 ∼m2 ÷ τ2 | n
′ | ϕ ′

Γ;Ψ ⊢LC m1 � cstepn1
(cret(e1))

Γ;Ψ ⊢LC m2 � cstepn2
(cret(e2))

Γ;Ψ ⊢LC n1 − n2 ≤ n

Γ;Ψ ⊢LC ϕ ′[e1/r1][e2/r2]⇒ ϕ[e1/r1][e2/r2]

Ψ; Γ ⊢m1 ÷ τ1 ∼m2 ÷ τ2 | n | ϕ
R-SUBM1

Ψ; Γ ⊢m1 ÷ τ1 ∼m2 ÷ τ2 | n
′ | ϕ ′

Ψ; Γ ⊢LC n′ ≤ n

Ψ; Γ ⊢LC ∀r1, r2. ϕ
′ ⇒ ϕ

Ψ; Γ ⊢m1 ÷ τ1 ∼m2 ÷ τ2 | n | ϕ
R-SUBM2

Γ;Ψ ⊢m1 ÷ τ1 | k1 | ℓ1 | ϕ1 Γ;Ψ ⊢m2 ÷ τ2 | k2 | ℓ2 | ϕ2 Γ;Ψ ⊢LC ℓ1 − k2 ≤ n

Γ;Ψ ⊢m1 ÷ τ1 ∼m2 ÷ τ2 | n | ϕ1[r1/r] ∧ ϕ2[r2/r]
R-SPLIT

Fig. 6. RC structural and admissible rules (selected)

Monadic expressions. Rule R-RET says that we can relate cret(e1) and cret(e2) at ϕ if e1 and e2 are
related at ϕ, and that the relative cost is upper-bounded by 0. This corresponds to the fact that
cret(e ) forces to e with 0 cost. The one-sided rule R-RET-L relates cret(e1) to an arbitrarym2. The
relative cost is −k , where k is a lower bound on the unary cost of forcingm. Rule R-STEP relates
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two expressions cstepn1
(m1) and cstepn2

(m2) at ϕ ifm1 andm2 are related at ϕ. The relative cost is
n + n1 − n2, where n is the relative cost ofm1 andm2. This corresponds to the fact that cstepn (m)

forces likem, but with additional cost n. The one-sided rule R-STEP-L analyzes only a left expression of
the shape cstepn1

(m1); it increases the relative cost byn1. Finally, the rule R-BIND can be used to relate
cbind(e1, {x1}.m1) and cbind(e2, {x2}.m2). This requires that we relate the monadic expressionsm1

andm2 and the pure expressions e1 and e2. The relative cost is bounded by the sum of the bounds
on the relative cost ofm1 with respect tom2 and the relative cost of e1 with respect to e2. The
corresponding one-sided rule R-BIND-L performs a unary analysis of e1.

Structural and admissible rules. Figure 6 shows structural and admissible rules. The rule R-SUB

weakens the postcondition of two pure expressions. The rule R-SUBC weakens the relative cost of
two monadic expressions. The admissible rules R-SUBM1 and R-SUBM2 allow weakening of relational
postconditions. The admissible rule R-SPLIT allows falling back to unary reasoning at any point in a
relational proof. It derives an upper-bound on the relative cost by taking a difference of the unary
upper bound on the left and the unary lower bound on the right. (A similar, simpler rule for pure
expressions is elided here.)

Metatheory. As for UC, our main metatheoretic result about RC is that it has a sound and complete
interpretation in LC.

Theorem 5.1 (Eqivalence of RC and LC). The following hold:

(1) Γ;Ψ ⊢ e1 : τ1 ∼ e2 : τ2 | ϕ if and only if Γ;Ψ ⊢LC ϕ[e1/r1][e2/r2] (and Γ ⊢ e1 : τ1 and Γ ⊢ e2 : τ2).

(2) Γ;Ψ ⊢m1 ÷ τ1 ∼m2 ÷ τ2 | n | ϕ if and only if Γ;Ψ ⊢LC ∃e1, e2,n1,n2.m1 � cstepn1
(cret(e1)) ∧

m2 � cstepn2
(cret(e2)) ∧ ϕ[e1/r1][e2/r2] ∧ n1 − n2 ≤ n (and Γ ⊢m1 ÷ τ1 and Γ ⊢m2 ÷ τ2).

Proof. On the same lines as that for UC. □

Again, this theorem has very useful consequences: it explains the meaning of RC’s judgments,
it gives RC a set-theoretic semantics (via the semantics of LC), it aids verification by allowing
switching to LC freely, and it shows that RC is as expressive as the full equational theory of LC.
Finally, the theorem implies the following subject reduction property for forcing.

Theorem 5.2 (Forcing subject reduction). If ⊢m1 ÷ τ1 ∼m2 ÷ τ2 | n | ϕ andm1 ⇓
n1 e1 and

m2 ⇓
n2 e2, then ⊢LC n1 − n2 ≤ n and ⊢ e1 : τ1 ∼ e2 : τ2 | ϕ.

6 EXAMPLES

We present several examples of verification in UC and RC that highlight the importance of value-
dependence, functional correctness and non-standard invariants for cost analysis and some non-
standard features of RC such as the one-sided rules. Our appendix contains several additional
examples, including examples of unary and relational cost analysis on lazy data structures.

Notation. To aid readability, we use simplified notation in examples. We often elide cret, writing e
in place of cret(e ). We use ↑nm as alternate notation for cstepn (m). The scope of ↑n extends to the
end of the expression or the next closing bracket. We write x ← e1; m2 in place of cbind(e1, {x }.m2).
In examples involving the defined data type list, we often use the infix form :: in place of the prefix
form cons. Finally, we often omit contexts from judgments. The contexts can be reconstructed by
following the sequence of applied rules. We also implicitly apply reasoning in the assertion logic
LC, and skip trivial applications of subsumption rules that weaken cost bounds or postconditions.

Insert into a sorted list. Our first example highlights the need to reason about values in a data
structure to establish a precise cost (value-dependence). Consider the following function, a standard
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component of insertion sort, that inserts an element x into a sorted list ℓ, where the list type is
defined as usual with the equation listN = nil() + cons(N × listN).

insert ≜ λx . rec f (ℓ).
match ℓ with nil 7→ {x :: nil};

cons 7→ λh, t . match x ≤ h with tt 7→ {x :: (h :: t )};

ff 7→ {t ′ ← f t ; ↑1 h :: t ′}

The cost of interest is the number of recursive calls of insert, modeled by the ↑1 after the recursive
call to f . It is straightforward to establish an upper bound of |ℓ | on the cost of insert. However,
we want to establish a more precise boundÐthe number of elements in ℓ that x is larger than. A
crucial precondition for this bound to hold is that ℓ be sorted ascending. Hence, the precise cost
depends on the value of x , the values of the elements of ℓ, as well as a nontrivial refinement of ℓ
(sortedness). We define three refinements (predicates) in LC to capture these properties.

∀x , ℓ,n. LargerThan(x , ℓ,n) ⇔ (n � 0 ∧ ℓ � nil)
∨ (∃h, t . ℓ � h :: t ∧ x ≤ h ∧ LargerThan(x , t ,n))
∨ (∃h, t ,n′. ℓ � h :: t ∧ x ≰ h ∧ LargerThan(x , t ,n′) ∧ n � n′ + 1)

∀ℓ,n. Unsorted(ℓ,n) ⇔ (n � 0 ∧ ℓ � nil)
∨ (∃h, t ,n1,n2. ℓ � cons(h, t ) ∧ LargerThan(h, t ,n1) ∧

Unsorted(t ,n2) ∧ n � n1 + n2)

∀l . Sorted(ℓ) ⇔ Unsorted(ℓ, 0)

LargerThan(x , ℓ,n) states that x is larger than n elements of ℓ; Unsorted(ℓ,n) states that the
unsortedness measure of ℓ is n (the unsortedness measure is the sum of LargerThan predicates
on all suffixes); and Sorted(ℓ) states that ℓ is sorted (its unsortedness measure is 0).
We show two additional properties of insert, for later use in our verification of insertion sort:

(1) The list output by insert is also sorted, and (2) For any y, if y is larger than q elements of x :: ℓ,
then y is larger than q elements of the output list. Formally, we show in UC that:

⊢ insert : N→ listN → C(listN) | ∀x , ℓ. Sorted(ℓ) ⇒ ∀n. LargerThan(x , ℓ,n) ⇒ Cu (r x ℓ,n,n, r.ϕ)

where ϕ ≜ Sorted(r) ∧ ∀y,q. LargerThan(y, cons(x , ℓ),q) ⇒ LargerThan(y, r,q)

Following the syntax of insert, the proof first applies a UC rule for λ-abstraction, which is similar to
U-LETREC, but without the inductive hypothesis. Next we apply U-LETREC to get the inductive hypothesis
(IH): ∀m. |m | < |ℓ | ⇒ Sorted(m) ⇒ ∀n. LargerThan(x ,m,n) ⇒ Cu ( f m,n,n, r.ϕ[m/ℓ]).

Next, by rule U-MATCH we need to consider two cases. For the case ℓ � nil we need to show
⊢ {x :: nil} : C(listN) | Cu (r,n,n, r.ϕ). The assumptions ℓ � nil and LargerThan(ℓ,x ,n) force n � 0.
The cost part follows trivially by the rules U-MONAD and U-RET. The proof of ϕ is also easy.

For the case when ℓ � cons(h, t ) we further apply the rule for λ twice and the rule U-MATCH. This
yields two sub-cases: x ≤ h and x ≰ h (note that we overload ≤: It is a predicate in LC and an
operator in the language). For the sub-case x ≤ h, it remains to show ⊢ {x :: (h :: t )} : C(listN) |
Cu (r,n,n, r.ϕ). Next, ℓ � cons(h, t ), Sorted(ℓ), x ≤ h and LargerThan(x , ℓ,n) force n � 0. It is
crucial that ℓ is sorted, otherwise we would not be able to conclude this here. The rest of this
sub-case is then very similar to the ℓ � nil case above.
For the sub-case x ≰ h, it remains to show ⊢ {t ′ ← f t ; ↑1 h :: t ′} : C(listN) | Cu (r,n,n, r.ϕ).

From ℓ � cons(h, t ), LargerThan(x , ℓ,n) and x ≰ h, it follows LargerThan(x , t ,n′) for some n′ ∈ N
s.t. n � n′ + 1. From Sorted(ℓ), it follows that Sorted(t ). Then, by applying the IH and using
Theorem 4.1, we get ⊢ f t : C(list) | Cu (r,n

′,n′, t ′.ϕ[t/ℓ][t ′/r]). Using the rules U-BIND and SUBC

(with n′ + 1 � n) it suffices to show ⊢ ↑1 h :: t ′ ÷ listN | 1 | 1 | ϕ. The cost part follows from the
rules U-STEP and U-RET. Proving ϕ needs additional reasoning in LC, which we defer to the appendix.
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Count-up/count-down binary counters. Next, we consider an example of relational cost analysis.
The example presents a situation where the relative cost of two programs is very easy to establish,
but a unary analysis of either program is not. The example also highlights the use of a non-standard
relational invariant. Consider two binary counters of the same width, each represented as a list

of bits coded as booleans (0 ≜ ff, 1 ≜ tt), with the least significant bit at the head. One counter
starts at 0 (all bits 0) and counts upÐit can be incremented through the function inc defined below.
The other counter starts at the maximum possible value (all bits 1) and counts downÐit can be
decremented through the dec function defined below.

bool = tt() + ff() list = nil() + cons(bool × list)
inc ≜ rec f1 (ℓ1). match ℓ1 with

nil 7→ {nil};
cons 7→ λx1, t1. match x1 with ff 7→ {↑1 tt :: t1}; tt 7→ {t ′1 ← f1 t1; ↑

1 ff :: t ′1}

dec ≜ rec f2 (ℓ2). match ℓ2 with
nil 7→ {nil};
cons 7→ λx2, t2. match x2 with ff 7→ {t ′2 ← f2 t2; ↑

1 tt :: t ′2}; tt 7→ {↑
1 ff :: t2}

The cost of interest is the number of bit flips during the operations, as represented by the ↑1

annotations in the code. We want to show that for any natural number k , the relative cost of
incrementing the first counter k times and decrementing the second counter k times is 0, i.e., the
number of bit flips in these sequences of operations is the same. Informally, this property follows
from the fact that the counters always remain bitwise duals of each other. Formally, it follows from
a strong invariant: If two counters are bitwise duals of each other, then incrementing one counter
once and decrementing the other once incurs 0 relative cost, and the resulting counters are still
bitwise duals. The property we want to prove follows trivially from this invariant by induction on
k , since the counters start out as bitwise duals (one is all 0s, the other is all 1s).

We show here how to prove the invariant. We start by defining an assertion dual(ℓ1, ℓ2) on lists
of booleans, which says that ℓ1 and ℓ2 have the same length and are pointwise dual.

∀ℓ1, ℓ2. dual(ℓ1, ℓ2) ⇔ (ℓ1 � ℓ2 � nil) ∨
(∃x1, t1,x2, t2. ℓ1 � cons(x1, t1) ∧ ℓ2 � cons(x2, t2) ∧ x1 ̸� x2 ∧ dual(t1, t2))

We can then state our invariant as an RC judgment:

⊢ inc : list→ C(list) ∼ dec : list→ C(list) | ∀ℓ1, ℓ2. dual(ℓ1, ℓ2)
⇒ Cr (r1 ℓ1, r2 ℓ2, 0, r1.r2.dual(r1, r2))

The proof of this judgment is straightforward since inc and dec have very similar structure. We
first apply the rule R-LETREC (which introduces the IH into the context), then apply R-MATCH. This
yields only two cases since the assumption dual(ℓ1, ℓ2) forces ℓ1, ℓ2 to either both be empty or both
be nonempty. The case ℓ1 � ℓ2 � nil is straightforward. In the case ℓ1 � x1 :: t1 and ℓ2 � x2 :: t2,
we continue into the structure of the functions and apply R-MATCH again (for the case analysis of
the booleans x1 and x2). At this point, we get four cases, but from dual(ℓ1, ℓ2), we also know that
x1 ̸� x2, so we have only the cases x1 � ff,x2 � tt and x1 � tt,x2 � ff.

When x1 � ff,x2 � tt, our goal reduces to proving ⊢ {↑1 tt :: t1} : C(list) ∼ {↑
1 ff :: t2} : C(list) |

Cr (r1, r2, 0, r1.r2.dual(r1, r2)). Applying the rules R-MONAD, R-STEP and R-RET, this reduces to ⊢ ff :: t1 :

list ∼ tt :: t2 : list | dual(r1, r2), which follows immediately by switching to LC since dual(t1, t2).
When x1 � tt,x2 � ff, our goal is ⊢ {t ′1 ← f1 t1; ↑

1 ff :: t ′1} : C(list) ∼ {t
′
2 ← f2 t2; ↑

1 tt :: t2} :

C(list) | Cr (r1, r2, 0, r1.r2.dual(r1, r2)). Using R-MONAD, this reduces to ⊢ t ′1 ← f1 t1; ↑
1 ff :: t ′1 ÷

list ∼ t ′2 ← f2 t2; ↑
1 tt :: t2 ÷ list | 0 | dual(r1, r2). From the IH, we derive (via LC) that ⊢ f1 t1 :

C(list) ∼ f2 t2 : C(list) | Cr (r1, r2, 0, r1.r2.dual(r1, r2)). Hence, by rule R-BIND, it suffices to prove that
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⊢ ↑1 ff :: t ′1 ÷ list ∼ ↑1 tt :: t ′2 ÷ list | 0 | dual(r1, r2), under the assumption dual(t ′1, t
′
2). Applying

rules R-STEP and R-RET, we further reduce to ⊢ ff :: t ′1 : list ∼ tt :: t ′2 : list | dual(r1, r2), which follows

immediately (in LC) from the assumption dual(t ′1, t
′
2). This completes the proof.

Even though this relational proof is very straightforward, a unary cost analysis of a binary
counter is notÐit requires amortized counting. We show this unary analysis for a slightly more
general counter in Section 8.

Boolean expression evaluation. Next, we show an example of relational cost analysis where the
relative cost depends not on a measure of the size of a data structure, but on another nontrivial
property of it. Consider the following type bexpr of boolean expressions (bool constants, and the
connectives łandž and łorž):

bexpr = const(bool) + and(bexpr × bexpr) + or(bexpr × bexpr)

We write two functions to evaluate a bexpr to a bool. The first function is a naive implementation
that recurses on the whole bexpr, while the second one more intelligently short cuts (skips) the
evaluation of e2 in and(e1, e2) when e1 evaluates to ff (and analogously for or).

eval1 ≜ rec f1 (e1).match e1 with
const 7→ λb ′.{b ′}

and 7→ λe ′, e ′′.{x1 ← f1 e
′; y1 ← f1 e

′′; ↑1 match x1 with tt 7→ y1;ff 7→ ff}
or 7→ λe ′, e ′′.{x1 ← f1 e

′; y1 ← f1 e
′′; ↑1 match x1 with tt 7→ tt;ff 7→ y1}

eval2 ≜ rec f2 (e2).match e2 with
const 7→ λb ′. {b ′}

and 7→ λe ′, e ′′. {x2 ← f2 e
′; y2 ← (match x2 with tt 7→ f2 e

′′;ff 7→ {ff}); ↑1 y2}
or 7→ λe ′, e ′′. {x2 ← f2 e

′; y2 ← (match x2 with tt 7→ {tt};ff 7→ f2 e
′′); ↑1 y2}

The cost of interest here is the number of matches performed on bools, which is represented by a
↑1 after every match. One obvious relational property is that on the same bexpr, the cost of eval1 is
no less than the cost of eval2. This property can be established trivially in RC. Here, we define a
refinement noshort on bexprs, which ensures that the costs of eval1 and eval2 are equal and show
that this is actually the case.

∀e,b . noshort(e,b) ⇔ (∃b ′. e � const(b ′) ∧ b � b ′) ∨

(∃e1, e2,b . e � and(e1, e2) ∧ noshort(e1,tt) ∧ noshort(e2,b)) ∨
(∃e1, e2,b . e � or(e1, e2) ∧ noshort(e1,ff) ∧ noshort(e2,b))

In words, noshort(e,b) states that the bexpr e evaluates to the bool b, and short-cutting is inappli-
cable to the evaluation of e , since the left sub-expression of every nested łandž evaluates to tt, and
the left sub-expression of every nested łorž evaluates to ff.

We want to show that eval1 and eval2, when applied to the same bexpr e satisfying noshort(e,b),
have relative cost 0, and the result in each case is b. Formally:

⊢ eval1 : bexpr→ C(bool) ∼ eval2 : bexpr→ C(bool) | ∀e1, e2. e1 � e2 ⇒ ∀b . noshort(e1,b)
⇒ Cr (r1 e1, r2 e2, 0, r1.r2.r1 � r2 � b)

The proof is mostly synchronous and follows the structure of eval1 and eval2. It starts by applying
the RC rules R-LETREC and R-MATCH. The latter requires considering 9 cases (all possible pairs of bexpr
constructors), but because e1 � e2 is assumed, we immediately reduce to only 3 cases, where
the constructors on the two sides are the same. In the case e1 � e2 � const(b ′), we get from
the assumption noshort(e1,b) that b � b ′. We need to show ⊢ {b ′} : C(bool) ∼ {b ′} : C(bool) |
Cr (r1, r2, 0, r1.r2.r1 � r2 � b), which follows immediately by applying the rules R-MONAD and R-RET

and then switching to LC to show b � b � b ′.
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In the case e1 � e2 � and(e ′, e ′′), we have noshort(e ′,tt) and noshort(e ′′,b). By the IH on e ′

followed by Theorem 5.1, we get ⊢ f1 e
′ : C(bool) ∼ f2 e

′ : C(bool) | Cr (r1, r2, 0,x1.x2.x1 � x2 � tt).
By applying this result to the original goal, and reducing the inner match constructs (on x1 and x2)
in both functions, it remains to show ⊢ (y1 ← f1 e

′′; ↑1 y1) ÷ bool ∼ (y2 ← f2 e
′′; ↑1 y2) ÷ bool |

0 | r1 � r2 � b. This follows by the IH on e ′′. The case e1 � e2 � or(e ′, e ′′) is similar.

List length. Our next example is very simple. Its purpose is to demonstrate the use of asynchronous
(one-sided) rules in the monadic part of RC (the use of asynchronous rules in functional verification
is well-understood in prior work), and a situation where two expressions of different types need to be
related. Consider two implementations, length1 and length2, of the list length function. length1 is tail-
recursive, and uses a helper function lengthh , while length2 is the standard recursive implementation.

lengthh ≜ rec f1 (ℓ1).λn. match ℓ1 with nil 7→ {n}; cons 7→ λ_, t1. {x1 ← f1 t1 (n + 1); x1}

length1 ≜ λℓ. lengthh ℓ 0

length2 ≜ rec f2 (ℓ2).match ℓ2 with nil 7→ {0}; cons 7→ λ_, t2. {x2 ← f t2; ↑
1 x2 + 1}

length2 incurs a unit cost on every recursive call, while there is no such cost in lengthh ; the intent
is to model the number of allocated stack-frames. We want to show that the relative cost of length1
and length2 is determined by the length of the input list and, additionally, that both functions
implement the length function. To state our goal, we first define a list length predicate:

∀ℓ. Len(ℓ, 0) ⇔ ℓ � nil ∀ℓ,n. Len(ℓ,n + 1) ⇔ ∃h, t . ℓ � cons(h, t ) ∧ Len(t ,n)

Then, formally, we want to show:

⊢ length1 : list→ C(N) ∼ length2 : list→ C(N) | ∀ℓ1, ℓ2. ℓ1 � ℓ2 ⇒ ∀m. Len(ℓ1,m)

⇒ Cr (r1 ℓ1, r2 ℓ2,−m, r1.r2.r1 � r2 � m)

The cost part of this property means that the cost of length1 minus the cost of length2 is upper-
bounded by −m or, equivalently, the cost of length2 is lower-bounded by the cost of length1 plusm
(wherem is the length of the input list). Since length1 merely calls lengthh with second argument 0,
this can be easily reduced to showing:

⊢ lengthh : list→ N→ C(N) ∼ length2 : list→ C(N)
| ∀ℓ1, ℓ2,n. ℓ1 � ℓ2 ⇒∀m. Len(ℓ1,m) ⇒ Cr (r1 ℓ1 n, r2 ℓ2,−m, r1.r2.r1 � r2 + n � m + n)

Note that lengthh and length2 have different types. We first apply the RC rule R-LETREC, and then
the one-sided rule for λ (since lengthh has an extra λ). The latter rule is similar to R-LETREC-L, but
without the IH. Next, we apply the two-sided rule R-MATCH. Since ℓ1 � ℓ2 is assumed, we get
two cases in the proof. In the case ℓ1 � ℓ2 � nil, Len(ℓ1,m) forces m � 0. We need to show
⊢ {n} : C(N) ∼ {0} : C(N) | Cr (r1, r1, 0, r1.r2.r1 � r2 + n � 0 + n), which follows from the rules
R-MONAD, R-RET and reasoning in LC.
In the case ℓ1 � cons(h1, t1) and ℓ2 � cons(h2, t2), we have h1 � h2 and t1 � t2 (from ℓ1 � ℓ2),

and Len(t1,m
′) and Len(t2,m

′), for somem′ ∈ N s.t.m � m′ + 1. Then by IH we have:

⊢ f1 t1 (n + 1) : C(N) ∼ f2 t2 : C(N) | Cr (r1, r2,−m
′,x1.x2.x1 � x2 + (n + 1) � m′ + (n + 1))

Hence, by the rule R-BIND, it remains to show (under the assumption x1 � x2+ (n+1) � m′+ (n+1)):

⊢ x1 ÷ N ∼ ↑
1 x2 + 1 ÷ N | −1 | r1 � r2 + n � m + n

At this point, we apply the one-sided rule R-STEP-R (which is completely analogous to R-STEP-L) to
reduce the goal to ⊢ x1 ÷ N ∼ x2 + 1 ÷ N | 0 | r1 � r2 + n � m + n. This follows immediately by
the rule R-RET and reasoning in LC.
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Insertion sort. We perform a precise relational analysis of insertion sort. Insertion sort calls the
insert function for which we proved a unary property earlier. We use that property now. Hence,
this example demonstrates an interaction between relational and unary analysis in RC. The analysis
also relies on nontrivial functional properties of insertion sort itself.
The insertion sort function, isort, is defined below:

isort ≜ rec f (ℓ).match ℓ with nil 7→ {nil};
cons 7→ λh, t . {t ′ ← f t ; z ← insert h t ′; ↑1 z}

As for insert, the cost here is the number of recursive calls. Next, we define UnsortedDiff(ℓ1, ℓ2,n),
which means that the unsortedness of lists ℓ1 and ℓ2 (of the same length) differs by n. Note that
unsortedness of a single list was defined by the predicate Unsorted(ℓ,n) in the analysis of insert.

∀ℓ1, ℓ2,n. UnsortedDiff(ℓ1, ℓ2,n) ⇔ ∃u1,u2,m. Unsorted(ℓ1,u1) ∧ Unsorted(ℓ2,u2) ∧
n � u1 − u2 ∧ Len(ℓ1,m) ∧ Len(ℓ2,m)

Our goal is to show that if UnsortedDiff(ℓ1, ℓ2,n), then the relative cost of running isort on ℓ1
and ℓ2 is upper-bounded by n. To prove this, we need to show two additional functional properties:
(a) That isort produces a sorted list, and (b) For any y, the number of elements larger than y in the
input and output lists of isort is the same. Formally, we show that:

⊢ isort : list→ C(list) ∼ isort : list→ C(list) | ∀ℓ1, ℓ2,n. UnsortedDiff(ℓ1, ℓ2,n)
⇒ Cr (r1 ℓ1, r2 ℓ2,n, r1.r2.ϕ)

where ϕ ≜ Sorted(r1) ∧ Sorted(r2) ∧ (∀y,q. LargerThan(y, ℓ1,q) ⇒ LargerThan(y, r1,q)) ∧
(∀y,q. LargerThan(y, ℓ2,q) ⇒ LargerThan(y, r2,q))

The proof starts by applying the RC rule R-LETREC, which introduces the induction hypothesis,
and then R-MATCH, which causes a case analysis on the input lists. Since the lists have the same
length (by assumption UnsortedDiff(ℓ1, ℓ2,n)), we need to consider only the cases when either
both lists are nil or both have at least one element. The first case is straightforward. In the second
case, ℓ1 � cons(h1, t1) and ℓ2 � cons(h2, t2). The definition of UnsortedDiff yields u1,u2 such
that n � u1 − u2, Unsorted(ℓ1,u1) and Unsorted(ℓ2,u2). The definition of Unsorted now yields
u1 � n′1 + u ′1, u2 � n′2 + u ′2, LargerThan(h1, t1,n

′
1), Unsorted(t1,u

′
1), LargerThan(h2, t2,n

′
2), and

Unsorted(t2,u
′
2) for someu ′1,n

′
1,u
′
2,n
′
2. Further, we also have UnsortedDiff(t1, t2,n

′), s.t.n′ � u ′1−u
′
2,

and Len(t1,m
′) and Len(t2,m

′), wherem � m′ + 1. Hence, from the IH we get:

⊢ f1 t1 : C(list) ∼ f2 t2 : C(list) | Cr (r1, r2,n
′, t ′1.t

′
2.ϕ
′)

for ϕ ′ ≜ ϕ[t1/ℓ1][t2/ℓ2][t
′
1/r1][t

′
2/r2]. From this ϕ ′ we have Sorted(t ′1) and LargerThan(h1, t

′
1,n
′
1).

Applying these to the unary property we proved for insert earlier, we get:

⊢ insert h1 t
′
1 : C(list) | Cu (r,n

′
1,n
′
1, z.Sorted(z) ∧ ∀y,q. LargerThan(y, cons(h1, t

′
1),q)

⇒ LargerThan(y, z,q))

and a similar property for insert h2 t
′
2. Next, we combine these two unary properties of insert into a

relational property using the admissible RC rule R-SPLIT:

⊢ insert h1 t
′
1 : C(list) ∼ insert h2 t

′
2 : C(list) | Cr (r1, r2,n

′
1 − n

′
2, z1.z2.ϕ

′′)

whereϕ ′′ ≜ Sorted(z1) ∧ Sorted(z2) ∧ ∀y,q. LargerThan(y, cons(h1, t ′1),q) ⇒ LargerThan(y, z1,q)
∧ ∀y,q. LargerThan(y, cons(h1, t ′2),q) ⇒ LargerThan(y, z2,q).
Note that the additional property ϕ ′ obtained for (a recursive call to) isort enabled us to de-

rive the results for insert. Without this, we would not have been able to derive Sorted(t ′i ) and
LargerThan(hi , t

′
i ,n
′
i ) from Sorted(ti ) and LargerThan(hi , ti ,ni ) (for i ∈ {1, 2}). In turn, the addi-

tional property ϕ ′′ of insert obtained above is required to show ϕ.
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To close the proof, we apply R-BIND twice and use subsumption with n′+n′1 +n
′
2 + 0 ≤ n, reducing

the goal to ⊢ ↑1 z1 ÷ list ∼ ↑1 z2 ÷ list | 0 | ϕ. The cost part follows trivially from the rules R-STEP

and R-RET. Showing ϕ needs additional reasoning in LC; we defer the details to the appendix.

7 EMBEDDING OF RELCOST

Next, we show that RC/UC can be used asmeta frameworks to embed other cost analyses. This section
shows an embedding of RelCost, while Section 8 shows an embedding of RAML. RelCost [Çiçek
et al. 2017] is a type-and-effect system for unary and relational cost analysis. It includes lightweight
refinements, also known as index refinements, in the style of DML [Xi and Pfenning 1999]. Many
examples, including all examples presented in the paper so far, cannot be verified in RelCost since
its index refinements are not expressive enough. We now present an embedding of RelCost in
UC/RC, thus establishing that RelCost’s approach is strictly less expressive than ours. We restrict
our attention to a core of RelCost with non-recursive functions and lists at base types; this suffices
to explain all the key ideas.

RelCost’s types and selected typing rules are shown in Figure 7. RelCost has unary types A (for
unary expressions and their costs), and relational types τ (for pairs of expressions and their relative
cost). The only data type supported by RelCost is primitive lists. Unary types are mostly standard,
except for the annotation exec(k, ℓ) on the arrow- and universal-types that represents lower and
upper bounds, k and ℓ respectively, on the cost of the body of the closure. The index n on the list
type is the length of the list. The relational type intr is the diagonal relation on integers. The n in
the annotation diff(n) on the arrow- and universal-types in the relational types is an upper bound
on the relative cost of the two closures. The annotation α on list types is an upper bound on the
Hamming distance of the two lists. The relational type UA contains pairs of arbitrary elements of
unary type A, while □τ is the diagonal subrelation of τ . Quantifiers range over index variables i ,
which are distinct from (program) expressions e . Expressions are standard; they have a call-by-value
semantics. Cost is incurred only at elimination constructs like function application.
There are two typing judgments in RelCostÐone unary (∆;Φ;Ω ⊢ℓ

k
e : A) and one relational

(∆;Φ; Γ ⊢ e1 ⊖ e2 ≲ n : τ ). In both judgments, ∆ is an environment for index variables, and Φ

are assumed constraints over the index variables. The unary judgment states that, under a unary
typing environment Ω, e has type A, and its execution cost is lower- and upper-bounded by k

and ℓ, respectively. The relational judgment states that, under a relational typing environment Γ,
expressions e1 and e2 have the relational type τ , and their relative cost is at most n. The function τ
embeds relational types into unary types. (RelCost uses the notation | · | for this function; we use a
different notation to avoid confusion with the erasure function below.) Constants like capp in the
rules represent the costs of individual reductions, e.g., function application.

Our embedding of RelCost consists of several translations, shown in Figure 8. We describe these
translations below.

Type translation. We first define an erasing type translation that removes all refinement and
effect annotations from RelCost’s types, yielding simple types. This translation, written | · | for the
unary types and ∥·∥ for the relational types, follows the standard embedding of call-by-value in a

monadic type system [Moggi 1991], e.g., A1

exec(k, ℓ)
−−−−−−−→ A2 translates to |A1 | → C( |A2 |). We assume

that our language has a type unit and a family of list types, listσ , both of which can be defined as
inductive data types.

Expression translation. Following the standard embedding of call-by-value in a monadic type
system, we translate a RelCost expression of type A to a pure expression of type C( |A|). To capture
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A ::= int | list[n] A | A1
exec(k, ℓ)
−−−−−−−→ A2 | ∀i

exec(k, ℓ)
:: S . A Unary types

τ ::= intr | list[n]
α τ | τ1

diff(n)
−−−−−→ τ2 | ∀i

diff(n)
:: S . τ | UA | □τ Relational types

∆;Φ;Ω ⊢ℓ
k
e : A Unary typing judgment

Ω(x ) = A

∆;Φ;Ω ⊢00 x : A

∆;Φ;Ω,x : A1 ⊢
ℓ
k e : A2

∆;Φ;Ω ⊢00 λx . e : A1
exec(k, ℓ)
−−−−−−−→ A2

∆;Φ;Ω ⊢ℓ1
k1

e1 : A1
exec(k, ℓ)
−−−−−−−→ A2 ∆;Φ;Ω ⊢ℓ2

k2
e2 : A1

∆;Φ;Ω ⊢
ℓ1+ℓ2+ℓ+capp

k1+k2+k+capp
e1 e2 : A2

∆;Φ; Γ ⊢ e1 ⊖ e2 ≲ n : τ Relational typing judgment

Γ(x ) = τ

∆;Φ; Γ ⊢ x ⊖ x ≲ 0 : τ

∆;Φ;x : τ1, Γ ⊢ e1 ⊖ e2 ≲ n : τ2

∆;Φ; Γ ⊢ λx . e1 ⊖ λx . e2 ≲ 0 : τ1
diff(n)
−−−−−→ τ2

∆;Φ; Γ ⊢k1
ℓ1
e1 : A ∆;Φ; Γ ⊢k2

ℓ2
e2 : A

∆;Φ; Γ ⊢ e1 ⊖ e2 ≲ ℓ1 − k2 : UA

i,∆;Φ; Γ ⊢ e1 ⊖ e2 ≲ n : τ

∆;Φ; Γ ⊢ Λe1 ⊖ Λe2 ≲ 0 : ∀i
diff(n)
:: S . τ

∆;Φ; Γ ⊢ e ⊖ e ≲ n : τ ∀x ∈ dom(Γ). ∆;Φ ⊨ Γ(x ) ⊑ □Γ(x )

∆;Φ; Γ, Γ′ ⊢ e ⊖ e ≲ 0 : □τ

∆;Φ; Γ ⊢ e ⊖ e ′ ≲m : listτ ′[n]
α ∆;Φ ∧ n = 0; Γ ⊢ e1 ⊖ e

′
1 ≲m′ : τ

i,∆;Φ ∧ n = i + 1; Γ,h : □τ ′, t : listτ ′[i]
α ⊢ e2 ⊖ e

′
2 ≲m′ : τ

i, β,∆;Φ ∧ n = i + 1 ∧ α = β + 1; Γ,h : □τ ′, t : listτ ′[i]
β ⊢ e2 ⊖ e

′
2 ≲m′ : τ

∆;Φ; Γ ⊢ case e of nil→ e1 | h :: t → e2 ⊖ case e ′ of nil→ e1 | h :: t → e2 ≲m +m′ : τ

Fig. 7. RelCost: Types and selected typing rules

costs from RelCost’s semantics, cstep annotations are added to elimination constructs. We denote
this translation L·M. Representative clauses are shown in Figure 8.

Unary refinements. To capture RelCost’s unary refinements, we define a translation ⌊·⌋ from unary
types into LC assertions. ⌊A⌋ is a predicate on expressions, which holds at e when e satisfies the
refinement inherent in A. To handle list lengths, we axiomatically define the predicate listUA (e,n)

which means that list e has length n. The interesting clause is that for function typesA1
exec(k, ℓ)
−−−−−−−→ A2,

where the cost bounds k, ℓ are represented through a monadic refinement Cu (x y,k, ℓ, r._).

Relational refinements. Like unary refinements, we capture relational refinements by a translation
T·U from relational types to LC assertions. TτU is a binary relation on expressions that holds at
(e1, e2) when this pair of expressions satisfies the relational refinement inherent in τ . To capture
the list refinements for length and Hamming distance, we define a predicate listRτ (e1, e2,n,a)

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 36. Publication date: January 2018.



Monadic Refinements for Relational Cost Analysis 36:21

Erasing translation from RelCost types to simple types

|int| ≜ ∥intr ∥ ≜ Z |list[n] A| ≜ list |A | ∥list[n]α τ ∥ ≜ list∥τ ∥

|A1

exec(k, ℓ)
−−−−−−−→ A2 | ≜ |A1 | → C( |A2 |) ∥τ1

diff(n)
−−−−−→ τ2∥ ≜ ∥τ1∥ → C(∥τ2∥) ∥UA∥ ≜ |A|

|∀i
exec(k, ℓ)

:: S . A| ≜ unit→ C( |A|) ∥∀i
diff(n)
:: S . τ ∥ ≜ unit→ C(∥τ ∥) ∥□τ ∥ ≜ ∥τ ∥

|x1 : A1, . . . ,xn : An | ≜ x1 : |A1 |, . . . ,xn : |An |

∥x1 : τ1, . . . ,xn : τn ∥ ≜ x11 : ∥τ1∥,x
2
1 : ∥τ1∥ . . . ,x

2
n : ∥τn ∥,x

2
n : ∥τn ∥

Expression translation (selected clauses)

LxM ≜ {cret(x )} Lλx . eM ≜ {cret(λx . LeM)}

Le1 e2M ≜ {cbind(Le1M, {x }. cbind(Le2M, {y}. cbind(x y, {z}. cstepcapp (cret(z)))))}

Translation of unary refinements (selected clauses)

∀ℓ. listUA (ℓ, 0) ⇔ ℓ � nil

∀ℓ,n. listUA (ℓ,n + 1) ⇔ ∃h, t . ℓ � cons(h, t ) ∧ ⌊A⌋ (h) ∧ listUA (t ,n)

⌊int⌋ (x ) ≜ ⊤ ⌊list[n] A⌋ (x ) ≜ listUA (x ,n)

⌊A1

exec(k, ℓ)
−−−−−−−→ A2⌋ (x ) ≜ ∀y. ⌊A1⌋ (y) ⇒ Cu (x y,k, ℓ, r.⌊A2⌋ (r))

⌊x1 : A1, . . . ,xn : An⌋ ≜ ⌊A1⌋ (x1), . . . , ⌊An⌋ (xn )

Translation of relational refinements (selected clauses)

∀ℓ1, ℓ2,a. listRτ (ℓ1, ℓ2, 0,a) ⇔ ℓ1 � ℓ2 � nil

∀ℓ1, ℓ2,n,a. listRτ (ℓ1, ℓ2,n + 1,a) ⇔ ∃h1,h2, t1, t2. ℓ1 � cons(h1, t1) ∧ ℓ2 � cons(h2, t2)
∧ TτU(h1,h2) ∧ ((h1 � h2 ∧ listRτ (t1, t2,n,a))
∨ (a > 0 ∧ ∃b . a = b + 1 ∧ listRτ (t1, t2,n,b)))

TintrU(x ,y) ≜ x � y Tlist[n]α τU(x ,y) ≜ listRτ (x ,y,n,α )

Tτ1
diff(n)
−−−−−→ τ2U(x ,y) ≜ ⌊τ1

exec(0,∞)
−−−−−−−→ τ2⌋ (x ) ∧ ⌊τ1

exec(0,∞)
−−−−−−−→ τ2⌋ (y) ∧

(∀x1,x2. Tτ1U(x1,x2) ⇒ Cr (x x1,y x2,n, r1.r2.Tτ2U(r1, r2)))

TUAU(x ,y) ≜ ⌊A⌋ (x ) ∧ ⌊A⌋ (y) T□τU(x ,y) ≜ x � y ∧ TτU(x ,y)

Tx1 : τ1, . . . ,xn : τnU ≜ Tτ1U(x
1
1 ,x

2
1 ), . . . ,TτnU(x

1
n ,x

2
n )

Fig. 8. Embedding of RelCost in UC/RC
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axiomatically. The predicate means that the lists e1, e2 each have length n and their Hamming
distance is at most a.

The translations | · |, ∥·∥, ⌊·⌋ and T·U lift to contexts straightforwardly (see Figure 8). The relational
translations ∥·∥ and T·U actually duplicate the variables in the context by systematic renamingÐ
each variable x is replaced by x1 and x2. This cosmetic change is necessary because in RelCost’s
relational judgment, the related expressions share free variables, while this is not the case in RC.
Our main theorem is that this translation is sound. The translation also captures the intent of

RelCost’s type systemÐRelCost’s soundness theorems can be derived as corollaries to this theorem
by first showing that the costs of evaluating an expression e in RelCost and forcing LeM in our
language are equal.

Theorem 7.1 (Soundness). The following hold.

(1) If ∆;Φ;Ω ⊢ℓ
k
e : A in RelCost, then |Ω |,∆;Φ, ⌊Ω⌋ ⊢ LeM : C( |A|) | Cu (r,k, ℓ, r.⌊A⌋ (r)) in UC.

(2) If ∆;Φ; Γ ⊢ e1 ⊖ e2 ≲ n : τ in RelCost, then ∥Γ∥,∆;Φ,TΓU ⊢ Le1M1 : ∥τ ∥ ∼ Le2M2 : ∥τ ∥ |

Cr (r1, r2,n, r1.r2.TτU(r1, r2)) in RC, where Lei Mi is a copy of Lei M where each variable x is

replaced by a variable x i , for i ∈ {1, 2}.

Remark. Aguirre et al. [2017b] present a translation of RelCost directly into RHOL. However,
since RHOL lacks a specific treatment of cost, that translation encodes an expression’s cost as
a second output of the expression, resulting in a substantially more complex encoding and one
in which the cost is an ordinary value, not an effect. Our translation keeps costs and program
values separate and it is much simpler. Nonetheless, our method of translating simple types and
refinements separately from each other owes lineage to this work.

8 EMBEDDING OF AMORTIZED COST ANALYSIS

Amortized cost analysis is a specific style of cost verification that proceeds by associating potentials
with a program’s inputs and paying for the program’s costs from these potentials. The cost of a
program is upper-bounded by the difference between the potentials associated with its inputs and
the (remaining) potential associated with its outputs. Static, unary amortized analysis has been
implemented in Resource-aware ML (RAML) [Hoffmann 2011; Hoffmann et al. 2012]. Here, we
describe an embedding of a core calculus behind RAML (a fragment of the calculus of Hoffmann
[2011]) into UC. This translation is particularly interesting because RAML is an affine type system,
while UC has no support for counting variable use. Consequently, our embedding enforces affineness
through refinements. We limit ourselves to the analysis of additive costs (since UC supports only
those6) and to structurally recursive functions. To simplify the presentation, we consider only one
data structureÐlists, and we consider only so-called linear potentials, where the potential associated
with every element of a list is a constant.7 This fragment suffices to explain the key ideas.

Figure 9 shows the syntax and typing rules of the fragment of RAML we consider. A program P is
a list of (first-order) functions f1, . . . , fn , each with a body efi and a formal parameter yfi . We allow
efi to apply fi (recursion) but on arguments strictly smaller than yfi . Expressions e are constants,
function applications, and list operations (nil, cons, match . . . with . . .). Types A are either int or
Lq (A), which ascribes lists over A, with potential q associated to every element. In function types

F ::= A1

q/q′

−−−→ A2, the annotation q is a constant potential before a call to the function and q′ is
a constant potential after the function ends. The language has standard call-by-value semantics.

6RAML supports the analysis of non-additive costs, e.g., the space needed to run a program. Section 9 explains how UC and

the embedding described here can be extended to such costs.
7This restriction is not fundamental. Our translation can be extended to RAML’s tree types and its polynomial and

multi-variate potentials.
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Expressions and types

Expressions e ::= x | n | f (x ) | let x ← e1 in e2 | nil |
cons(xh ,xt ) | match x with nil 7→ e1 |cons(xh ,xt ) 7→ e2

Programs P ::= (ef1 ,yf1 ), . . . , (efn ,yfn )

Types A ::= int | Lq (A)

Function types F ::= A1

q/q′

−−−→ A2

Typing rules (selected)

Σ;x : B ⊢
q+K var

q x : B
L:Var

Σ; Γ1 ⊢
q−K let

1
p e1 : A Σ; Γ2 ⊢

p−K let
2

q′+K let
3

e2 : B

Σ; Γ1, Γ2 ⊢
q

q′ let x ← e1 in e2 : B
L:Let

A
q/q′

−−−→ B ∈ Σ( f )

Σ;x : A ⊢
q+K

app
1

q′−K
app
2

f (x ) : B

L:App

Σ;xh : A,ht : L
p (A) ⊢

q+p+K cons

q cons(xh ,xt ) : L
p (A)

L:Cons

Σ; Γ ⊢
q−KmatN

1

q′+KmatN
2

e1 : B Σ; Γ,xh : A,xt : L
p (A) ⊢

q+p−KmatC
1

q′+KmatC
2

e2 : B

Σ; Γ,x : Lp (A) ⊢
q

q′ match x with nil 7→ e1 |cons(xh ,xt ) 7→ e2 : B
L:MatL

Σ; Γ,x : A1,y : A2 ⊢
q

q′ e : B A . (A1,A2)

Σ; Γ, z : A ⊢
q

q′ e[z/x][z/y] : B
L:Share

Σ; Γ ⊢
p

p′ e : B

q ≥ p q − p ≥ q′ − p ′

Σ; Γ ⊢
q

q′ e : B
L:Relax

Fig. 9. RAML syntax and typing rules

The language also has a cost semantics where every operation is assumed to incur some cost. For
example, evaluation of a variable (substituted by a value) incurs cost Kvar , while evaluation of
let x ← e1 in e2 incurs cost K

let
1 before starting e1, cost K

let
2 between e1 and e2 and cost K let

3 after e2,

for a total cost of K let
1 + K

let
2 + K

let
3 .

The potential of a value a of type A, denoted Φ(a : A) is defined as follows:

Φ(n : int) ≜ 0 Φ([a1; · · · ;an] : L
q (A)) ≜ q · n +

∑

1≤i≤n

Φ(ai : A)

RAML’s main typing judgment is Σ; Γ ⊢
q

q′ e : A. Here, Σ assigns nonempty sets of function types

F to functions identifiers f (each f can have many function types, but they can differ only in the
potential annotations q/q′) and Γ assigns types A to variables x . The judgment informally says that
for any closing substitution γ for Γ, Φ(γ : Γ) + q units of potential are enough to evaluate eγ and if
eγ evaluates to a value a, then q′ + Φ(a : A) potential will be left. Here, Φ(γ : Γ) is defined as the
sum of the potentials of values in the range of γ .
Some interesting typing rules are shown in Figure 9. For space reasons, we do not explain the

rules in detail here, but we note that the type system is affineÐvariables must be used at most once,
but they can be duplicated explicitly using the rule L:Share. Such duplication splits the potential of
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Erasing translation from RAML types to simple types

|int| ≜ int |Lq (A) | ≜ list |A | |A1

q/q′

−−−→ A2 | ≜ |A1 | → C( |A2 |)

Expression translation (selected)

LxM ≜ {cstepK var (cret(x ))} Lf (x )M ≜ {cbind( f x , {r }. cstepK app
1 +K

app
2

(cret(r )))}

Llet x ← e1 in e2M ≜ {cbind(Le1M, {x }. cbind(Le2M, {r }. cstepK let
1 +K

let
2 +K

let3 (cret(r ))))}

Predicate Φ̃A (e,p) that encodes potentials

∀x ,p. Φ̃int (x ,p) ⇔ p � 0 ∀x ,p. Φ̃Lq (A) (x ,p) ⇔

(p � 0 ∧ x � nil) ∨
(∃h, t ,ph ,pt . x � cons(h, t ) ∧ Φ̃A (h,ph )

∧ Φ̃Lq (A) (t ,pt ) ∧ p � q + ph + pt )

Translations for contexts

|x1 : A1, . . . ,xn : An | ≜ x1 : |A1 |,x
p
1 : R∞, . . . ,xn : |An |,x

p
n : R∞

⌊x1 : A1, . . . ,xn : An⌋ ≜ Φ̃A1
(x1,x

p
1 ), . . . , Φ̃An (xn ,x

p
n )

|Σ| ≜ { f : |F | | for all f ∈ dom(Σ) and some F ∈ Σ( f )}

⌊Σ⌋ ≜ {⌊F ⌋ ( f ) | for all f ∈ dom(Σ) and all F ∈ Σ( f )}

Predicate over function types, that relates potentials to costs

⌊A1

q/q′

−−−→ A2⌋ ( f ) ≜ ∀y : |A1 |. ⊤ ⇒ ∀y
p : R+. Φ̃A1

(y,yp ) ⇒

∃pr . Cu ( f y, 0,y
p
+ q − q′ − pr , r.Φ̃A2

(r,pr ))

Fig. 10. Embedding of RAML in UC

the duplicated variable among the duplicates (using the relation .). This affineness is essential,
since re-use of variables would increase input potential, which would make the analysis unsound.

Translation. Figure 10 summarizes our translation of RAML. The translation is quite similar
to RelCost’s translation in that it also follows the standard idea of embedding call-by-value in
a monadic type system. We first define an erasing translation | · | from RAML types to simple

types. This translation maps A1

q/q′

−−−→ A2 to |A1 | → C( |A2 |). Next, we define a translation LeM of
expressions that maps an expression of type A to a pure expression of type C( |A|). This translation
adds appropriate cstep annotations to induce costs according to RAML’s cost semantics. RAML
programs, which are lists of function definitions, compile to lists of functions in the obvious way.

The key novelty lies in how we encode potentials and relate them to costs. To encode potentials,

we axiomatically define a predicate Φ̃A (e,p) in LC. This predicate means that e (of type |A|) has
potentialp. The definition is straightforward and follows the definition of RAML’s potential function
Φ shown earlier. Using this predicate, we can define translations of contexts. The key idea is that
for every variable x : A in the RAML context, we introduce a new variable xp of type R∞ that

represents x ’s potential, and assume that the two are related by Φ̃A (x ,x
p ). Finally, we define a
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predicate ⌊A1

q/q′

−−−→ A2⌋ ( f ) on functions that captures the relation between potentials and the cost
of f ’s body. This predicate can be best understood as an internalization of the soundness property
of our translation, which we show next.

Theorem 8.1 (Soundness). If Σ; Γ ⊢
q

q′ e : A in RAMLwith additive costs only, then |Σ|, |Γ |; ⌊Σ⌋, ⌊Γ⌋ ⊢

LeM : C( |A|) | ∃pr . Cu (r, 0, Φ̃(Γ) + q − q
′ − pr , r.Φ̃A (r,pr )) in UC, where Φ̃(Γ) ≜

∑

x ∈dom(Γ) x
p is the

sum of all potential variables in the context.

The theorem states that the cost of the monadic expression in LeM is upper-bounded by the

difference in the input potential (Φ̃(Γ) + q) and the output potential (pr + q
′). This is exactly the

intuition behind RAML’s typing judgment. In fact, the soundness of RAML’s typing judgment can
be derived as a corollary to this theorem and the set-theoretic soundness of UC.

Value-dependent potentials. Many examples of amortized analysis require the potential associated
with an element to depend on its value. RAML cannot handle many such examples since it does
not have refinements. However, such examples can be analyzed in UC using a coding of potentials
similar to that in the embedding of RAML. We show here one such example, which generalizes the
binary counter of Section 6. Consider a fixed-width counter that counts in an arbitrary base D ≥ 2

(D is a variable parameter, not a fixed constant). The counter is represented as a list of primitive
integers (type Z), representing individual digits of the counter with the least significant digit at the
head. It is an invariant that the integers range from 0 to D − 1 only. We define a function incg that
increments the counter once and a function rinc that increments the counter k times, where k is an
input of type nat (which is defined as nat = 0() + S (nat)) by iterating incg k times.

list = nil() + cons(Z × list)

incg : list→ C(list)

incg ≜ rec f (ℓ). match ℓ with
nil 7→ {nil};
cons 7→ λx , t . if x < D − 1 then {↑1 (x + 1) :: t } else {t ′ ← f t ; ↑1 0 :: t ′}

rinc : nat→ list→ C(list)

rinc ≜ rec f (k ).λℓ. match k with 0 7→ {ℓ}; S 7→ λk ′. {ℓ′ ← incg ℓ; ℓ′′ ← f k ′ ℓ′; ℓ′′}

The cost of interest is the number of changes to digits, indicated by a unit cost ↑1 whenever we
change a digit in incg. Our goal is to show that, assuming the counter starts with all digits 0, the
cost of (rinc k ) is no more than D

D−1
k . Informally, the result follows from the observation that the

least significant digit changes at every increment, the second digit changes every D increments and

so on. So, the total cost is no more than k + k
D
+

k
D2 + . . . =

D
D−1

k . Formally, this can be established

by associating a potential of i
D−1

to a digit if its current value is i . Note that this potential is
value-sensitiveÐit depends on i . If we were unable to capture this value-sensitivity in the potential
(as would be the case in RAML), then the best bound we would obtain is O (l · k ), where l is the
width of the counter.8

We define the predicate Φ(ℓ,n) to mean that the counter ℓ has total potential n:

Φ(ℓ,n) ⇔ (ℓ � nil ∧ n � 0) ∨ (∃t , i,n′. ℓ � cons(i, t ) ∧ Φ(t ,n′) ∧ n � n′ + i
D−1
∧ i ≤ D − 1)

8If D is not a parameter but a hard-coded number, then this example can be coded in RAML by defining a datatype that

explicitly enumerates all D values of the digit. For example, for D = 3, one defines a datatype Three = zero | one | two and

then uses a list over the type Three to represent the counter. RAML is then able to perform a precise analysis.
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Then, we show the following two claims (we assume an implicit coercion from nat to R∞).

⊢ inc : list→ C(list) | ∀ℓ,n. Φ(ℓ,n) ⇒ ∃n′. Cu (r ℓ, 0,n +
D

D−1
− n′, r.Φ(r,n′))

⊢ rinc : nat→ list→ C(list) | ∀k,n, ℓ. Φ(ℓ,n) ⇒ ∃n′. Cu (r k ℓ, 0,
D

D−1
k + n − n′, r.Φ(r,n′))

In words, the claims state that a single increment has cost at most n + D
D−1
−n′, and k increments

have cost at most D
D−1

k +n−n′, where n is the potential of the input counter, and n′ is the potential
of the output counter. If the counter starts from 0, then n = 0, so the latter also implies that the
cost of k increments is at most D

D−1
k − n′ ≤ D

D−1
k , as required. (The lower bound is 0 here only for

simplicity; we can also show a tighter bound.)
While we defer a full proof to the appendix, we sketch here an informal proof of incg when

ℓ � x :: t (the case ℓ � nil is trivial). When x < D − 1, the potential of ℓ is n (by assumption), that
of t is n − x

D−1
, and that of the resulting list (x + 1) :: t is n − x

D−1
+

x+1
D−1
= n + 1

D−1
. Hence, the

established cost is n + D
D−1
− (n + 1

D−1
) = 1, which is exactly the number of digit changes. When

x � D − 1, the potential of ℓ is n (by assumption), and that of t is n − D−1
D−1
= n − 1. Then, by the

inductive hypothesis, incrementing t has cost n − 1 + D
D−1
− n′ = n + 1

D−1
− n′, where n′ is the

recursive call’s result potential, which is also the potential of the overall result (since the result’s
leading digit is 0). The total cost is (n + 1

D−1
− n′) + 1 = n + D

D−1
− n′, as required.

9 POSSIBLE EXTENSIONS

We discuss preliminary ideas for extensions to our framework that we plan to work on in the future.
We expect these extensions to be significant and technically nontrivial in the details, and all claims
in this section are currently conjectural.

Non-additive costs. Currently, our development draws costs from R∞ and our forcing semantics
add costs along sequential execution. Some resources like memory can be re-used and do not fit this
additive model. For example, if an expression frees some of the memory that it uses, then the next
expression can re-use that freed memory. So the memory needed for the first expression should
not simply be added to the memory needed for the second expression, as this would result in a
very pessimistic upper-bound on the total amount of needed memory. Our current development
cannot represent such non-additive costs precisely.

RAML [Hoffmann 2011; Hoffmann et al. 2012] includes an elegant, compositional way of handling
non-additive costs via the method of potentials. This generalizes the additive fragment of RAML
we covered in Section 8. Briefly, the cost of a program expression is represented by a pair of
non-negative numbers (q,q′), where q is the incoming potential (e.g., the amount of available
memory) and q′ is the outgoing potential. q − q′ represents the net consumption of resources by
the expression. This number may be negative when the expression frees more resources than it
consumes. q itself is an upper bound on the resources needed to run the expression, akin to the
upper bound on the cost in our current model. The remarkable fact about such costs (q,q′) is that
they form a monoid where the monoid operation · is defined as:

(q,q′) · (p,p ′) =

{

(q + p − q′,p ′) if q′ ≤ p

(q,q′ − p + p ′) if q′ > p

RAML’s cost semantics counts costs by applying · along the program’s sequential execution (much
as our forcing semantics counts costs by applying + along monadic binds).
We expect that UC can be generalized to reason about unary non-additive costs by noting that

its rules work for any monoid, not just (R∞, 0,+). In particular, it should be feasible to replace
(R∞, 0,+) with the RAML monoid M = (Q+0 × Q

+

0 , (0, 0), ·) defined above. (Q+0 is the set of non-
negative rationals, which RAML uses to represent potentials.) We would also need an ordering
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relation (q,q′) ≤ (p,p ′) on the monoidM for use in weakening/subsumption of costs (e.g., the rule

U-SUBM1), and in the definition of Cu. This relation can be defined as (q,q′) ≤ (p,p ′) ≜ (q ≤ p) ∧

(q − q′) ≤ (p − p ′). With this change of monoid, we should be able to reason about non-additive
costs in UC. Further, we conjecture that our embedding of RAML with only additive costs from
Section 8 will extend to RAML with non-additive costs using this monoid.
In the context of relational cost analysis (i.e., RC), good reasoning principles for non-additive

costs are unclear. The key difficulty is that a precise relational cost analysisÐone that exploits
program/input similarityÐseems to require a notion of difference of costs (not just accumulation
of costs via + or ·), but it is unclear how difference can be defined for the monoid M above. We
believe that fundamentally new ideas will be needed in this space.

Mutable state. Our current framework, like the framework RHOL/UHOL [Aguirre et al. 2017b] it
builds on, does not support mutable state. However, we believe that it is possible to extend both
the underlying framework (without costs) and our development (with costs) to stateful programs.

For instance, the underlying unary framework UHOL (without costs) could be extended to state

by defining a state-passing monad S(τ ) within the framework as S(τ ) ≜ S → (τ × S ), where S is
the type of the mutable state. The standard Hoare triple {Θ}e{x .Θ′(x )} could be represented as
the logical refinement assertion ∀s : S . Θ(s ) ⇒ Θ′(π1 (e s )) (π2 (e s )). Here, x (of type τ ) represents
the expression returned by the monadic computation, and Θ and Θ′(x ) are assertions on the state
s , representing the pre-condition and the post-condition of e , respectively. We conjecture that
the standard rules of Hoare logic should then be derivable within UHOL and that this idea can
be further generalized to the relational framework RHOL by replacing Θ and Θ′ with relational
assertions on pairs of states as in Relational Hoare Type Theory (RHTT) [Nanevski et al. 2013].

The same state-passing monad, when defined in UC and RC, should allow reasoning about costs
of stateful programs, as long as the reasoning does not require predicates that range over both cost
and state (since they would be in separate monads). However, Carbonneaux et al. [2015] show that
predicates that range over both cost and state are, in fact, quite useful. They present a logic (for a
C-like language) where potentials can be associated with the current state. Their triples have the
form {Θ; P }e{Θ′;Q }, whereΘ andΘ′ are the standard pre- and post-conditions of e , and P andQ are
functions from the initial and final states to the initial and final potentials, respectively. The unary
cost of e is, as usual, upper-bounded by P (s ) −Q (s ′), where s and s ′ are the initial and final states,
respectively. Note that, here, P and Q relate state and cost (potentials) to each other. We believe
that the fragment of this logic with only additive costs and only structured control flow can be
embedded in UC by defining a different monad SC(τ ) that includes both state and cost. Briefly, we

could define SC(τ ) ≜ S → C(τ × S )Ðcomputations that take a state, and return a result and a state,
and a cost on the side. We conjecture that the triple {Θ; P }e{Θ′;Q } should then be representable as
the logical assertion ∀s p. (Θ(s ) ∧ P (s ) � p) ⇒ ∃q. Cu (e s, 0,p − q,x .(Θ

′(π2 (x )) ∧ Q (π2 (x )) � q))

and that the rules of Carbonneaux et al. [2015]’s logic pertaining to state should be derivable in
UC. (Carbonneaux et al. [2015] also consider loop breaks and return-in-the-middle of functions.
Encoding these constructs in a functional language would need additional ideas.) Further, it might
be feasible to generalize the development to non-additive costs using the RAML monoid described
earlier, and to extend the development to the relational cost analysis of stateful programs in RC.

Nonterminating programs. Another limitation we inherit from RHOL/UHOL is that all expressions
must be terminating. This is needed to give RHOL/UHOL (and our cost monad) a simple semantics in
set theory. However, this limitation does not seem to be fundamental. In recent work [Aguirre et al.
2017a], a subset of the authors of this paper (and others) have re-worked a version of RHOL/UHOL
based on the guarded λ-calculus [Clouston et al. 2016] and a model in the topos of trees, which
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generalizes sets. This version supports infinite computations, including computations over infinite
streams, and allows proving properties of all finite prefixes of the computations. Even though the
syntax and the model are different, the proof rules are very similar to those of RHOL/UHOL over
set theory. We believe that adding a cost monad to this modified framework should be feasible and
should allow proving upper bounds on all finite approximations of an infinite computation.

10 RELATED WORK

Static cost analysis, using type systems or other methods, is a very widely studied topic. Danielsson
[2008] performs unary cost analysis by embedding a cost monad in Agda. In principle, this approach
can exploit Agda’s rich dependent types for cost analysis, much as we exploit logical assertions.
However, Danielsson’s focus is exclusively on lazy data structures in a sharing semantics and the
design is limited to unary cost analysis. UC supports similar unary analysis over lazy data structures,
and RC additionally supports analysis of relational lazy costsÐour appendix has examples of both.
Grobauer [2001] interprets a cost monad in the refinement type system DML [Xi and Pfenning

1999] by cost passing, much as we interpret our language in set-theory, and shows how to extract
recurrence relations for unary costs of recursive functions. TiML [Wang et al. 2017] is a DML-based
type-and-effect system for unary cost analysis. TiML has been used to verify examples where cost
depends on data structure-size invariants. However, neither Grobauer [2001] nor TiML consider
relational cost analysis. Moreover, it is unclear to us how some predicates like LargerThan(x , ℓ,n)
(that is central to the analysis of insert’s precise cost) can be defined using DML-style refinements.

Amortized analysis [Hofmann and Jost 2003; Jost et al. 2010] establishes cost using the method
of potentials. The technique can be fully automated for polynomial bounds, as in Resource Aware
ML (RAML) [Hoffmann et al. 2012, 2017]. Our embedding of RAML in RC shows that RC is more
expressive, but RC is a proof framework, not an automated system. Jost et al. [2017] extend amortized
analysis to lazy semantics (Haskell). They specifically focus on co-inductive definitions. Despite the
extensive development, work on amortized analysis has, so far, not been combined with functional
properties or value-dependence. Nonetheless, RAML can implicitly handle value-dependence
when a type’s constructors are singletons. This happens, for instance, with enumerated types
like bool = ff + tt. Our example from Section 8 shows that a more general combination of value-
dependence and amortized analysis is interesting. In recent work, Ngo et al. [2017] extend amortized
analysis to the verification of constant-resource usage behavior in the context of preventing side-
channel leaks of information. Although this has a flavor of relational analysis, it is technically based
on unary analysis (it works by showing that the lower and upper cost bounds coincide). Çiçek et al.
[2017] argue that this approach is insufficient for relational cost analysis in general.
Carbonneaux et al. [2015] present a quantitative program logic that can perform amortized

cost analysis of programs in Clight, the first intermediate language of the CompCert C compiler.
The settings of that work and ours are quite different: They consider automatic analysis for
first-order imperative programs with mutable state and semi-structured control flow (break, return-
in-the-middle of a function) in the unary setting, whereas we consider a proof system for higher-
order functional programs without mutable state in both the unary and the relational settings.
Nonetheless, as explained in Section 9, it seems to us that some of the key technical ideas developed
by Carbonneaux et al. [2015] can be ported to UC and RC by defining a specific state and cost monad,
and deriving their logic’s rules as theorems, thus obtaining a proof framework that marries the
best of both sides.
A lot of work for cost analysis relies on size types [Avanzini and Dal Lago 2017; Crary and

Weirich 2000; Danner et al. 2015; Serrano et al. 2013]. Size types only specify the sizes of data
structures, so they must be combined with other techniques to reason about costs. One approach is
to use a cost-passing encoding to make cost an explicit output and to reason about its size [Avanzini
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and Dal Lago 2017; Danner et al. 2015]. Crary and Weirich [2000] take a different approach that
resembles a type-and-effect system. To the best of our knowledge, size types have not been used
in the context of relational cost analysis, or for cost analysis in combination with expressive
refinements, so all examples in this paper would be outside of their purview. We believe, but have
not yet shown, that analysis based on size types can be embedded in UC. Dal Lago and Gaboardi
[2011]; Dal Lago and Petit [2013] follow a related approach, where cost is established by counting
the number of uses of a term through a linear dependent type system. It is unclear to us whether
this approach can be embedded in UC/RC.
RelCost [Çiçek et al. 2017] is a type-and-effect system that uses DML-like refinements for

relational and unary cost analysis. The expressiveness of these refinements is limited and RelCost
cannot handle any of the examples in this paper. In Section 7, we showed an embedding of RelCost
into RC. Nonetheless, some of our rules, e.g., R-SPLIT are inspired by similar rules in RelCost.

Going beyond type/logic-based systems, there is a significant amount of work on resource bound
analysis for imperative programs. The focus is on fully automated techniques and a variety of
different approaches to resource bound analysis have been developed, e.g., based on recurrence
equations [Albert et al. 2012; Debray et al. 1990; Flores-Montoya and Hähnle 2014], template
constraints [Carbonneaux et al. 2015], term-rewriting systems [Avanzini et al. 2015; Brockschmidt
et al. 2016], ranking functions [Alias et al. 2010], abstract-interpretation [Gulwani et al. 2009;
Gulwani and Zuleger 2010; Hermenegildo et al. 2005], abstract program models [Sinn et al. 2014,
2017; Zuleger et al. 2011] and interactive verification [Madhavan et al. 2017]. These approaches can
compute some resource bounds that are value-dependent; however, complicated value-dependenceÐ
such as in the examples of this paperÐis out of reach for these automated techniques.
RC builds on two basic ideasÐrelational analysis for higher-order programs and monads. Rela-

tional analysis for higher-order programs has been studied extensively. Some of the work is based
on higher-order relational refinements [Barthe et al. 2014, 2015], but the discipline of refinement
types imposes strong limitations; in particular, reasoning about structurally different programs is
restricted. Relational Higher-Order Logic (RHOL), and its unary counterpart UHOL, constitute an
alternative approach that separates typing from logical reasoning, and supports reasoning about
structurally different programs [Aguirre et al. 2017b]. Our work builds directly on RHOL and UHOL.
Specifically, the pure fragment of RC (UC) is almost exactly RHOL (UHOL), with the difference
that we added inductive datatypes to support more interesting programs. This change required
us to rework parts of the soundness theorems of RHOL and UHOL. The cost monad, the monadic
judgments, the rules for reasoning about costs (in LC, UC and RC) and the proofs of soundness and
completeness of UC/RC with respect to LC are completely new to our work, and constitute our key
technical contribution. At a conceptual level, our work shows how to extend the RHOL framework
with a side-effect (cost) and prove properties of the side-effect that depend on nontrivial functional
invariants. The original RHOL paper also includes some examples of cost analysis in RHOL directly,
but these examples encode cost as an explicit program output and reason about cost as an ordinary
value, without developing any specific reasoning principles pertaining to cost as an effect. Our
development, on the other hand, treats cost as an effect, encapsulated in a monad with dedicated
rules for verification, thus improving clarity in proofs.

Monads are widely used to represent and isolate effects (see, e.g., Wadler and Thiemann [2003]).
The specific presentation of monads we follow is due to Pfenning and Davies [2001, Section 8], who
introduce the idea of what we call the pure and monadic judgments (but without refinements and
without any specific effect). This separation not only simplifies the equational theory (an aspect we
did not highlight here) but also aids the design of monadic refinements in our setting.

Going beyond cost analysis, there is a lot of existing work on combining monads with refinements
and dependent types. As examples, we mention HTT and RHTT, which define a state monad
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with refinements for Hoare-style pre- and post-conditions in the unary and relational settings,
respectively [Nanevski et al. 2013, 2008]. The new F⋆ language includes monads for state and
exceptions in a setting of rich (unary) refinements [Swamy et al. 2016].

11 SUMMARY

We have presented two frameworksÐRC and UCÐthat combine cost analysis with program logics
in the relational and unary settings, respectively. The combination is both theoretically simple
and expressive. We are able to verify several new examples that highlight the importance of value-
dependence, nonstandard refinements and functional correctness for cost analysis. As further
evidence of expressiveness, we embed existing systems for cost analysis in RC and UC.
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